This file is indexed.

/usr/share/maxima/5.32.1/src/irinte.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1982 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module irinte)

(load-macsyma-macros rzmac)

(declare-top (special checkcoefsignlist var zerosigntest productcase))

(defun hasvar (exp) (not (freevar exp)))

(defun zerp (a) (equal a 0))

(defun integerpfr (a) (if (not (maxima-integerp a)) (integerp1 a)))

(defun nonzerp (a) (not (equal a 0)))

(defun freevnz (a) (and (freevar a) (not (equal a 0))))

(defun inte (funct x)
  (let ((checkcoefsignlist nil)
	(*globalcareflag* nil)
	($radexpand t))
    (declare (special checkcoefsignlist *globalcareflag* $radexpand))
    (intir-ref funct x)))

(defun intir-ref (fun x)
  (prog (a)
     (when (setq a (intir1 fun x)) (return a))
     (when (setq a (intir2 fun x)) (return a))
     (return (intir3 fun x))))

(defun intir1 (fun x)
  (prog (assoclist e0 r0 e1 e2 r1 r2 d p)
     (setq assoclist (factpow (specrepcheck fun) x))
     (setq e1 (cdras 'e1 assoclist)
	   e2 (cdras 'e2 assoclist))
     (cond ((null assoclist)(return nil)))
     (setq d (cdras 'd assoclist)
	   p (cdras 'p assoclist)
	   e0 (cdras 'e0 assoclist)
	   r0 (cdras 'r0 assoclist)
	   r1 (cdras 'r1 assoclist)
	   r2 (cdras 'r2 assoclist))
     (cond ((floatp e0)
	    (setq e0 (rdis (ration1 e0)))))
     (cond ((floatp e1)
	    (setq e1 (rdis (ration1 e1)))))
     (cond ((floatp e2)
	    (setq e2 (rdis (ration1 e2)))))
     (return (intir1-ref d p r0 e0 r1 e1 r2 e2 x))))

(defun intir2 (funct x)
  (let ((res (intir funct x)))
    (if res
	res
	(intirfactoroot funct x))))

(defun intir3 (exp x)
  (prog ((assoclist (elliptquad exp x)) e f g r0)
     (cond (assoclist
	    (setq e (cdras 'e assoclist) f (cdras 'f assoclist)
		  g (cdras 'g assoclist) r0 (cdras 'r0 assoclist))
	    (assume `(($notequal) ,e 0))
	    (return (intir3-r0test assoclist x e f g r0))))
     (return nil)))

(defun intir3-r0test (assoclist x e f g r0)
  (if (root+anything r0 x)
      nil
      (intir3-ref assoclist x e f g r0)))

;; Handle integrals of the form d*p(x)*r1(x)^e1*r2(x)^e2*r0(x)^e0,
;; where p(x) is a polynomial, e1 and e2 are both half an odd integer,
;; and e3 is an integer.
(defun intir1-ref (d p r0 e0 r1 e1 r2 e2 x)
  (let ((nume1 (cadr e1))	;; nume1 = 2*e1
	(nume2 (cadr e2)))	;; nume2 = 2*e2
    ;; I think what this does is try to rationalize r1(x)^e1 or
    ;; r2(x)^e2 so we end up with a new integrand of the form
    ;; d*p'(x)*r0'(x)^e0*ra(x)^ea, where p'(x) is a new polynomial
    ;; obtained from rationaling one term and r0'(x) is a more
    ;; complicated term.
    (cond ((and (plusp nume1) (plusp nume2))
	   (pp-intir1 d p r0 e0 r1 e1 r2 e2 x))
	  ((and (minusp nume1) (minusp nume2))
	   (mm-intir1 d p r0 e0 r1 e1 r2 e2 x))
	  ((plusp nume1)
	   (pm-intir1 d p r0 e0 r1 e1 r2 e2 x))
	  (t
	   (pm-intir1 d p r0 e0 r2 e2 r1 e1 x)))))

(defun pp-intir1 (d p r0 e0 r1 e1 r2 e2 x)
  (if (> (cadr e1) (cadr e2))
      (pp-intir1-exec d p r0 e0 r1 e1 r2 e2 x)
      (pp-intir1-exec d p r0 e0 r2 e2 r1 e1 x)))

;; Handle integrals of the form d*p(x)*r0(x)^e0*r1(x)^e1*r2(x)^e2
;; where p(x) is a polynomial, e1 < 0, and e2 < 0 and are both half an
;; odd integer, and e3 is an integer.
(defun mm-intir1 (d p r0 e0 r1 e1 r2 e2 x)
  (if (> (cadr e1) (cadr e2))
      (mm-intir1-exec d p r0 e0 r1 e1 r2 e2 x)
      (mm-intir1-exec d p r0 e0 r2 e2 r1 e1 x)))

