/usr/share/maxima/5.32.1/src/float.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module float)
;; EXPERIMENTAL BIGFLOAT PACKAGE VERSION 2- USING BINARY MANTISSA
;; AND POWER-OF-2 EXPONENT.
;; EXPONENTS MAY BE BIG NUMBERS NOW (AUG. 1975 --RJF)
;; Modified: July 1979 by CWH to run on the Lisp Machine and to comment
;; the code.
;; August 1980 by CWH to run on Multics and to install
;; new FIXFLOAT.
;; December 1980 by JIM to fix BIGLSH not to pass LSH a second
;; argument with magnitude greater than MACHINE-FIXNUM-PRECISION.
;; Number of bits of precision in a fixnum and in the fields of a flonum for
;; a particular machine. These variables should only be around at eval
;; and compile time. These variables should probably be set up in a prelude
;; file so they can be accessible to all Macsyma files.
(eval-when
#+gcl (compile load eval)
#-gcl (:compile-toplevel :load-toplevel :execute)
(defconstant +machine-fixnum-precision+ (integer-length most-positive-fixnum)))
;; External variables
(defmvar $float2bf t
"If TRUE, no MAXIMA-ERROR message is printed when a floating point number is
converted to a bigfloat number.")
(defmvar $bftorat nil
"Controls the conversion of bigfloat numbers to rational numbers. If
FALSE, RATEPSILON will be used to control the conversion (this results in
relatively small rational numbers). If TRUE, the rational number generated
will accurately represent the bigfloat.")
(defmvar $bftrunc t
"If TRUE, printing of bigfloat numbers will truncate trailing zeroes.
Otherwise, all trailing zeroes are printed.")
(defmvar $fpprintprec 0
"Controls the number of significant digits printed for floats. If
0, then full precision is used."
fixnum)
(defmvar $maxfpprintprec (ceiling (log (expt 2 (float-digits 1.0)) 10.0))
"The maximum number of significant digits printed for floats.")
(defmvar $fpprec $maxfpprintprec
"Number of decimal digits of precision to use when creating new bigfloats.
One extra decimal digit in actual representation for rounding purposes.")
(defmvar bigfloatzero '((bigfloat simp 56.) 0 0)
"Bigfloat representation of 0" in-core)
(defmvar bigfloatone '((bigfloat simp 56.) #.(expt 2 55.) 1)
"Bigfloat representation of 1" in-core)
(defmvar bfhalf '((bigfloat simp 56.) #.(expt 2 55.) 0)
"Bigfloat representation of 1/2")
(defmvar bfmhalf '((bigfloat simp 56.) #.(- (expt 2 55.)) 0)
"Bigfloat representation of -1/2")
(defmvar bigfloat%e '((bigfloat simp 56.) 48968212118944587. 2)
"Bigfloat representation of %E")
(defmvar bigfloat%pi '((bigfloat simp 56.) 56593902016227522. 2)
"Bigfloat representation of %pi")
(defmvar bigfloat%gamma '((bigfloat simp 56.) 41592772053807304. 0)
"Bigfloat representation of %gamma")
(defmvar bigfloat_log2 '((bigfloat simp 56.) 49946518145322874. 0)
"Bigfloat representation of log(2)")
;; Internal specials
;; Number of bits of precision in the mantissa of newly created bigfloats.
;; FPPREC = ($FPPREC+1)*(Log base 2 of 10)
(defvar fpprec)
;; FPROUND uses this to return a second value, i.e. it sets it before
;; returning. This number represents the number of binary digits its input
;; bignum had to be shifted right to be aligned into the mantissa. For
;; example, aligning 1 would mean shifting it FPPREC-1 places left, and
;; aligning 7 would mean shifting FPPREC-3 places left.
(defvar *m)
;; *DECFP = T if the computation is being done in decimal radix. NIL implies
;; base 2. Decimal radix is used only during output.
(defvar *decfp nil)
(defvar max-bfloat-%pi bigfloat%pi)
(defvar max-bfloat-%e bigfloat%e)
(defvar max-bfloat-%gamma bigfloat%gamma)
(defvar max-bfloat-log2 bigfloat_log2)
(declare-top (special *cancelled $float $bfloat $ratprint $ratepsilon $domain $m1pbranch))
;; Representation of a Bigfloat: ((BIGFLOAT SIMP precision) mantissa exponent)
;; precision -- number of bits of precision in the mantissa.
;; precision = (integer-length mantissa)
;; mantissa -- a signed integer representing a fractional portion computed by
;; fraction = (// mantissa (^ 2 precision)).
;; exponent -- a signed integer representing the scale of the number.
;; The actual number represented is (* fraction (^ 2 exponent)).
(defun hipart (x nn)
(if (bignump nn)
(abs x)
(haipart x nn)))
(defun fpprec1 (assign-var q)
(declare (ignore assign-var))
(if (or (not (fixnump q)) (< q 1))
(merror (intl:gettext "fpprec: value must be a positive integer; found: ~M") q))
(setq fpprec (+ 2 (integer-length (expt 10. q)))
bigfloatone ($bfloat 1)
bigfloatzero ($bfloat 0)
bfhalf (list (car bigfloatone) (cadr bigfloatone) 0)
bfmhalf (list (car bigfloatone) (- (cadr bigfloatone)) 0))
q)
;; FPSCAN is called by lexical scan when a
;; bigfloat is encountered. For example, 12.01B-3
;; would be the result of (FPSCAN '(/1 /2) '(/0 /1) '(/- /3))
;; Arguments to FPSCAN are a list of characters to the left of the
;; decimal point, to the right of the decimal point, and in the exponent.
(defun fpscan (lft rt exp &aux (*read-base* 10.) (*m 1) (*cancelled 0))
(setq exp (readlist exp))
(bigfloatp
(let ((fpprec (+ 4 fpprec (integer-length exp)
(floor (1+ (* #.(/ (log 10.0) (log 2.0)) (length lft))))))
$float temp)
(setq temp (add (readlist lft)
(div (readlist rt) (expt 10. (length rt)))))
($bfloat (cond ((> (abs exp) 1000.)
(cons '(mtimes) (list temp (list '(mexpt) 10. exp))))
(t (mul2 temp (power 10. exp))))))))
(defun dim-bigfloat (form result)
(let (($lispdisp nil))
(dimension-atom (maknam (fpformat form)) result)))
(defun fpformat (l)
(if (not (member 'simp (cdar l) :test #'eq))
(setq l (cons (cons (caar l) (cons 'simp (cdar l))) (cdr l))))
(cond ((equal (cadr l) 0)
(if (not (equal (caddr l) 0))
(mtell "FPFORMAT: warning: detected an incorrect form of 0.0b0: ~M, ~M~%"
(cadr l) (caddr l)))
(list '|0| '|.| '|0| '|b| '|0|))
(t ;; L IS ALWAYS POSITIVE FP NUMBER
(let ((extradigs (floor (1+ (quotient (integer-length (caddr l)) #.(/ (log 10.0) (log 2.0))))))
(*m 1)
(*cancelled 0))
(setq l
(let ((*decfp t)
(fpprec (+ extradigs (decimalsin (- (caddar l) 2))))
(of (caddar l))
(l (cdr l))
(expon nil))
(setq expon (- (cadr l) of))
(setq l (if (minusp expon)
(fpquotient (intofp (car l)) (fpintexpt 2 (- expon) of))
(fptimes* (intofp (car l)) (fpintexpt 2 expon of))))
(incf fpprec (- extradigs))
(list (fpround (car l)) (+ (- extradigs) *m (cadr l))))))
(let ((*print-base* 10.)
*print-radix*
(l1 nil))
(setq l1 (if (not $bftrunc)
(explodec (car l))
(do ((l (nreverse (explodec (car l))) (cdr l)))
((not (eq '|0| (car l))) (nreverse l)))))
(nconc (ncons (car l1)) (ncons '|.|)
(or (and (cdr l1)
(cond ((or (zerop $fpprintprec)
(not (< $fpprintprec $fpprec))
(null (cddr l1)))
(cdr l1))
(t (setq l1 (cdr l1))
(do ((i $fpprintprec (1- i)) (l2))
((or (< i 2) (null l1))
(cond ((not $bftrunc) (nreverse l2))
(t (do ((l3 l2 (cdr l3)))
((not (eq '|0| (car l3)))
(nreverse l3))))))
(setq l2 (cons (car l1) l2) l1 (cdr l1))))))
(ncons '|0|))
(ncons '|b|)
(explodec (1- (cadr l))))))))
;; Tells you if you have a bigfloat object. BUT, if it is a bigfloat,
;; it will normalize it by making the precision of the bigfloat match
;; the current precision setting in fpprec. And it will also convert
;; bogus zeroes (mantissa is zero, but exponent is not) to a true
;; zero.
(defun bigfloatp (x)
;; A bigfloat object looks like '((bigfloat simp <prec>) <mantissa> <exp>)
(prog nil
(cond ((not ($bfloatp x)) (return nil))
((= fpprec (caddar x))
;; Precision matches. (Should we fix up bogus bigfloat
;; zeros?)
(return x))
((> fpprec (caddar x))
;; Current precision is higher than bigfloat precision.
;; Scale up mantissa and adjust exponent to get the
;; correct precision.
(setq x (bcons (list (fpshift (cadr x) (- fpprec (caddar x)))
(caddr x)))))
(t
;; Current precision is LOWER than bigfloat precision.
;; Round the number to the desired precision.
(setq x (bcons (list (fpround (cadr x))
(+ (caddr x) *m fpprec (- (caddar x))))))))
;; Fix up any bogus zeros that we might have created.