;; Handle integrals of the form d*p(x)*r0(x)^e0*r1(x)^e1*r2(x)^e2
;; where p(x) is a polynomial, e1 > 0, and e2 < 0 and are both half an
;; odd integer, and e3 is an integer.
;;
(defun pm-intir1 (d p r0 e0 rofpos epos rofneg eneg x)
  (let ((numepos (cadr epos))                  ;; numepos = 2*epos = 2*e1
	(numul-1eneg (mul -1 (cadr eneg))))    ;; numul-1eneg = -2*eneg = -2*e2
    (cond ((> numepos numul-1eneg)
	   (mm-intir1 d (mul p (power rofpos (sub epos eneg)))
		      r0 e0 rofpos eneg rofneg eneg x))
	  ((or (equal e0 0) (plusp e0))
	   (pp-intir1 d (mul p (power rofneg (sub eneg epos)))
		      r0 e0 rofpos epos rofneg epos x))
	  (t
	   (mm-intir1 d (mul p (power rofpos (sub epos eneg)))
		      r0 e0 rofpos eneg rofneg eneg x)))))

(defun pp-intir1-exec (d p r0 e0 rofmax emax rofmin emin x)
  (intir (mul d p (if (equal e0 0) 1 (power r0 e0))
	      (power rofmax (add emax (mul -1 emin)))
	      (power ($expand (mul rofmax rofmin)) emin)) x))

;; Handle integrals of the form d*p(x)*r0(x)^e0*r1(x)^e1*r2(x)^e2
;; where p(x) is a polynomial, e1 < 0, and e2 < 0 and are both half an
;; odd integer, and e3 is an integer.  And e2 > e1.
(defun mm-intir1-exec (d p r0 e0 rofmin emin rofmax emax x)
  (intir (mul d p
	      (if (equal e0 0) 1
		  (power r0 e0))
	      (power rofmax (add emax (mul -1 emin)))
	      (power ($expand (mul rofmax rofmin)) emin)) x))

;; Integrating the form (e*x^2+f*x+g)^m*r0(x)^e0.

(defun intir3-ref (assoclist x e f g r0)
  (let ((signdisc (signdiscr e f g))
	(d (cdras 'd assoclist))
	(p (cdras 'p assoclist))
	(e0 (cdras 'e0 assoclist)))
    (cond ((eq signdisc '$positive)
	   (pns-intir3 x e f g d p r0 e0))
	  ((eq signdisc '$negative)
	   (ns-intir3 x e f g d p r0 e0))
	  (t
	   (zs-intir3 x e f d p r0 e0)))))

(defun root+anything (exp var)
  (m2 exp '((mplus)
	    ((coeffpt) (c nonzerp) ((mexpt) (u hasvar) (v integerpfr)))
	    ((coeffpp) (c true)))))

;; Handle d*p(x)/(e*x^2+f*x+g)*r0(x)^e0.  We know that e*x^2+f*x+g has
;; no repeated roots.  Let D be the discriminant of this quadratic,
;; sqrt(f^2-4*e*g).  (If we're here, we already know that f^2-4*e*g >
;; 0).  Thus, we can factor this quadratic as
;; (2*e*x+f-D)*(2*e*x+f+D)/(4*e).  Thus, the original integrand
;; becomes
;;
;; 4*e*d/(2*e*x+f-D)/(2*e*x+f+D)*p(x)*r0(x)^e0.
;;
;; We can separate this as a partial fraction to get
;;
;; (2*d*e/D/(2*e*x+f-D) - 2*d*e/D/(2*e*x+f+D))*p(x)*r0(x)^e0.
;;
;; So we have separated this into two "simpler" integrals.
(defun pns-intir3 (x e f g d p r0 e0)
  (let* ((discr (power (sub (mul f f) (mul 4 e g)) 1//2)) ;; Compute discriminant of
	 (p*r0^e0 (mul p (power r0 e0)))                  ;; quadratic:  sqrt(f^2-4*e*g)
	 (2*e*x+f (add (mul 2 e x) f))
	 (2*e*d*invdisc (mul 2 e d (inv discr))))
    (mul 2*e*d*invdisc
	 (sub (intir2 (mul (inv (sub 2*e*x+f discr)) p*r0^e0) x)
	      (intir2 (mul (inv (add 2*e*x+f discr)) p*r0^e0) x)))))