(return (if (equal (cadr x) 0) (bcons (list 0 0)) x))))
(defun bigfloat2rat (x)
(setq x (bigfloatp x))
(let (($float2bf t)
(exp nil)
(y nil)
(sign nil))
(setq exp (cond ((minusp (cadr x))
(setq sign t
y (fpration1 (cons (car x) (fpabs (cdr x)))))
(rplaca y (* -1 (car y))))
(t (fpration1 x))))
(when $ratprint
(princ "`rat' replaced ")
(when sign (princ "-"))
(princ (maknam (fpformat (cons (car x) (fpabs (cdr x))))))
(princ " by ")
(princ (car exp))
(write-char #\/)
(princ (cdr exp))
(princ " = ")
(setq x ($bfloat (list '(rat simp) (car exp) (cdr exp))))
(when sign (princ "-"))
(princ (maknam (fpformat (cons (car x) (fpabs (cdr x))))))
(terpri))
exp))
(defun fpration1 (x)
(let ((fprateps (cdr ($bfloat (if $bftorat
(list '(rat simp) 1 (exptrl 2 (1- fpprec)))
$ratepsilon)))))
(or (and (equal x bigfloatzero) (cons 0 1))
(prog (y a)
(return (do ((xx x (setq y (invertbigfloat
(bcons (fpdifference (cdr xx) (cdr ($bfloat a)))))))
(num (setq a (fpentier x))
(+ (* (setq a (fpentier y)) num) onum))
(den 1 (+ (* a den) oden))
(onum 1 num)
(oden 0 den))
((and (not (zerop den))
(not (fpgreaterp
(fpabs (fpquotient
(fpdifference (cdr x)
(fpquotient (cdr ($bfloat num))
(cdr ($bfloat den))))
(cdr x)))
fprateps)))
(cons num den))))))))
(defun float-nan-p (x)
(and (floatp x) (not (= x x))))
(defun float-inf-p (x)
(and (floatp x) (not (float-nan-p x)) (beyond-extreme-values x)))
(defun beyond-extreme-values (x)
(multiple-value-bind (most-negative most-positive) (extreme-float-values x)
(cond
((< x 0) (< x most-negative))
((> x 0) (> x most-positive))
(t nil))))
(defun extreme-float-values (x)
;; BLECHH, I HATE ENUMERATING CASES. IS THERE A BETTER WAY ??
(case (type-of x)
(short-float (values most-negative-short-float most-positive-short-float))
(single-float (values most-negative-single-float most-positive-single-float))
(double-float (values most-negative-double-float most-positive-double-float))
(long-float (values most-negative-long-float most-positive-long-float))
;; NOT SURE THE FOLLOWING REALLY WORKS
;; #+(and cmu double-double)
;; (kernel:double-double-float
;; (values most-negative-double-double-float most-positive-double-double-float))
))
;; Convert a floating point number into a bigfloat.
(defun floattofp (x)
(if (float-nan-p x)
(merror (intl:gettext "bfloat: attempted conversion of floating point NaN (not-a-number).~%")))
(if (float-inf-p x)
(merror (intl:gettext "bfloat: attempted conversion of floating-point infinity.~%")))
(unless $float2bf
(mtell (intl:gettext "bfloat: converting float ~S to bigfloat.~%") x))
;; Need to check for zero because different lisps return different
;; values for integer-decode-float of a 0. In particular CMUCL
;; returns 0, -1075. A bigfloat zero needs to have an exponent and
;; mantissa of zero.
(if (zerop x)
(list 0 0)
(multiple-value-bind (frac exp sign)
(integer-decode-float x)
;; Scale frac to the desired number of bits, and adjust the
;; exponent accordingly.
(let ((scale (- fpprec (integer-length frac))))
(list (ash (* sign frac) scale)
(+ fpprec (- exp scale)))))))
;; Convert a bigfloat into a floating point number.
(defmfun fp2flo (l)
(let ((precision (caddar l))
(mantissa (cadr l))
(exponent (caddr l))
(fpprec machine-mantissa-precision)
(*m 0))
;; Round the mantissa to the number of bits of precision of the
;; machine, and then convert it to a floating point fraction. We
;; have 0.5 <= mantissa < 1
(setq mantissa (quotient (fpround mantissa) (expt 2.0 machine-mantissa-precision)))
;; Multiply the mantissa by the exponent portion. I'm not sure
;; why the exponent computation is so complicated.
;;
;; GCL doesn't signal overflow from scale-float if the number
;; would overflow. We have to do it this way. 0.5 <= mantissa <
;; 1. The largest double-float is .999999 * 2^1024. So if the
;; exponent is 1025 or higher, we have an overflow.
(let ((e (+ exponent (- precision) *m machine-mantissa-precision)))
(if (>= e 1025)
(merror (intl:gettext "float: floating point overflow converting ~:M") l)
(scale-float mantissa e)))))
;; New machine-independent version of FIXFLOAT. This may be buggy. - CWH
;; It is buggy! On the PDP10 it dies on (RATIONALIZE -1.16066076E-7)
;; which calls FLOAT on some rather big numbers. ($RATEPSILON is approx.
;; 7.45E-9) - JPG
(defun fixfloat (x)
(let (($ratepsilon (expt 2.0 (- machine-mantissa-precision))))
(maxima-rationalize x)))
;; Takes a flonum arg and returns a rational number corresponding to the flonum
;; in the form of a dotted pair of two integers. Since the denominator will
;; always be a positive power of 2, this number will not always be in lowest
;; terms.
(defun bcons (s)
`((bigfloat simp ,fpprec) . ,s))
(defmfun $bfloat (x)
(let (y)
(cond ((bigfloatp x))
((or (numberp x)
(member x '($%e $%pi $%gamma) :test #'eq))
(bcons (intofp x)))
((or (atom x) (member 'array (cdar x) :test #'eq))
(if (eq x '$%phi)
($bfloat '((mtimes simp)
((rat simp) 1 2)
((mplus simp) 1 ((mexpt simp) 5 ((rat simp) 1 2)))))
x))
((eq (caar x) 'mexpt)
(if (equal (cadr x) '$%e)
(*fpexp ($bfloat (caddr x)))
(exptbigfloat ($bfloat (cadr x)) (caddr x))))
((eq (caar x) 'mncexpt)
(list '(mncexpt) ($bfloat (cadr x)) (caddr x)))
((eq (caar x) 'rat)
(ratbigfloat (cdr x)))
((setq y (safe-get (caar x) 'floatprog))
(funcall y (mapcar #'$bfloat (cdr x))))
((or (trigp (caar x)) (arcp (caar x)) (eq (caar x) '$entier))
(setq y ($bfloat (cadr x)))
(if ($bfloatp y)
(cond ((eq (caar x) '$entier) ($entier y))
((arcp (caar x))
(setq y ($bfloat (logarc (caar x) y)))
(if (free y '$%i)
y (let ($ratprint) (fparcsimp ($rectform y)))))
((member (caar x) '(%cot %sec %csc) :test #'eq)
(invertbigfloat
($bfloat (list (ncons (safe-get (caar x) 'recip)) y))))
(t ($bfloat (exponentialize (caar x) y))))
(subst0 (list (ncons (caar x)) y) x)))
(t (recur-apply #'$bfloat x)))))
(defprop mplus addbigfloat floatprog)
(defprop mtimes timesbigfloat floatprog)
(defprop %sin sinbigfloat floatprog)
(defprop %cos cosbigfloat floatprog)
(defprop rat ratbigfloat floatprog)
(defprop %atan atanbigfloat floatprog)
(defprop %tan tanbigfloat floatprog)
(defprop %log logbigfloat floatprog)
(defprop mabs mabsbigfloat floatprog)
(defmfun addbigfloat (h)
(prog (fans tst r nfans)
(setq fans (setq tst bigfloatzero) nfans 0)
(do ((l h (cdr l)))
((null l))
(cond ((setq r (bigfloatp (car l)))
(setq fans (bcons (fpplus (cdr r) (cdr fans)))))
(t (setq nfans (list '(mplus) (car l) nfans)))))
(return (cond ((equal nfans 0) fans)
((equal fans tst) nfans)
(t (simplify (list '(mplus) fans nfans)))))))
(defmfun ratbigfloat (r)
;; R is a Maxima ratio, represented as a list of the numerator and
;; denominator. FLOAT-RATIO doesn't like it if the numerator is 0,
;; so handle that here.
(if (zerop (car r))
(bcons (list 0 0))
(bcons (float-ratio r))))
;; This is borrowed from CMUCL (float-ratio-float), and modified for
;; converting ratios to Maxima's bfloat numbers.
(defun float-ratio (x)
(let* ((signed-num (first x))
(plusp (plusp signed-num))
(num (if plusp signed-num (- signed-num)))
(den (second x))
(digits fpprec)
(scale 0))
(declare (fixnum digits scale))
;;
;; Strip any trailing zeros from the denominator and move it into the scale
;; factor (to minimize the size of the operands.)
(let ((den-twos (1- (integer-length (logxor den (1- den))))))
(declare (fixnum den-twos))
(decf scale den-twos)
(setq den (ash den (- den-twos))))
;;
;; Guess how much we need to scale by from the magnitudes of the numerator
;; and denominator. We want one extra bit for a guard bit.
(let* ((num-len (integer-length num))
(den-len (integer-length den))
(delta (- den-len num-len))
(shift (1+ (the fixnum (+ delta digits))))
(shifted-num (ash num shift)))
(declare (fixnum delta shift))
(decf scale delta)
(labels ((float-and-scale (bits)
(let* ((bits (ash bits -1))
(len (integer-length bits)))
(cond ((> len digits)
(assert (= len (the fixnum (1+ digits))))
(multiple-value-bind (f0)
(floatit (ash bits -1))
(list (first f0) (+ (second f0)
(1+ scale)))))
(t
(multiple-value-bind (f0)
(floatit bits)
(list (first f0) (+ (second f0) scale)))))))
(floatit (bits)
(let ((sign (if plusp 1 -1)))
(list (* sign bits) 0))))
(loop
(multiple-value-bind (fraction-and-guard rem)
(truncate shifted-num den)
(let ((extra (- (integer-length fraction-and-guard) digits)))
(declare (fixnum extra))
(cond ((/= extra 1)
(assert (> extra 1)))
((oddp fraction-and-guard)
(return
(if (zerop rem)
(float-and-scale
(if (zerop (logand fraction-and-guard 2))
fraction-and-guard
(1+ fraction-and-guard)))
(float-and-scale (1+ fraction-and-guard)))))
(t
(return (float-and-scale fraction-and-guard)))))
(setq shifted-num (ash shifted-num -1))
(incf scale)))))))
(defun decimalsin (x)
(do ((i (quotient (* 59. x) 196.) (1+ i))) ;log[10](2)=.301029
(nil)
(when (> (integer-length (expt 10. i)) x)
(return (1- i)))))
(defmfun atanbigfloat (x)
(*fpatan (car x) (cdr x)))
(defmfun *fpatan (a y)
(fpend (let ((fpprec (+ 8. fpprec)))
(if (null y)
(if ($bfloatp a) (fpatan (cdr ($bfloat a)))
(list '(%atan) a))
(fpatan2 (cdr ($bfloat a)) (cdr ($bfloat (car y))))))))
;; Bigfloat atan
(defun fpatan (x)
(prog (term x2 ans oans one two tmp)
(setq one (intofp 1) two (intofp 2))
(cond ((fpgreaterp (fpabs x) one)
;; |x| > 1.
;;
;; Use A&S 4.4.5:
;; atan(x) + acot(x) = +/- pi/2 (+ for x >= 0, - for x < 0)
;;
;; and A&S 4.4.8
;; acot(z) = atan(1/z)
(setq tmp (fpquotient (fppi) two))
(setq ans (fpdifference tmp (fpatan (fpquotient one x))))
(return (cond ((fplessp x (intofp 0))
(fpdifference ans (fppi)))
(t ans))))
((fpgreaterp (fpabs x) (fpquotient one two))
;; |x| > 1/2
;;
;; Use A&S 4.4.42, third formula:
;;
;; atan(z) = z/(1+z^2)*[1 + 2/3*r + (2*4)/(3*5)*r^2 + ...]
;;
;; r = z^2/(1+z^2)
(setq tmp (fpquotient x (fpplus (fptimes* x x) one)))
(setq x2 (fptimes* x tmp) term (setq ans one))
(do ((n 0 (1+ n)))
((equal ans oans))
(setq term
(fptimes* term (fptimes* x2 (fpquotient
(intofp (+ 2 (* 2 n)))
(intofp (+ (* 2 n) 3))))))
(setq oans ans ans (fpplus term ans)))
(setq ans (fptimes* tmp ans)))
(t
;; |x| <= 1/2. Use Taylor series (A&S 4.4.42, first
;; formula).
(setq ans x x2 (fpminus (fptimes* x x)) term x)
(do ((n 3 (+ n 2)))
((equal ans oans))
(setq term (fptimes* term x2))
(setq oans ans
ans (fpplus ans (fpquotient term (intofp n)))))))
(return ans)))
;; atan(y/x) taking into account the quadrant. (Also equal to
;; arg(x+%i*y).)
(defun fpatan2 (y x)
(cond ((equal (car x) 0)
;; atan(y/0) = atan(inf), but what sign?
(cond ((equal (car y) 0)
(merror (intl:gettext "atan2: atan2(0, 0) is undefined.")))
((minusp (car y))
;; We're on the negative imaginary axis, so -pi/2.
(fpquotient (fppi) (intofp -2)))
(t
;; The positive imaginary axis, so +pi/2
(fpquotient (fppi) (intofp 2)))))
((signp g (car x))
;; x > 0. atan(y/x) is the correct value.
(fpatan (fpquotient y x)))
((signp g (car y))
;; x < 0, and y > 0. We're in quadrant II, so the angle we
;; want is pi+atan(y/x).
(fpplus (fppi) (fpatan (fpquotient y x))))
(t
;; x <= 0 and y <= 0. We're in quadrant III, so the angle we
;; want is atan(y/x)-pi.
(fpdifference (fpatan (fpquotient y x)) (fppi)))))
(defun tanbigfloat (a)
(setq a (car a))
(fpend (let ((fpprec (+ 8. fpprec)))
(cond (($bfloatp a)
(setq a (cdr ($bfloat a)))
(fpquotient (fpsin a t) (fpsin a nil)))
(t (list '(%tan) a))))))
;; Returns a list of a mantissa and an exponent.
(defun intofp (l)
(cond ((not (atom l)) ($bfloat l))
((floatp l) (floattofp l))
((equal 0 l) '(0 0))
((eq l '$%pi) (fppi))
((eq l '$%e) (fpe))
((eq l '$%gamma) (fpgamma))
(t (list (fpround l) (+ *m fpprec)))))
;; It seems to me that this function gets called on an integer
;; and returns the mantissa portion of the mantissa/exponent pair.
;; "STICKY BIT" CALCULATION FIXED 10/14/75 --RJF
;; BASE must not get temporarily bound to NIL by being placed
;; in a PROG list as this will confuse stepping programs.
(defun fpround (l &aux (*print-base* 10.) *print-radix*)
(prog (adjust)
(cond
((null *decfp)
;;*M will be positive if the precision of the argument is greater than
;;the current precision being used.
(setq *m (- (integer-length l) fpprec))
(when (= *m 0)
(setq *cancelled 0)
(return l))
;;FPSHIFT is essentially LSH.
(setq adjust (fpshift 1 (1- *m)))
(when (minusp l) (setq adjust (- adjust)))
(incf l adjust)
(setq *m (- (integer-length l) fpprec))
(setq *cancelled (abs *m))
(cond ((zerop (hipart l (- *m)))
;ONLY ZEROES SHIFTED OFF
(return (fpshift (fpshift l (- -1 *m))
1))) ; ROUND TO MAKE EVEN
(t (return (fpshift l (- *m))))))
(t
(setq *m (- (flatsize (abs l)) fpprec))
(setq adjust (fpshift 1 (1- *m)))
(when (minusp l) (setq adjust (- adjust)))
(setq adjust (* 5 adjust))
(setq *m (- (flatsize (abs (setq l (+ l adjust)))) fpprec))
(return (fpshift l (- *m)))))))
;; Compute (* L (expt d n)) where D is 2 or 10 depending on
;; *decfp. Throw away an fractional part by truncating to zero.
(defun fpshift (l n)
(cond ((null *decfp)
(cond ((and (minusp n) (minusp l))
;; Left shift of negative number requires some
;; care. (That is, (truncate l (expt 2 n)), but use
;; shifts instead.)
(- (ash (- l) n)))
(t
(ash l n))))
((> n 0)
(* l (expt 10. n)))
((< n 0.)
(quotient l (expt 10. (- n))))
(t l)))
;; Bignum LSH -- N is assumed (and declared above) to be a fixnum.
;; This isn't really LSH, since the sign bit isn't propagated when
;; shifting to the right, i.e. (BIGLSH -100 -3) = -40, whereas
;; (LSH -100 -3) = 777777777770 (on a 36 bit machine).
;; This actually computes (* X (EXPT 2 N)). As of 12/21/80, this function
;; was only called by FPSHIFT. I would like to hear an argument as why this
;; is more efficient than simply writing (* X (EXPT 2 N)). Is the
;; intermediate result created by (EXPT 2 N) the problem? I assume that
;; EXPT tries to LSH when possible.
(defun biglsh (x n)
(cond ((and (not (bignump x))
(< n #.(- +machine-fixnum-precision+)))
0)
;; Either we are shifting a fixnum to the right, or shifting
;; a fixnum to the left, but not far enough left for it to become
;; a bignum.
((and (not (bignump x))
(or (<= n 0)
(< (+ (integer-length x) n) #.+machine-fixnum-precision+)))
;; The form which follows is nearly identical to (ASH X N), however
;; (ASH -100 -20) = -1, whereas (BIGLSH -100 -20) = 0.
(if (>= x 0)
(ash x n)
(- (biglsh (- x) n)))) ;(- x) may be a bignum even is x is a fixnum.
;; If we get here, then either X is a bignum or our answer is
;; going to be a bignum.
((< n 0)
(cond ((> (abs n) (integer-length x)) 0)
((> x 0)
(hipart x (+ (integer-length x) n)))
(t (- (hipart x (+ (integer-length x) n))))))
((= n 0) x)
;; Isn't this the kind of optimization that compilers are
;; supposed to make?
((< n #.(1- +machine-fixnum-precision+)) (* x (ash 1 n)))
(t (* x (expt 2 n)))))
;; exp(x)
;;
;; For negative x, use exp(-x) = 1/exp(x)
;;
;; For x > 0, exp(x) = exp(r+y) = exp(r) * exp(y), where x = r + y and
;; r = floor(x).