;; Handle d*p(x)/(e*x^2+f*x+g)*r0(x)^e0.  We know that e*x^2+f*x+g has
;; repeated roots.
;;
(defun zs-intir3 (x e f d p r0 e0)
  ;; Since e*x^2+f*x+g has repeated roots, it can be written as e*(x+r)^2.
  ;; We easily see that r = f/(2*e), so rewrite the integrand as
  ;;
  ;; d*p(x)/e/(x+r)^2*r0(x)^e0.
  (intir2 (mul d p (inv e)
	       (power (add x (div f (add e e))) -2)
	       (power r0 e0))
	  x))

;; Handle d*p(x)/(e*x^2+f*x+g)*r0(x)^e0.  We know that e*x^2+f*x+g has
;; no real roots.
;;
;; G&R 2.252 shows how we can handle these integrals, but I'm too lazy
;; to implement them right now, so return NIL to indicate we don't
;; know what to do.  But whatever it is we do, it's definitely not
;; calling intir or intir2 like zs-intir3 or pns-intir3 do because
;; they eventually call inti which only handles linear forms (e = 0.)
;; We'll need to write custom versions.
(defun ns-intir3 (xx ee fff gg dd pp r0 e0)
  (declare (ignore xx ee fff gg dd pp r0 e0))
  nil)

(defun cdras (a b)
  (cdr (assoc a b :test #'equal)))

(defun intir (funct x)
  (inti funct x (jmaug (specrepcheck funct) x)))

;; Integrate d*p(x)*(f*x+e)^m*(a*x^2+b*x+c)^n.  p(x) is a polynomial,
;; m is an integer, n is a number(?).  a, b, c, e, and f are
;; expressions independent of x (var).
(defun inti (funct x assoclist)
  (prog (met n expr f e #+nil denom)
     (setq n (cdras 'n assoclist))
     (when (or (null assoclist) (maxima-integerp n))
       (return nil))
     (setq f (cdras 'f assoclist)
	   e (cdras 'e assoclist))
     ;; If e is 0 (or not given, we don't have to do the
     ;; transformation.  Just integrate it and return.
     (when (or (equal e 0) (null e))
       (return (intira funct x)))

     ;; (unless (numberp f) (go jump))
     ;; (when (plusp f) (go jump))
     ;; I (rtoy) think this is the case where f is a negative number.
     ;; I think this is trying to convert f*x+e to -f*x-e to make the
     ;; coefficient of x positive.  And if I'm right, the code below
     ;; isn't doing it correctly, except when m = 1 or m = -1.
     ;; (setq denom (add (mul f x) e)
     ;;	   f (mul -1 f)
     ;;	   e (mul -1 e)
     ;;	   funct (mul -1 (div (meval (mul denom funct))
     ;;			      (add (mul f x) e))))

     jump
     ;; Apply the linear substitution y = f*x+e.  That is x = (y-e)/f.
     ;; Then use INTIRA to integrate this.  The integrand becomes
     ;; something like p(y)*y^m and other terms.
     (setq expr (intira (distrexpandroot
			 (cdr ($substitute
			       (mul (inv f)
				    (add (setq met (make-symbol (symbol-name '#:yannis)))
					 (mul -1 e)))
			       x funct)))
			met))
     (setq expr (and expr (mul (inv f) expr)))
     (return ($expand ($substitute (add (mul f x) e) met expr)))))

(defun distrexpandroot (expr)
  (if (null expr)
      1
      (mul (expandroot (car expr))
	   (distrexpandroot (cdr expr)))))

(defun expandroot (expr)
  (if (atom expr)
      expr
      (if (and (eq (caar expr) 'mexpt)
	       (integerpfr (caddr expr)))
	  ($expand expr)
	  expr)))

(defun intirfactoroot (expr x)
  (declare (special *globalcareflag*))
  (prog (assoclist (exp expr))
     (when (setq assoclist (jmaug (setq expr (distrfactor (timestest expr) x)) x))
       (return (inti expr x assoclist)))
     (setq *globalcareflag* 't)
     (when (setq assoclist (jmaug (setq exp (distrfactor (timestest exp) x)) x))
       (setq *globalcareflag* nil)
       (return (inti exp x assoclist)))
     (setq *globalcareflag* nil)
     (return nil)))

(defun distrfactor (expr x)
  (if (null expr)
      1
      (mul (factoroot (car expr) x)
	   (distrfactor (cdr expr) x))))

(defun factoroot (expr var)
  (if (atom expr)
      expr
      (if (and (eq (caar expr) 'mexpt)
	       (hasvar expr)
	       (integerpfr (caddr expr)))
	  (carefulfactor expr var)
	  expr)))

(defun carefulfactor (expr x)
  (declare (special *globalcareflag*))
  (if (null *globalcareflag*)
      ($factor expr)
      (restorex ($factor (power (div (cadr expr) x) (caddr expr))) x)))