(defun fpexp (x)
(prog (r s)
(unless (signp ge (car x))
(return (fpquotient (fpone) (fpexp (fpabs x)))))
(setq r (fpintpart x))
(return (cond ((< r 2)
(fpexp1 x))
(t
(setq s (fpexp1 (fpdifference x (intofp r))))
(fptimes* s
(cdr (bigfloatp
(let ((fpprec (+ fpprec (integer-length r) -1))
(r r))
(bcons (fpexpt (fpe) r))))))))))) ; patch for full precision %E
;; exp(x) for small x, using Taylor series.
(defun fpexp1 (x)
(prog (term ans oans)
(setq ans (setq term (fpone)))
(do ((n 1 (1+ n)))
((equal ans oans))
(setq term (fpquotient (fptimes* x term) (intofp n)))
(setq oans ans)
(setq ans (fpplus ans term)))
(return ans)))
;; Does one higher precision to round correctly.
;; A and B are each a list of a mantissa and an exponent.
(defun fpquotient (a b)
(cond ((equal (car b) 0)
(merror (intl:gettext "pquotient: attempted quotient by zero.")))
((equal (car a) 0) '(0 0))
(t (list (fpround (quotient (fpshift (car a) (+ 3 fpprec)) (car b)))
(+ -3 (- (cadr a) (cadr b)) *m)))))
(defun fpgreaterp (a b)
(fpposp (fpdifference a b)))
(defun fplessp (a b)
(fpposp (fpdifference b a)))
(defun fpposp (x)
(> (car x) 0))
(defmfun fpmin (arg1 &rest args)
(let ((min arg1))
(mapc #'(lambda (u) (if (fplessp u min) (setq min u))) args)
min))
(defmfun fpmax (arg1 &rest args)
(let ((max arg1))
(mapc #'(lambda (u) (if (fpgreaterp u max) (setq max u))) args)
max))
;; The following functions compute bigfloat values for %e, %pi,
;; %gamma, and log(2). For each precision, the computed value is
;; cached in a hash table so it doesn't need to be computed again.
;; There are functions to return the hash table or clear the hash
;; table, for debugging.
;;
;; Note that each of these return a bigfloat number, but without the
;; bigfloat tag.
;;
;; See
;; https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2910437&group_id=4933
;; for an explanation.
(let ((table (make-hash-table)))
(defun fpe ()
(let ((value (gethash fpprec table)))
(if value
value
(setf (gethash fpprec table) (cdr (fpe1))))))
(defun fpe-table ()
table)
(defun clear_fpe_table ()
(clrhash table)))
(let ((table (make-hash-table)))
(defun fppi ()
(let ((value (gethash fpprec table)))
(if value
value
(setf (gethash fpprec table) (cdr (fppi1))))))
(defun fppi-table ()
table)
(defun clear_fppi_table ()
(clrhash table)))
(let ((table (make-hash-table)))
(defun fpgamma ()
(let ((value (gethash fpprec table)))
(if value
value
(setf (gethash fpprec table) (cdr (fpgamma1))))))
(defun fpgamma-table ()
table)
(defun clear_fpgamma_table ()
(clrhash table)))
(let ((table (make-hash-table)))
(defun fplog2 ()
(let ((value (gethash fpprec table)))
(if value
value
(setf (gethash fpprec table) (comp-log2)))))
(defun fplog2-table ()
table)
(defun clear_fplog2_table ()
(clrhash table)))
;; This doesn't need a hash table because there's never a problem with
;; using a high precision value and rounding to a lower precision
;; value because 1 is always an exact bfloat.
(defun fpone ()
(cond (*decfp (intofp 1))
((= fpprec (caddar bigfloatone)) (cdr bigfloatone))
(t (intofp 1))))
;;....................................................................................................... ;;
;;
;; (fpe1) returns a bigfloat approximation to E.
;; fpe1 is the bigfloat part of the bfloat(%e) computation
;;
(defun fpe1 nil
(bcons (list (fpround (compe (+ fpprec 12))) (+ -12 *m))))
;;
;; compe is the bignum part of the bfloat(%e) computation
;; (compe N)/(2.0^N) is an approximation to E
;; The algorithm is based on the series
;;
;; %e = sum( 1/i! ,i,0,inf )
;;
;; but adds up k summands to one, for e.g. k=4 that means
;;
;; 1 1 1 1 1 + n*(1 + (n - 1)*(1 + (n - 2)))
;; -------- + -------- + -------- + -- = ---------------------------------
;; (n - 3)! (n - 2)! (n - 1)! n! n!
;;
;; The number of added summands should depend on the current precision.
;; k = isqrt(prec) seems to fit here.
;;
(defun compe (prec)
(let (s h (n 1) d (k (isqrt prec)))
(setq h (ash 1 prec))
(setq s h)
(do ((i k (+ i k)))
((zerop h))
(setq d (do ((j 1 (1+ j)) (p i))
((> j (1- k)) (* p n))
(setq p (* p (- i j)))) )
(setq n (do ((j (- k 2) (1- j)) (p 1))
((< j 0) p)
(setq p (1+ (* p (- i j))))) )
(setq h (truncate (* h n) d))
(setq s (+ s h)))
s))
;;................................................................................ Volker van Nek 2007 .. ;;
;;....................................................................................................... ;;
;;
;; (fppi1) returns a bigfloat approximation to PI.
;; fppi1 is the bigfloat part of the bfloat(%pi) computation
;;
(defun fppi1 nil
(bcons
(fpquotient
(fprt18231_)
(list (fpround (comppi (+ fpprec 12))) (+ -12 *m)) )))
;;
;; comppi is the bignum part of the bfloat(%pi) computation
;; (comppi N)/(2.0^N) is an approximation to 640320^(3/2)/12 * 1/PI
;;
;; Chudnovsky & Chudnovsky (1987):
;;
;; 640320^(3/2) / (12 * %pi) =
;;
;; sum( (-1)^i*(6*i)!*(545140134*i+13591409) / (i!^3*(3*i)!*640320^(3*i)) ,i,0,inf )
;;
(defun comppi (prec)
(let (s h n d)
(setq s (ash 13591409 prec))
(setq h (neg (truncate (ash 67047785160 prec) 262537412640768000)))
(setq s (+ s h))
(do ((i 2 (1+ i)))
((zerop h))
(setq n (* 12 (- (* 6 i) 5) (- (* 6 i) 4) (- (* 2 i) 1) (- (* 6 i) 1) (+ (* i 545140134) 13591409) ))
(setq d (* (- (* 3 i) 2) (expt i 3) (- (* i 545140134) 531548725) 262537412640768000))
(setq h (neg (truncate (* h n) d)))
(setq s (+ s h)))
s ))
;;
;; fprt18231_ computes sqrt(640320^3/12^2)
;; = sqrt(1823176476672000) = 42698670.666333...
;;
;; See this email thread on this topic for an explanation of why there
;; are two routines and timing measurements that were done:
;;
;; http://www.math.utexas.edu/pipermail/maxima/2008/013946.html
;;
;; Basically, using isqrt is faster than Heron's algorithm for
;; everyone except gcl.
;;
;; 1. gcl-version:
;; n[0] n[i+1] = n[i]^2+a*d[i]^2 n[inf]
;; quadratic Heron algorithm: x[0] = ----, , sqrt(a) = ------
;; d[0] d[i+1] = 2*n[i]*d[i] d[inf]
#+gcl
(defun fprt18231_ ()
(let ((a 1823176476672000)
(n 42698670666)
(d 1000)
h )
(do ((prec 32 (* 2 prec)))
((> prec fpprec))
(setq h n)
(setq n (+ (* n n) (* a d d)))
(setq d (* 2 h d)) )
(fpquotient (intofp n) (intofp d))))
;;
;; 2. non-gcl-version (by Raymond Toy, October 2008):
;;
#-gcl
(defun fprt18231_ ()
(let ((a 1823176476672000))
;; sqrt(a) = sqrt(a*2^(2*n))/(2^n). Use isqrt to compute the sqrt.
(setq a (ash a (* 2 fpprec)))
(destructuring-bind (mantissa exp)
(intofp (isqrt a))
(list mantissa (- exp fpprec)))))
;;................................................................................ Volker van Nek 2007 .. ;;
;; Compute the main part of the Euler-Mascheroni constant using the
;; Bessel function approach. See
;; http://numbers.computation.free.fr/Constants/Gamma/gamma.html for a
;; description of the algorithm.
;; Roughly, we have
;;
;; %gamma = A(N)/B(N) - log(N) + O(e^(-4*N))
;;
;; where
;;
;;
;; a*N
;; A(N) = sum (N^2/n!)^2*H(n)
;; n=0
;;
;; a*N
;; B(N) = sum (N^2/n!)^2
;; n=0
;;
;; n
;; H(n) = sum 1/k
;; k=1
;;
;; with H(0) = 0
;;
;; and a = 3.591121476668622136649223 where a*(log(a)-1) = 1.
;;
;; This formula can be easily justified by looking at the value
;; K0(2*N)/I0(2*N), where K0 and I0 are the modified Bessel functions.
;; From A&S 9.6.12 and 9.6.13, We see that
;;
;; inf
;; I0(2*N) = sum (N^2/n!)^2
;; n=0
;;
;;
;; inf
;; K0(2*N) = -(log(N) + %gamma)*I0(2*N) + sum (N^2/n!)^2*H(n)
;; n=0
;;
;; So
;;
;; K0(2*N)/I0(2*N) = -log(N) - %gamma + C
;;
;; where
;;
;; C = [sum (N^2/n!)^2*H(n)]/sum (N^2/n!)^2
;;
;; or
;;
;; For N large, A&S gives
;;
;; I0(2*N) = exp(2*N)/sqrt(4*%pi*N)
;;
;; K0(2*N) = sqrt(%pi/(4*N))*exp(-2*N)
;;
;; So K0(2*N)/I0(2*N) = %pi*exp(-4*N) and
;;
;; O(exp(-4*N)) = -log(N) - %gamma + C
;;
;; or
;;
;; %gamma = C - log(N) + O(exp(-4*N))
;;
;; And C is approximately A(N)/B(N) if we take enough terms in the
;; sum.