(defun restorex (expr var)
  (if (atom expr)
      expr
      (if (eq (caar expr) 'mtimes)
	  (distrestorex (cdr expr) var)
	  expr)))

(defun distrestorex (expr var)
  (if (null expr)
      1
      (mul (restoroot (car expr) var)
	   (distrestorex (cdr expr) var))))

(defun restoroot (expr var)
  (if (atom expr)
      expr
      (if (and (eq (caar expr) 'mexpt)
	       (integerpfr (caddr expr))
	       (mplusp (cadr expr)))
	  (power ($expand (mul var (cadr expr))) (caddr expr))
	  expr)))

(defun timestest (expr)
  (if (atom expr)
      (list expr)
      (if (eq (caar expr) 'mtimes)
	  (cdr expr)
	  (list expr))))

;; Integrate a function of the form d*p(y)*y^m*(a*y^2+b*x+c)^n.
;; n is half of an integer.
(defun intira (funct x)
  (prog (a b c *ec-1* d m n (assoclist (jmaug (specrepcheck funct) x))
	 pluspowfo1 pluspowfo2 minuspowfo
	 polfact signn poszpowlist negpowlist)
     (declare (special *ec-1*))
     (setq n (cdras 'n assoclist))
     ;; r12 1//2)
     ;; (format t "n = ~A~%" n)
     (when (or (null assoclist)
	       (maxima-integerp n))
       (return nil))
     (when (floatp n)
       (setq n (rdis (ration1 n))))
     (setq d (cdras 'd assoclist))
     (when (equal d 0) (return 0))
     (setq c (cdras 'a assoclist))
     (when (equal c 0) (return nil))
     (setq m (cdras 'm assoclist)
	   polfact (cdras 'p assoclist)
	   ;; We know that n is of the form s/2, so just make n = s,
	   ;; and remember that the actual exponent needs to be
	   ;; divided by 2.
	   n (cadr n)
	   signn (checksigntm n)
	   *ec-1* (power c -1)
	   b (cdras 'b assoclist)
	   a (cdras 'c assoclist)
	   ;; pluspowfo1 = 1/2*(n-1), That is, the original exponent - 1/2.
	   pluspowfo1 (mul 1//2 (+ n -1))
	   ;; minupowfo = 1/2*(n+1), that is, the original exponent + 1/2.
	   minuspowfo (mul 1//2 (+ n 1))
	   ;; pluspowfo2 = -1/2*(n+1), that is, the negative of 1/2
	   ;; plus the original exponent.
	   pluspowfo2 (* -1 minuspowfo))
     (destructuring-bind (pos &optional neg)
	 (powercoeflist polfact m x)
       (setf poszpowlist pos)
       (setf negpowlist neg))

     #+nil (progn
	     (format t "n = ~A~%" n)
	     (format t "pluspowfo1 = ~A~%" pluspowfo1)
	     (format t "minuspowfo = ~A~%" minuspowfo)
	     (format t "pluspowfo2 = ~A~%" pluspowfo2))

     ;; I (rtoy) think powercoeflist computes p(x)/x^m as a Laurent
     ;; series.  POSZPOWLIST is a list of coefficients of the positive
     ;; powers and NEGPOWLIST is a list of the negative coefficients.
     (when (and (null negpowlist)
		(not (null poszpowlist)))
       ;; Only polynomial parts.
       (when (eq signn '$positive)
	 (return (augmult (mul d
			       (nummnumn poszpowlist
					 pluspowfo1
					 minuspowfo c b a x)))))
       (return (augmult (mul d
			     (nummdenn poszpowlist
				       pluspowfo2 c b a x)))))
     (when (and (null poszpowlist)
		(not (null negpowlist)))
       ;; No polynomial parts
       (when (eq signn '$positive)
	 (return (augmult (mul d
			       (denmnumn negpowlist minuspowfo c b a x)))))
       (return (augmult (mul d
			     (denmdenn negpowlist pluspowfo2 c b a x)))))
     (when (and (not (null negpowlist))
		(not (null poszpowlist)))
       ;; Positive and negative powers.
       (when (eq signn '$positive)
	 (return (add (augmult (mul d
				    (nummnumn poszpowlist
					      pluspowfo1
					      minuspowfo c b a x)))
		      (augmult (mul d
				    (denmnumn negpowlist
					      minuspowfo c b a x))))))
       (return (add (augmult (mul d
				  (nummdenn poszpowlist
					    pluspowfo2 c b a x)))
		    (augmult (mul d
				  (denmdenn negpowlist
					    pluspowfo2 c b a x))))))))

;; Match d*p(x)*(f*x+e)^m*(a*x^2+b*x+c)^n.  p(x) is a polynomial, m is
;; an integer, n is half of an integer.  a, b, c, e, and f are
;; expressions independent of x (var).
(defun jmaug (exp var)
  (m2 exp '((mtimes)
	    ((coefftt) (d freevar))
	    ((coefftt) (p polyp))
	    ((mexpt) ((mplus) ((coeffpt) (f freevar) (x varp))
		      ((coeffpp)(e freevar)))
	     (m maxima-integerp))
	    ((mexpt) ((mplus)
		      ((coeffpt) (a freevar) ((mexpt) (x varp) 2))
		      ((coeffpt) (b freevar) (x varp))
		      ((coeffpp) (c freevar)))
	     (n integerp1)))))

;; Match d*p(x)*r1(x)^e1*r2(x)^e2*r0(x)^e0, where p(x) is a
;; polynomial, e1 and e2 are both half an odd integer, and e3 is an
;; integer.
(defun factpow (exp var)
  (m2 exp '((mtimes) ((coefftt) (d freevar))
	    ((coefftt) (p polyp))
	    ((mexpt) (r1 hasvar)
	     (e1 integerpfr))
	    ((mexpt) (r2 hasvar)
	     (e2 integerpfr))
	    ((mexpt) (r0 hasvar)
	     (e0 maxima-integerp)))))

;; Match EXP to the form
;; d*p/(e*x^2+f*x+g)*r0(x)^e0.  p is a polynomial in x.
(defun elliptquad (exp var)
  (m2 exp '((mtimes)
	    ((coefftt) (d freevar))
	    ((coefftt) (p polyp))
	    ((mexpt) ((mplus) ((coeffpt) (e freevnz) ((mexpt) (x varp) 2))
		      ((coeffpt) (f freevar) (x varp))
		      ((coeffpp) (g freevar)))
	     -1)
	    ((mexpt) (r0 hasvar)
	     (e0 integerpfr)))))

;; From the set of coefficients, generate the polynomial c*x^2+b*x+a.
(defun polfoo (c b a x)
  (add (mul c x x)
       (mul b x)
       a))

;; I think this is computing the list of coefficients of fun(x)/x^m,
;; where fun(x) is a polynomial and m is a non-negative integer.  The
;; result is a list of two lists.  The first list contains the
;; polynomial part of fun(x)/x^m.  The second is the principal part
;; containing negative powers.
;;
;; Each of the lists is itself a list of power and coefficient itself.
;;
;; Thus (x+3)^2/x^2 = 1 + 6/x + 9/x^2 returns
;;
;; '(((0 1)) ((1 6) (2 9)))
(defun powercoeflist (fun m var)
  (prog ((expanfun (unquote ($expand (mul (prevconstexpan fun var) (power var m)))))
	 maxpowfun powfun coef poszpowlist negpowlist)
     (when (and (equal fun 1) (plusp m))
       (return (cons nil (list (list (cons m (list 1)))))))
     (when (and (equal fun 1) (minusp m))
       (return (cons nil (list (list (cons (- m) (list 1)))))))
     (when (equal expanfun 1)
       (return (cons (list (cons 0 (list 1))) (list nil))))
     (setq maxpowfun ($hipow expanfun var)
	   powfun ($lopow expanfun var))
     loop (setq coef ($coeff expanfun (power var powfun)))
     (when (numberp coef) (go testjump))
     (go nojump)
     testjump (when (and (not (zerop powfun)) (zerop coef))
		(go jump))
     nojump   (when (plusp powfun)
		(setq poszpowlist (append poszpowlist
					  (list (cons powfun (list coef))))))
     (when (zerop powfun)
       (setq poszpowlist
	     (append poszpowlist
		     (list (cons 0 (list (consterm (cdr expanfun) var)))))))
     (when (minusp powfun)
       (setq negpowlist (append negpowlist (list (cons (- powfun) (list coef))))))
     (when (= powfun maxpowfun)
       (return (list poszpowlist (reverse negpowlist))))
     jump (incf powfun)
     (go loop)))

(defun consterm (fun var)
  (cond ((null fun) 0)
	((freeof var (car fun))
	 (add (car fun) (consterm (cdr fun) var)))
	(t (consterm (cdr fun) var))))