;;
(defun comp-bf%gamma (prec)
;; Prec is the number of digits we want. We assume the remainder is
;; really e^(-4*N) and not O(e^(-4*N)). So choose N such that
;; exp(-4*N) is less than the number of digits of precision we want.
;;
;; We also assume don't need a really precise value of beta because
;; our N's are not so big that we need more.
(let* ((fpprec prec)
(big-n (floor (* 1/4 prec (log 2.0))))
(big-n-sq (intofp (* big-n big-n)))
(beta 3.591121476668622136649223)
(limit (floor (* beta big-n)))
(one (fpone))
(term (intofp 1))
(harmonic (intofp 0))
(a-sum (intofp 0))
(b-sum (intofp 1)))
(do ((n 1 (1+ n)))
((> n limit))
(let ((bf-n (intofp n)))
(setf term (fpquotient (fptimes* term big-n-sq)
(fptimes* bf-n bf-n)))
(setf harmonic (fpplus harmonic (fpquotient one bf-n)))
(setf a-sum (fpplus a-sum (fptimes* term harmonic)))
(setf b-sum (fpplus b-sum term))))
(fpplus (fpquotient a-sum b-sum)
(fpminus (fplog (intofp big-n))))))
(defun fpgamma1 ()
;; Use a few extra bits of precision
(bcons (list (fpround (first (comp-bf%gamma (+ fpprec 8)))) 0)))
(defun comp-log2 ()
;; This is the algorithm given in http://numbers.computation.free.fr/Constants/constants.html
;; log(2) = 18*L(26) - 2*L(4801) + 8*L(8749)
;; L(k) = atanh(1/k) = 1/2*log((k+1)/(k-1))
;; = sum(x^(2*m+1)/(2*m+1), m, 0, inf)
;;
;; So
;;
;; log(2) = 18*atanh(1/26)-2*atanh(1/4801)+8*atanh(8749)
(flet ((fast-atanh (k)
;; Compute atanh(x) using Taylor series:
;;
;; atanh(x) = sum(x^(2*n+1)/(2*n+1), n, 0, inf)
(let* ((term (fpquotient (intofp 1) (intofp k)))
(fact (fptimes* term term))
(oldsum (intofp 0))
(sum term))
(loop for m from 3 by 2
until (equal oldsum sum)
do
(setf oldsum sum)
(setf term (fptimes* term fact))
(setf sum (fpplus sum (fpquotient term (intofp m)))))
sum)))
;; Compute log(2) using the formula above. We also use 8 extra
;; bits of precision.
(let ((result
(let* ((fpprec (+ fpprec 8)))
(fpplus (fpdifference (fptimes* (intofp 18) (fast-atanh 26))
(fptimes* (intofp 2) (fast-atanh 4801)))
(fptimes* (intofp 8) (fast-atanh 8749))))))
(list (fpround (car result))
(+ -8 *m)))))
(defun fpdifference (a b)
(fpplus a (fpminus b)))
(defun fpminus (x)
(if (equal (car x) 0)
x
(list (- (car x)) (cadr x))))
(defun fpplus (a b)
(prog (*m exp man sticky)
(setq *cancelled 0)
(cond ((equal (car a) 0) (return b))
((equal (car b) 0) (return a)))
(setq exp (- (cadr a) (cadr b)))
(setq man (cond ((equal exp 0)
(setq sticky 0)
(fpshift (+ (car a) (car b)) 2))
((> exp 0)
(setq sticky (hipart (car b) (- 1 exp)))
(setq sticky (cond ((signp e sticky) 0)
((signp l (car b)) -1)
(t 1)))
; COMPUTE STICKY BIT
(+ (fpshift (car a) 2)
; MAKE ROOM FOR GUARD DIGIT & STICKY BIT
(fpshift (car b) (- 2 exp))))
(t (setq sticky (hipart (car a) (1+ exp)))
(setq sticky (cond ((signp e sticky) 0)
((signp l (car a)) -1)
(t 1)))
(+ (fpshift (car b) 2)
(fpshift (car a) (+ 2 exp))))))
(setq man (+ man sticky))
(return (cond ((equal man 0) '(0 0))
(t (setq man (fpround man))
(setq exp (+ -2 *m (max (cadr a) (cadr b))))
(list man exp))))))
(defun fptimes* (a b)
(if (or (zerop (car a)) (zerop (car b)))
'(0 0)
(list (fpround (* (car a) (car b)))
(+ *m (cadr a) (cadr b) (- fpprec)))))
;; Don't use the symbol BASE since it is SPECIAL.
(defun fpintexpt (int nn fixprec) ;INT is integer
(setq fixprec (truncate fixprec (1- (integer-length int)))) ;NN is pos
(let ((bas (intofp (expt int (min nn fixprec)))))
(if (> nn fixprec)
(fptimes* (intofp (expt int (rem nn fixprec)))
(fpexpt bas (quotient nn fixprec)))
bas)))
;; NN is positive or negative integer
(defun fpexpt (p nn)
(cond ((zerop nn) (fpone))
((eql nn 1) p)
((< nn 0) (fpquotient (fpone) (fpexpt p (- nn))))
(t (prog (u)
(if (oddp nn)
(setq u p)
(setq u (fpone)))
(do ((ii (quotient nn 2) (quotient ii 2)))
((zerop ii))
(setq p (fptimes* p p))
(when (oddp ii)
(setq u (fptimes* u p))))
(return u)))))
(defun exptbigfloat (p n)
(cond ((equal n 1) p)
((equal n 0) ($bfloat 1))
((not ($bfloatp p)) (list '(mexpt) p n))
((equal (cadr p) 0) ($bfloat 0))
((and (< (cadr p) 0) (ratnump n))
(mul2 (let ($numer $float $keepfloat $ratprint)
(power -1 n))
(exptbigfloat (bcons (fpminus (cdr p))) n)))
((and (< (cadr p) 0) (not (integerp n)))
(cond ((or (equal n 0.5) (equal n bfhalf))
(exptbigfloat p '((rat simp) 1 2)))
((or (equal n -0.5) (equal n bfmhalf))
(exptbigfloat p '((rat simp) -1 2)))
(($bfloatp (setq n ($bfloat n)))
(cond ((equal n ($bfloat (fpentier n)))
(exptbigfloat p (fpentier n)))
(t ;; for P<0: P^N = (-P)^N*cos(pi*N) + i*(-P)^N*sin(pi*N)
(setq p (exptbigfloat (bcons (fpminus (cdr p))) n)
n ($bfloat `((mtimes) $%pi ,n)))
(add2 ($bfloat `((mtimes) ,p ,(*fpsin n nil)))
`((mtimes simp) ,($bfloat `((mtimes) ,p ,(*fpsin n t)))
$%i)))))
(t (list '(mexpt) p n))))
((and (ratnump n) (< (caddr n) 10.))
(bcons (fpexpt (fproot p (caddr n)) (cadr n))))
((not (integerp n))
(setq n ($bfloat n))
(cond
((not ($bfloatp n)) (list '(mexpt) p n))
(t
(let ((extrabits (max 1 (+ (caddr n) (integer-length (caddr p))))))
(setq p
(let ((fpprec (+ extrabits fpprec)))
(fpexp (fptimes* (cdr (bigfloatp n)) (fplog (cdr (bigfloatp p)))))))
(setq p (list (fpround (car p)) (+ (- extrabits) *m (cadr p))))
(bcons p)))))
;; The number of extra bits required
((< n 0) (invertbigfloat (exptbigfloat p (- n))))
(t (bcons (fpexpt (cdr p) n)))))
(defun fproot (a n) ; computes a^(1/n) see Fitch, SIGSAM Bull Nov 74
;; Special case for a = 0b0. General algorithm loops endlessly in that case.
;; Unlike many or maybe all of the other functions named FP-something,
;; FPROOT assumes it is called with an argument like
;; '((BIGFLOAT ...) FOO BAR) instead of '(FOO BAR).
;; However FPROOT does return something like '(FOO BAR).
(if (eq (cadr a) 0)
'(0 0)
(progn
(let* ((ofprec fpprec)
(fpprec (+ fpprec 2)) ;assumes a>0 n>=2
(bk (fpexpt (intofp 2) (1+ (quotient (cadr (setq a (cdr (bigfloatp a)))) n)))))
(do ((x bk (fpdifference x
(setq bk (fpquotient (fpdifference
x (fpquotient a (fpexpt x n1))) n))))
(n1 (1- n))
(n (intofp n)))
((or (equal bk '(0 0))
(> (- (cadr x) (cadr bk)) ofprec))
(setq a x))))
(list (fpround (car a)) (+ -2 *m (cadr a))))))
(defun timesbigfloat (h)
(prog (fans r nfans)
(setq fans (bcons (fpone)) nfans 1)
(do ((l h (cdr l)))
((null l))
(if (setq r (bigfloatp (car l)))
(setq fans (bcons (fptimes* (cdr r) (cdr fans))))
(setq nfans (list '(mtimes) (car l) nfans))))
(return (if (equal nfans 1)
fans
(simplify (list '(mtimes) fans nfans))))))
(defun invertbigfloat (a)
;; If A is a bigfloat, be sure to round it to the current precision.
;; (See Bug 2543079 for one of the symptoms.)
(let ((b (bigfloatp a)))
(if b
(bcons (fpquotient (fpone) (cdr b)))
(simplify (list '(mexpt) a -1)))))
(defun *fpexp (a)
(fpend (let ((fpprec (+ 8. fpprec)))
(if ($bfloatp a)
(fpexp (cdr (bigfloatp a)))
(list '(mexpt) '$%e a)))))
(defun *fpsin (a fl)
(fpend (let ((fpprec (+ 8. fpprec)))
(cond (($bfloatp a) (fpsin (cdr ($bfloat a)) fl))
(fl (list '(%sin) a))
(t (list '(%cos) a))))))
(defun fpend (a)
(cond ((equal (car a) 0) (bcons a))
((numberp (car a))
(setq a (list (fpround (car a)) (+ -8. *m (cadr a))))
(bcons a))
(t a)))
(defun fparcsimp (e) ; needed for e.g. ASIN(.123567812345678B0) with
;; FPPREC 16, to get rid of the miniscule imaginary
;; part of the a+bi answer.
(if (and (mplusp e) (null (cdddr e))
(mtimesp (caddr e)) (null (cdddr (caddr e)))
($bfloatp (cadr (caddr e)))
(eq (caddr (caddr e)) '$%i)
(< (caddr (cadr (caddr e))) (+ (- fpprec) 2)))
(cadr e)
e))
(defun sinbigfloat (x)
(*fpsin (car x) t))
(defun cosbigfloat (x)
(*fpsin (car x) nil))
;; THIS VERSION OF FPSIN COMPUTES SIN OR COS TO PRECISION FPPREC,
;; BUT CHECKS FOR THE POSSIBILITY OF CATASTROPHIC CANCELLATION DURING
;; ARGUMENT REDUCTION (E.G. SIN(N*%PI+EPSILON))
;; *FPSINCHECK* WILL CAUSE PRINTOUT OF ADDITIONAL INFO WHEN
;; EXTRA PRECISION IS NEEDED FOR SIN/COS CALCULATION. KNOWN
;; BAD FEATURES: IT IS NOT NECESSARY TO USE EXTRA PRECISION FOR, E.G.
;; SIN(PI/2), WHICH IS NOT NEAR ZERO, BUT EXTRA
;; PRECISION IS USED SINCE IT IS NEEDED FOR COS(PI/2).
;; PRECISION SEEMS TO BE 100% SATSIFACTORY FOR LARGE ARGUMENTS, E.G.
;; SIN(31415926.0B0), BUT LESS SO FOR SIN(3.1415926B0). EXPLANATION
;; NOT KNOWN. (9/12/75 RJF)
(defvar *fpsincheck* nil)
(defun fpsin (x fl)
(prog (piby2 r sign res k *cancelled)
(setq sign (cond (fl (signp g (car x)))
(t))
x (fpabs x))
(when (equal (car x) 0)
(return (if fl (intofp 0) (intofp 1))))
(return
(cdr
(bigfloatp
(let ((fpprec (max fpprec (+ fpprec (cadr x))))
(xt (bcons x))
(*cancelled 0)
(oldprec fpprec))
(prog (x)
loop (setq x (cdr (bigfloatp xt)))
(setq piby2 (fpquotient (fppi) (intofp 2)))
(setq r (fpintpart (fpquotient x piby2)))
(setq x (fpplus x (fptimes* (intofp (- r)) piby2)))
(setq k *cancelled)
(fpplus x (fpminus piby2))
(setq *cancelled (max k *cancelled))
(when *fpsincheck*
(print `(*canc= ,*cancelled fpprec= ,fpprec oldprec= ,oldprec)))
(cond ((not (> oldprec (- fpprec *cancelled)))
(setq r (rem r 4))
(setq res
(cond (fl (cond ((= r 0) (fpsin1 x))
((= r 1) (fpcos1 x))
((= r 2) (fpminus (fpsin1 x)))
((= r 3) (fpminus (fpcos1 x)))))
(t (cond ((= r 0) (fpcos1 x))
((= r 1) (fpminus (fpsin1 x)))
((= r 2) (fpminus (fpcos1 x)))
((= r 3) (fpsin1 x))))))
(return (bcons (if sign res (fpminus res)))))
(t
(incf fpprec *cancelled)
(go loop))))))))))
(defun fpcos1 (x)
(fpsincos1 x nil))
;; Compute SIN or COS in (0,PI/2). FL is T for SIN, NIL for COS.
;;
;; Use Taylor series
(defun fpsincos1 (x fl)
(prog (ans term oans x2)
(setq ans (if fl x (intofp 1))
x2 (fpminus(fptimes* x x)))
(setq term ans)
(do ((n (if fl 3 2) (+ n 2)))
((equal ans oans))
(setq term (fptimes* term (fpquotient x2 (intofp (* n (1- n))))))
(setq oans ans
ans (fpplus ans term)))
(return ans)))
(defun fpsin1(x)
(fpsincos1 x t))
(defun fpabs (x)
(if (signp ge (car x))
x
(cons (- (car x)) (cdr x))))
(defmfun fpentier (f)
(let ((fpprec (caddar f)))
(fpintpart (cdr f))))
(defun fpintpart (f)
(prog (m)
(setq m (- fpprec (cadr f)))
(return (if (> m 0)
(quotient (car f) (expt 2 m))
(* (car f) (expt 2 (- m)))))))
(defun logbigfloat (a)
(cond (($bfloatp (car a))
(big-float-log ($bfloat (car a))))
(t
(list '(%log) (car a)))))
;;; Computes the log of a bigfloat number.
;;;
;;; Uses the series
;;;
;;; log(1+x) = sum((x/(x+2))^(2*n+1)/(2*n+1),n,0,inf);
;;;
;;;
;;; INF x 2 n + 1
;;; ==== (-----)
;;; \ x + 2
;;; = 2 > --------------
;;; / 2 n + 1
;;; ====
;;; n = 0
;;;
;;;
;;; which converges for x > 0.
;;;
;;; Note that FPLOG is given 1+X, not X.
;;;
;;; However, to aid convergence of the series, we scale 1+x until 1/e
;;; < 1+x <= e.
;;;
(defun fplog (x)
(prog (over two ans oldans term e sum)
(unless (> (car x) 0)
(merror (intl:gettext "fplog: argument must be positive; found: ~M") (car x)))
(setq e (fpe)
over (fpquotient (fpone) e)
ans 0)
;; Scale X until 1/e < X <= E. ANS keeps track of how
;; many factors of E were used. Set X to NIL if X is E.
(do ()
(nil)
(cond ((equal x e) (setq x nil) (return nil))
((and (fplessp x e) (fplessp over x))
(return nil))
((fplessp x over)
(setq x (fptimes* x e))
(decf ans))
(t
(incf ans)
(setq x (fpquotient x e)))))
(when (null x) (return (intofp (1+ ans))))
;; Prepare X for the series. The series is for 1 + x, so
;; get x from our X. TERM is (x/(x+2)). X becomes
;; (x/(x+2))^2.
(setq x (fpdifference x (fpone))
ans (intofp ans))
(setq x (fpexpt (setq term (fpquotient x (fpplus x (setq two (intofp 2))))) 2))
;; Sum the series until the sum (in ANS) doesn't change
;; anymore.
(setq sum (intofp 0))
(do ((n 1 (+ n 2)))
((equal sum oldans))
(setq oldans sum)
(setq sum (fpplus sum (fpquotient term (intofp n))))
(setq term (fptimes* term x)))
(return (fpplus ans (fptimes* two sum)))))
(defun mabsbigfloat (l)
(prog (r)
(setq r (bigfloatp (car l)))
(return (if (null r)
(list '(mabs) (car l))
(bcons (fpabs (cdr r)))))))
;;;; Bigfloat implementations of special functions.
;;;;
;;; This is still a bit messy. Some functions here take bigfloat
;;; numbers, represented by ((bigfloat) <mant> <exp>), but others want
;;; just the FP number, represented by (<mant> <exp>). Likewise, some
;;; return a bigfloat, some return just the FP.
;;;
;;; This needs to be systemized somehow. It isn't helped by the fact
;;; that some of the routines above also do the samething.
;;;
;;; The implementation for the special functions for a complex
;;; argument are mostly taken from W. Kahan, "Branch Cuts for Complex
;;; Elementary Functions or Much Ado About Nothing's Sign Bit", in
;;; Iserles and Powell (eds.) "The State of the Art in Numerical
;;; Analysis", pp 165-211, Clarendon Press, 1987
;; Compute exp(x) - 1, but do it carefully to preserve precision when
;; |x| is small. X is a FP number, and a FP number is returned. That
;; is, no bigfloat stuff.
(defun fpexpm1 (x)
;; What is the right breakpoint here? Is 1 ok? Perhaps 1/e is better?
(cond ((fpgreaterp (fpabs x) (fpone))
;; exp(x) - 1
(fpdifference (fpexp x) (fpone)))
(t
;; Use Taylor series for exp(x) - 1
(let ((ans x)
(oans nil)
(term x))
(do ((n 2 (1+ n)))
((equal ans oans))
(setf term (fpquotient (fptimes* x term) (intofp n)))
(setf oans ans)
(setf ans (fpplus ans term)))
ans))))
;; log(1+x) for small x. X is FP number, and a FP number is returned.
(defun fplog1p (x)
;; Use the same series as given above for fplog. For small x we use
;; the series, otherwise fplog is accurate enough.