(defun prevconstexpan (fun var)
  (cond ((atom fun) fun)
	((eq (caar fun) 'mplus)
	 (cond ((and (freeof var fun)
		     (not (inside fun 'mexpt)))
		(list '(mquote) fun))
	       ((and (freeof var fun) (inside fun 'mexpt))
		(list '(mquote)
		      (distrinplusprev (cdr fun) var)))
	       ((inside fun 'mexpt)
		(distrinplusprev (cdr fun) var))
	       (t fun)))
	((eq (caar fun) 'mtimes)
	 (distrintimesprev (cdr fun) var))
	((and (not (inside (cdr fun) var))
	      (eq (caar fun) 'mexpt))
	 (power (prevconstexpan (cadr fun) var) (caddr fun)))
	(t fun)))

(defun distrinplusprev (fun var)
  (cond ((null fun) 0)
	(t (add (prevconstexpan (car fun) var)
		(distrinplusprev (cdr fun) var)))))

(defun distrintimesprev (fun var)
  (cond ((null fun) 1)
	(t (mul (prevconstexpan (car fun) var)
		(distrintimesprev (cdr fun) var)))))

(defun inside (fun arg)
  (cond ((atom fun)(equal fun arg))
	((inside (car fun) arg) t)
	(t (inside (cdr fun) arg))))

(defun unquote (fun)
  (cond ((not (inside fun 'mquote)) fun)
	(t (unquote (meval fun)))))

(defun checksigntm (expr)
  (prog (aslist quest zerosigntest productcase)
     (setq aslist checkcoefsignlist)
     (cond ((atom expr) (go loop)))
     (cond ((eq (caar expr) 'mtimes)(setq productcase t)))
     loop (cond ((null aslist)
		 (setq checkcoefsignlist
		       (append checkcoefsignlist
			       (list (cons expr
					   (list
					    (setq quest (checkflagandact expr)))))))
		 (return quest)))
     (cond ((equal (caar aslist) expr) (return (cadar aslist))))
     (setq aslist (cdr aslist))
     (go loop)))

(defun checkflagandact (expr)
  (cond (productcase
	 (setq productcase nil)
	 (findsignoftheirproduct (findsignofactors (cdr expr))))
	(t (asksign ($realpart expr)))))

(defun findsignofactors (listofactors)
  (cond ((null listofactors) nil)
	((eq zerosigntest '$zero) '$zero)
	(t (append (list (setq zerosigntest (checksigntm (car listofactors))))
		   (findsignofactors (cdr listofactors))))))

(defun findsignoftheirproduct (llist)
  (prog (sign)
     (cond ((eq llist '$zero) (return '$zero)))
     (setq sign '$positive)
     loop (cond ((null llist) (return sign)))
     (cond ((eq (car llist) '$positive)
	    (setq llist (cdr llist))
	    (go loop)))
     (cond ((eq (car llist) '$negative)
	    (setq sign (changesign sign) llist (cdr llist))
	    (go loop)))
     (return '$zero)))

(defun changesign (sign)
  (if (eq sign '$positive)
      '$negative
      '$positive))

;; Integrate 1/sqrt(c*x^2+b*x+a).
;;
;; G&R 2.261 gives the following, where R = c*x^2+b*x+a and D =
;; 4*a*b-b^2:
;;
;; c > 0:
;;   1/sqrt(c)*log(2*sqrt(c*R)+2*c*x+b)
;;
;; c > 0, D > 0:
;;   1/sqrt(c)*asinh((2*c*x+b)/sqrt(D))
;;
;; c < 0, D < 0:
;;   -1/sqrt(-c)*asin((2*c*x+b)/sqrt(-D))
;;
;; c > 0, D = 0:
;;   1/sqrt(c)*log(2*c*x+b)
;;
(defun den1 (c b a x)
  (let* ((expr (add (mul 2 c x) b)) ;; expr = 2*c*x+b
	 (signc (checksigntm (power c -1)))
	 (signb (checksigntm (power b 2)))
	 (signdiscrim (signdis2 c b a signc signb)))
    (when (and (eq signc '$positive)
	       (eq signdiscrim '$negative))
      ;; c > 0, D > 0
      (return-from den1 (augmult (mul* (power  c -1//2)
				       `((%asinh)
					 ,(mul expr
					       (power (add (mul 4 c a)
							   (mul -1 b b))
						      -1//2)))))))
    (when (and (eq signc '$positive)
	       (eq signdiscrim '$zero))
      ;; c > 0, D = 0
      (return-from den1 (augmult (mul* (power -1 expr)
				       (power c -1//2)
				       `((%log) ,expr)))))
    (when (eq signc '$positive)
      ;; c > 0
      (return-from den1 (augmult (mul* (power c -1//2)
				       `((%log)
					 ,(add (mul 2
						    (power c 1//2)
						    (power (polfoo c b a x) 1//2))
					       expr))))))
    (when (and (eq signc '$negative)
	       (eq signdiscrim '$positive))
      ;; c < 0, D > 0
      (return-from den1 (augmult (mul* -1
				       (power (mul -1 c) -1//2)
				       `((%asin)
					 ,(mul expr
					       (power (add (mul b b)
							   (mul -4 c a))
						      -1//2)))))))
    (when (eq signc '$negative)
      ;; c < 0.  We try again, but flip the sign of the
      ;; polynomial, and multiply by -%i.
      (return-from den1 (augmult (mul (power -1 -1//2)
				      (den1 (mul -1 c)
					    (mul -1 b)
					    (mul -1 a)
					    x)))))))