(cond ((fpgreaterp (fpabs x) (fpone))
(fplog (fpplus x (fpone))))
(t
(let* ((sum (intofp 0))
(term (fpquotient x (fpplus x (intofp 2))))
(f (fptimes* term term))
(oldans nil))
(do ((n 1 (+ n 2)))
((equal sum oldans))
(setq oldans sum)
(setq sum (fpplus sum (fpquotient term (intofp n))))
(setq term (fptimes* term f)))
(fptimes* sum (intofp 2))))))
;; sinh(x) for real x. X is a bigfloat, and a bigfloat is returned.
(defun fpsinh (x)
;; X must be a maxima bigfloat
;; See, for example, Hart et al., Computer Approximations, 6.2.27:
;;
;; sinh(x) = 1/2*(D(x) + D(x)/(1+D(x)))
;;
;; where D(x) = exp(x) - 1.
;;
;; But for negative x, use sinh(x) = -sinh(-x) because D(x)
;; approaches -1 for large negative x.
(cond ((equal 0 (cadr x))
;; Special case: x=0. Return immediately.
(bigfloatp x))
((fpposp (cdr x))
;; x is positive.
(let ((d (fpexpm1 (cdr (bigfloatp x)))))
(bcons (fpquotient (fpplus d (fpquotient d (fpplus d (fpone))))
(intofp 2)))))
(t
;; x is negative.
(bcons
(fpminus (cdr (fpsinh (bcons (fpminus (cdr (bigfloatp x)))))))))))
(defun big-float-sinh (x &optional y)
;; The rectform for sinh for complex args should be numerically
;; accurate, so return nil in that case.
(unless y
(fpsinh x)))
;; asinh(x) for real x. X is a bigfloat, and a bigfloat is returned.
(defun fpasinh (x)
;; asinh(x) = sign(x) * log(|x| + sqrt(1+x*x))
;;
;; And
;;
;; asinh(x) = x, if 1+x*x = 1
;; = sign(x) * (log(2) + log(x)), large |x|
;; = sign(x) * log(2*|x| + 1/(|x|+sqrt(1+x*x))), if |x| > 2
;; = sign(x) * log1p(|x|+x^2/(1+sqrt(1+x*x))), otherwise.
;;
;; But I'm lazy right now and we only implement the last 2 cases.
;; We should implement all cases.
(let* ((fp-x (cdr (bigfloatp x)))
(absx (fpabs fp-x))
(one (fpone))
(two (intofp 2))
(minus (minusp (car fp-x)))
result)
;; We only use two formulas here. |x| <= 2 and |x| > 2. Should
;; we add one for very big x and one for very small x, as given above.
(cond ((fpgreaterp absx two)
;; |x| > 2
;;
;; log(2*|x| + 1/(|x|+sqrt(1+x^2)))
(setf result (fplog (fpplus (fptimes* absx two)
(fpquotient one
(fpplus absx
(fproot (bcons (fpplus one
(fptimes* absx absx)))
2)))))))
(t
;; |x| <= 2
;;
;; log1p(|x|+x^2/(1+sqrt(1+x^2)))
(let ((x*x (fptimes* absx absx)))
(setq result (fplog1p (fpplus absx
(fpquotient x*x
(fpplus one
(fproot (bcons (fpplus one x*x))
2)))))))))
(if minus
(bcons (fpminus result))
(bcons result))))
(defun complex-asinh (x y)
;; asinh(z) = -%i * asin(%i*z)
(multiple-value-bind (u v)
(complex-asin (mul -1 y) x)
(values v (bcons (fpminus (cdr u))))))
(defun big-float-asinh (x &optional y)
(if y
(multiple-value-bind (u v)
(complex-asinh x y)
(add u (mul '$%i v)))
(fpasinh x)))
(defun fpasin-core (x)
;; asin(x) = atan(x/(sqrt(1-x^2))
;; = sgn(x)*[%pi/2 - atan(sqrt(1-x^2)/abs(x))]
;;
;; Use the first for 0 <= x < 1/2 and the latter for 1/2 < x <= 1.
;;
;; If |x| > 1, we need to do something else.
;;
;; asin(x) = -%i*log(sqrt(1-x^2)+%i*x)
;; = -%i*log(%i*x + %i*sqrt(x^2-1))
;; = -%i*[log(|x + sqrt(x^2-1)|) + %i*%pi/2]
;; = %pi/2 - %i*log(|x+sqrt(x^2-1)|)
(let ((fp-x (cdr (bigfloatp x))))
(cond ((minusp (car fp-x))
;; asin(-x) = -asin(x);
(mul -1 (fpasin (bcons (fpminus fp-x)))))
((fplessp fp-x (cdr bfhalf))
;; 0 <= x < 1/2
;; asin(x) = atan(x/sqrt(1-x^2))
(bcons
(fpatan (fpquotient fp-x
(fproot (bcons
(fptimes* (fpdifference (fpone) fp-x)
(fpplus (fpone) fp-x)))
2)))))
((fpgreaterp fp-x (fpone))
;; x > 1
;; asin(x) = %pi/2 - %i*log(|x+sqrt(x^2-1)|)
;;
;; Should we try to do something a little fancier with the
;; argument to log and use log1p for better accuracy?
(let ((arg (fpplus fp-x
(fproot (bcons (fptimes* (fpdifference fp-x (fpone))
(fpplus fp-x (fpone))))
2))))
(add (div '$%pi 2)
(mul -1 '$%i (bcons (fplog arg))))))
(t
;; 1/2 <= x <= 1
;; asin(x) = %pi/2 - atan(sqrt(1-x^2)/x)
(add (div '$%pi 2)
(mul -1
(bcons
(fpatan
(fpquotient (fproot (bcons (fptimes* (fpdifference (fpone) fp-x)
(fpplus (fpone) fp-x)))
2)
fp-x)))))))))
;; asin(x) for real x. X is a bigfloat, and a maxima number (real or
;; complex) is returned.
(defun fpasin (x)
;; asin(x) = atan(x/(sqrt(1-x^2))
;; = sgn(x)*[%pi/2 - atan(sqrt(1-x^2)/abs(x))]
;;
;; Use the first for 0 <= x < 1/2 and the latter for 1/2 < x <= 1.
;;
;; If |x| > 1, we need to do something else.
;;
;; asin(x) = -%i*log(sqrt(1-x^2)+%i*x)
;; = -%i*log(%i*x + %i*sqrt(x^2-1))
;; = -%i*[log(|x + sqrt(x^2-1)|) + %i*%pi/2]
;; = %pi/2 - %i*log(|x+sqrt(x^2-1)|)
($bfloat (fpasin-core x)))
;; Square root of a complex number (xx, yy). Both are bigfloats. FP
;; (non-bigfloat) numbers are returned.
(defun complex-sqrt (xx yy)
(let* ((x (cdr (bigfloatp xx)))
(y (cdr (bigfloatp yy)))
(rho (fpplus (fptimes* x x)
(fptimes* y y))))
(setf rho (fpplus (fpabs x) (fproot (bcons rho) 2)))
(setf rho (fpplus rho rho))
(setf rho (fpquotient (fproot (bcons rho) 2) (intofp 2)))
(let ((eta rho)
(nu y))
(when (fpgreaterp rho (intofp 0))
(setf nu (fpquotient (fpquotient nu rho) (intofp 2)))
(when (fplessp x (intofp 0))
(setf eta (fpabs nu))
(setf nu (if (minusp (car y))
(fpminus rho)
rho))))
(values eta nu))))
;; asin(z) for complex z = x + %i*y. X and Y are bigfloats. The real
;; and imaginary parts are returned as bigfloat numbers.
(defun complex-asin (x y)
(let ((x (cdr (bigfloatp x)))
(y (cdr (bigfloatp y))))
(multiple-value-bind (re-sqrt-1-z im-sqrt-1-z)
(complex-sqrt (bcons (fpdifference (intofp 1) x))
(bcons (fpminus y)))
(multiple-value-bind (re-sqrt-1+z im-sqrt-1+z)
(complex-sqrt (bcons (fpplus (intofp 1) x))
(bcons y))
;; Realpart is atan(x/Re(sqrt(1-z)*sqrt(1+z)))
;; Imagpart is asinh(Im(conj(sqrt(1-z))*sqrt(1+z)))
(values (bcons
(let ((d (fpdifference (fptimes* re-sqrt-1-z
re-sqrt-1+z)
(fptimes* im-sqrt-1-z
im-sqrt-1+z))))
;; Check for division by zero. If we would divide
;; by zero, return pi/2 or -pi/2 according to the
;; sign of X.
(cond ((equal d '(0 0))
(if (fplessp x '(0 0))
(fpminus (fpquotient (fppi) (intofp 2)))
(fpquotient (fppi) (intofp 2))))
(t
(fpatan (fpquotient x d))))))
(fpasinh (bcons
(fpdifference (fptimes* re-sqrt-1-z
im-sqrt-1+z)
(fptimes* im-sqrt-1-z
re-sqrt-1+z)))))))))
(defun big-float-asin (x &optional y)
(if y
(multiple-value-bind (u v) (complex-asin x y)
(add u (mul '$%i v)))
(fpasin x)))
;; tanh(x) for real x. X is a bigfloat, and a bigfloat is returned.
(defun fptanh (x)
;; X is Maxima bigfloat
;; tanh(x) = D(2*x)/(2+D(2*x))
(let* ((two (intofp 2))
(fp (cdr (bigfloatp x)))
(d (fpexpm1 (fptimes* fp two))))
(bcons (fpquotient d (fpplus d two)))))
;; tanh(z), z = x + %i*y. X, Y are bigfloats, and a maxima number is
;; returned.
(defun complex-tanh (x y)
(let* ((tv (cdr (tanbigfloat (list y))))
(beta (fpplus (fpone) (fptimes* tv tv)))
(s (cdr (fpsinh x)))
(s^2 (fptimes* s s))
(rho (fproot (bcons (fpplus (fpone) s^2)) 2))
(den (fpplus (fpone) (fptimes* beta s^2))))
(values (bcons (fpquotient (fptimes* beta (fptimes* rho s)) den))
(bcons (fpquotient tv den)))))
(defun big-float-tanh (x &optional y)
(if y
(multiple-value-bind (u v) (complex-tanh x y)
(add u (mul '$%i v)))
(fptanh x)))
;; atanh(x) for real x, |x| <= 1. X is a bigfloat, and a bigfloat is
;; returned.
(defun fpatanh (x)
;; atanh(x) = -atanh(-x)
;; = 1/2*log1p(2*x/(1-x)), x >= 0.5
;; = 1/2*log1p(2*x+2*x*x/(1-x)), x <= 0.5
(let* ((fp-x (cdr (bigfloatp x))))
(cond ((fplessp fp-x (intofp 0))
;; atanh(x) = -atanh(-x)
(mul -1 (fpatanh (bcons (fpminus fp-x)))))
((fpgreaterp fp-x (fpone))
;; x > 1, so use complex version.
(multiple-value-bind (u v)
(complex-atanh x (bcons (intofp 0)))
(add u (mul '$%i v))))
((fpgreaterp fp-x (cdr bfhalf))
;; atanh(x) = 1/2*log1p(2*x/(1-x))
(bcons
(fptimes* (cdr bfhalf)
(fplog1p (fpquotient (fptimes* (intofp 2) fp-x)
(fpdifference (fpone) fp-x))))))
(t
;; atanh(x) = 1/2*log1p(2*x + 2*x*x/(1-x))
(let ((2x (fptimes* (intofp 2) fp-x)))
(bcons
(fptimes* (cdr bfhalf)
(fplog1p (fpplus 2x
(fpquotient (fptimes* 2x fp-x)
(fpdifference (fpone) fp-x)))))))))))
;; Stuff which follows is derived from atanh z = (log(1 + z) - log(1 - z))/2
;; which apparently originates with Kahan's "Much ado" paper.
;; The formulas for eta and nu below can be easily derived from
;; rectform(atanh(x+%i*y)) =
;;
;; 1/4*log(((1+x)^2+y^2)/((1-x)^2+y^2)) + %i/2*(arg(1+x+%i*y)-arg(1-x+%i*(-y)))
;;
;; Expand the argument of log out and divide it out and we get
;;
;; log(((1+x)^2+y^2)/((1-x)^2+y^2)) = log(1+4*x/((1-x)^2+y^2))
;;
;; When y = 0, Im atanh z = 1/2 (arg(1 + x) - arg(1 - x))
;; = if x < -1 then %pi/2 else if x > 1 then -%pi/2 else <whatever>
;;
;; Otherwise, arg(1 - x + %i*(-y)) = - arg(1 - x + %i*y),
;; and Im atanh z = 1/2 (arg(1 + x + %i*y) + arg(1 - x + %i*y)).
;; Since arg(x)+arg(y) = arg(x*y) (almost), we can simplify the
;; imaginary part to
;;
;; arg((1+x+%i*y)*(1-x+%i*y)) = arg((1-x)*(1+x)-y^2+2*y*%i)
;; = atan2(2*y,((1-x)*(1+x)-y^2))
;;
;; These are the eta and nu forms below.
(defun complex-atanh (x y)
(let* ((fpx (cdr (bigfloatp x)))
(fpy (cdr (bigfloatp y)))
(beta (if (minusp (car fpx))
(fpminus (fpone))
(fpone)))
(x-lt-minus-1 (mevalp `((mlessp) ,x -1)))
(x-gt-plus-1 (mevalp `((mgreaterp) ,x 1)))
(y-equals-0 (like y '((bigfloat) 0 0)))
(x (fptimes* beta fpx))
(y (fptimes* beta (fpminus fpy)))
;; Kahan has rho = 4/most-positive-float. What should we do
;; here about that? Our big floats don't really have a
;; most-positive float value.
(rho (intofp 0))
(t1 (fpplus (fpabs y) rho))
(t1^2 (fptimes* t1 t1))
(1-x (fpdifference (fpone) x))
;; eta = log(1+4*x/((1-x)^2+y^2))/4
(eta (fpquotient
(fplog1p (fpquotient (fptimes* (intofp 4) x)
(fpplus (fptimes* 1-x 1-x)
t1^2)))
(intofp 4)))
;; If y = 0, then Im atanh z = %pi/2 or -%pi/2.
;; Otherwise nu = 1/2*atan2(2*y,(1-x)*(1+x)-y^2)
(nu (if y-equals-0
;; EXTRA FPMINUS HERE TO COUNTERACT FPMINUS IN RETURN VALUE
(fpminus (if x-lt-minus-1
(cdr ($bfloat '((mquotient) $%pi 2)))
(if x-gt-plus-1
(cdr ($bfloat '((mminus) ((mquotient) $%pi 2))))
(merror "COMPLEX-ATANH: HOW DID I GET HERE?"))))
(fptimes* (cdr bfhalf)
(fpatan2 (fptimes* (intofp 2) y)
(fpdifference (fptimes* 1-x (fpplus (fpone) x))
t1^2))))))
(values (bcons (fptimes* beta eta))
;; WTF IS FPMINUS DOING HERE ??
(bcons (fpminus (fptimes* beta nu))))))
(defun big-float-atanh (x &optional y)
(if y
(multiple-value-bind (u v) (complex-atanh x y)
(add u (mul '$%i v)))
(fpatanh x)))
;; acos(x) for real x. X is a bigfloat, and a maxima number is returned.
(defun fpacos (x)
;; acos(x) = %pi/2 - asin(x)
($bfloat (add (div '$%pi 2) (mul -1 (fpasin-core x)))))
(defun complex-acos (x y)
(let ((x (cdr (bigfloatp x)))
(y (cdr (bigfloatp y))))
(multiple-value-bind (re-sqrt-1-z im-sqrt-1-z)
(complex-sqrt (bcons (fpdifference (intofp 1) x))
(bcons (fpminus y)))
(multiple-value-bind (re-sqrt-1+z im-sqrt-1+z)
(complex-sqrt (bcons (fpplus (intofp 1) x))
(bcons y))
(values (bcons
(fptimes* (intofp 2)
(fpatan (fpquotient re-sqrt-1-z re-sqrt-1+z))))
(fpasinh (bcons
(fpdifference
(fptimes* re-sqrt-1+z im-sqrt-1-z)
(fptimes* im-sqrt-1+z re-sqrt-1-z)))))))))
(defun big-float-acos (x &optional y)
(if y
(multiple-value-bind (u v) (complex-acos x y)
(add u (mul '$%i v)))
(fpacos x)))
(defun complex-log (x y)
(let* ((x (cdr (bigfloatp x)))
(y (cdr (bigfloatp y)))
(t1 (let (($float2bf t))
;; No warning message, please.
(floattofp 1.2)))
(t2 (intofp 3))
(rho (fpplus (fptimes* x x)
(fptimes* y y)))
(abs-x (fpabs x))
(abs-y (fpabs y))
(beta (fpmax abs-x abs-y))
(theta (fpmin abs-x abs-y)))
(values (if (or (fpgreaterp t1 beta)
(fplessp rho t2))
(fpquotient (fplog1p (fpplus (fptimes* (fpdifference beta (fpone))
(fpplus beta (fpone)))
(fptimes* theta theta)))
(intofp 2))
(fpquotient (fplog rho) (intofp 2)))
(fpatan2 y x))))
(defun big-float-log (x &optional y)
(if y
(multiple-value-bind (u v) (complex-log x y)
(add (bcons u) (mul '$%i (bcons v))))
(flet ((%log (x)
;; x is (mantissa exp), where mantissa = frac*2^fpprec,
;; with 1/2 < frac <= 1 and x is frac*2^exp. To
;; compute log(x), use log(x) = log(frac)+ exp*log(2).
(cdr
(let* ((extra 8)
(fpprec (+ fpprec extra))
(log-frac
(fplog #+nil
(cdr ($bfloat
(cl-rat-to-maxima (/ (car x)
(ash 1 (- fpprec 8))))))
(list (ash (car x) extra) 0)))
(log-exp (fptimes* (intofp (second x)) (fplog2)))
(result (bcons (fpplus log-frac log-exp))))
(let ((fpprec (- fpprec extra)))
(bigfloatp result))))))
(let ((fp-x (cdr (bigfloatp x))))
(cond ((onep1 x)
;; Special case for log(1). See Bug 3381301:
;; https://sourceforge.net/tracker/?func=detail&aid=3381301&group_id=4933&atid=104933
(bcons (intofp 0)))
((fplessp fp-x (intofp 0))
;; ??? Do we want to return an exact %i*%pi or a float
;; approximation?
(add (big-float-log (bcons (fpminus fp-x)))
(mul '$%i (bcons (fppi)))))
(t
(bcons (%log fp-x))))))))
(defun big-float-sqrt (x &optional y)
(if y
(multiple-value-bind (u v) (complex-sqrt x y)
(add (bcons u) (mul '$%i (bcons v))))
(let ((fp-x (cdr (bigfloatp x))))
(if (fplessp fp-x (intofp 0))
(mul '$%i (bcons (fproot (bcons (fpminus fp-x)) 2)))
(bcons (fproot x 2))))))
(eval-when
#+gcl (load eval)
#-gcl (:load-toplevel :execute)
(fpprec1 nil $fpprec)) ; Set up user's precision
|