;; Compute sign of discriminant of the quadratic c*x^2+b*x+a.  That
;; is, the sign of b^2-4*c*a.
(defun signdiscr (c b a)
  (checksigntm (simplifya (add (power b 2) (mul -4 c a)) nil)))

(defun askinver (a)
  (checksigntm (inv a)))

(defun signdis1 (c b a)
  (cond ((equal (mul b a) 0)
	 (if (and (equal b 0) (equal a 0))
	     '$zero
	     '$nonzero))
	(t
	 ;; Why are we checking the sign of (b^2-4*a*c)^2?
	 (checksigntm (power (add (mul b b) (mul -4 c a)) 2)))))

;; Check sign of discriminant of c*x^2+b*x+a, but also taking into
;; account the sign of c and b.
(defun signdis2 (c b a signc signb)
  (cond ((equal signb '$zero)
	 (cond ((equal a 0) '$zero)
	       (t (let ((askinv (askinver a)))
		    (if (or (and (eq signc '$positive)
				 (eq askinv '$negative))
			    (and (eq signc '$negative)
				 (eq askinv '$positive)))
			'$positive
			'$negative)))))
	(t (if (equal a 0)
	       '$positive
	       (signdiscr c b a)))))

(defun signdis3 (c b a signa)
  (declare (special *ec-1*))
  (cond ((equal b 0)
	 (if (equal (checksigntm *ec-1*) signa)
	     '$negative
	     '$positive))
	(t (signdiscr c b a))))

;; Integrate things like x^m*R^(p-1/2), p > 0, m > 0.
;;
;; I think pluspowfo1 = p - 1.
(defun nummnumn (poszpowlist pluspowfo1 p c b a x)
  (declare (special *ec-1*))
  (let ((expr (power (polfoo c b a x) (add p 1//2))) ;; expr = R^(p+1/2)
	(expo *ec-1*)				     ;; expo = 1/c
	(ex (power c -2)))			     ;; ex = 1/c^2
    (prog ((result 0)
	   (controlpow (caar poszpowlist))
	   (coef (cadar poszpowlist))
	   count res1 res2 m partres)
       #+nil (format t "p = ~A~%pluspowfo1 = ~A~%" p pluspowfo1)
       (when (zerop controlpow)
	 ;; Integrate R^(p-1/2)
	 (setq result (augmult (mul coef (numn pluspowfo1 c b a x)))
	       count 1)
	 (go loop))

       jump1
       ;; Handle x*R^(p-1/2)
       ;;
       ;; G&R 2.260, m = 1
       ;;
       ;; integrate(x*R^(2*p-1),x) =
       ;;   R^(p+1/2)/(2*p+1)/c
       ;;     - b/2/c*integrate(sqrt(R^(2*p-1)),x)
       (setq res1 (add (augmult (mul expr expo
				     (power (+ p p 1) -1)))
		       (augmult (mul -1 b 1//2 expo
				     (numn pluspowfo1 c b a x)))))
       (when (equal controlpow 1)
	 (setq result (add result (augmult (mul coef res1)))
	       count 2)
	 (go loop))

       jump2
       ;; Handle x^2*R^(p-1/2)
       ;;
       ;; G&R 2.260, m = 2
       ;;
       ;; integrate(x^2*R^(2*p-1),x) =
       ;;   x*R^(p+1/2)/(2*p+2)/c
       ;;     - (2*p+3)*b/2/(2*p+2)/c*integrate(x*sqrt(R^(2*p-1)),x)
       ;;     - a/(2*p+2)/c*integrate(sqrt(R^(2*p-1)),x)
       (setq res2 (add (augmult (mul* x expr expo
				      (inv (+ p p 2))))
		       (augmult (mul* b (+ p p 3)
				      '((rat) -1 4)
				      ex
				      (inv (+ p p p 1
					      (* p p)
					      (* p p)))
				      expr))
		       (augmult (mul (inv (1+ p))
				     ex
				     '((rat simp) 1 8)
				     (add (mul (power b 2)
					       (+ p p 3))
					  (mul -4 a c))
				     (numn pluspowfo1 c b a x)))))
       (when (equal controlpow 2)
	 (setq result (add result (augmult (mul coef res2)))
	       count 3)
	 (go loop))

       jump3
       (setq count 4
	     m 3)
       jump
       ;; The general case:  x^m*R^(p-1/2)
       (setq partres
	     (let ((pro (inv (+ m p p))))
	       ;; pro = 1/(m+2*p)
	       ;;
	       ;; G&R 2.260, m = 2
	       ;;
	       ;; integrate(x^m*R^(2*p-1),x) =
	       ;;   x^(m-1)*R^(p+1/2)/(m+2*p)/c
	       ;;     - (2*m+2*p-1)*b/2/(m+2*p)/c*integrate(x^(m-1)*sqrt(R^(2*p-1)),x)
	       ;;     - (m-1)*a/(m+2*p)/c*integrate(x^(m-2)*sqrt(R^(2*p-1)),x)
	       (add (augmult (mul (power x (1- m))
				  expr expo pro))
		    (augmult (mul -1 b (+ p p m m -1)
				  1//2 expo pro res2))
		    (augmult (mul -1 a (1- m)
				  expo pro res1)))))
       (incf m)
       (when (> m controlpow)
	 (setq result (add result (augmult (mul coef partres))))
	 (go loop))

       jump4
       (setq res1 res2
	     res2 partres)
       (go jump)

       loop
       (setq poszpowlist (cdr poszpowlist))
       (when (null poszpowlist) (return result))
       (setq coef (cadar poszpowlist))
       (setq controlpow (caar poszpowlist))
       (when (equal count 4) (go jump4))
       (when (equal count 1) (go jump1))
       (when (equal count 2) (go jump2))
       (go jump3))))

;; Integrate R^(p+1/2)
(defun numn (p c b a x)
  (declare (special *ec-1*))
  (let ((exp1 *ec-1*)			      ;; exp1 = 1/c
	(exp2 (add b (mul 2 c x)))	      ;; exp2 = b+2*c*x
	(exp4 (add (mul 4 a c) (mul -1 b b))) ;; exp4 = 4*a*c-b^2
        (exp5 (div 1 (1+ p))))                ;; exp5 = 1/(p+1)
    (if (zerop p)
	;; integrate(sqrt(R),x)
	;;
	;; G&R 2.262 says
	;;
	;; integrate(sqrt(R),x) =
	;;   (2*c*x+b)*sqrt(R)/4/c + del/8/c*integrate(1/sqrt(R),x)
	;;
	;; del = 4*a*c-b^2
	(add (augmult (mul '((rat simp) 1 4)
			   exp1 exp2
			   (power (polfoo c b a x) 1//2)))
	     (augmult (mul '((rat simp) 1 8)
			   exp1 exp4
			   (den1 c b a x))))

	;; The general case
	;;
	;; G&R 2.260, eq. 2:
	;;
	;; integrate(sqrt(R^(2*p+1)),x) =
	;;   (2*c*x+b)/4/(p+1)/c*R^(p+1/2)
	;;     + (2*p+1)*del/8/(p+1)/c*integrate(sqrt(R^(2*p-1)),x)
	(add (augmult (mul '((rat simp) 1 4)
			   exp1 exp5 exp2
			   (power (polfoo c b a x) (add p 1//2))))
	     (augmult (mul '((rat simp) 1 8)
			   exp1 exp5 (+ p p 1)
			   exp4
			   (numn (1- p) c b a x)))))))

(defun augmult (x)
  ($multthru (simplifya x nil)))

;; Integrate things like 1/x^m/R^(p+1/2), p > 0.
(defun denmdenn (negpowlist p c b a x)
  (let ((exp1 (power (polfoo c b a x) (add 1//2 (- p)))))  ;; exp1 = 1/R^(p-1/2)
    (prog (result controlpow coef count res1 res2 m partres
	   (signa (checksigntm (simplifya a nil)))
	   ea-1)
       (when (eq signa '$zero)
	 (return (noconstquad negpowlist p c b x)))
       (setq result 0
	     controlpow (caar negpowlist)
	     ea-1 (power a -1))
       (setq coef (cadar negpowlist))
       (when (zerop controlpow)
	 ;; I'm not sure we ever get here because m = 0 is
	 ;; usually handled elsewhere.
	 (setq result (augmult  (mul coef (denn p c b a x)))
	       count 1)
	 (go loop))

       jump1
       ;; Handle 1/x/R^(p+1/2)
       (setq res1 (den1denn p c b a x))
       (when (equal controlpow 1)
	 (setq result (add result (augmult (mul coef res1)))
	       count 2)
	 (go loop))

       jump2
       ;; Handle 1/x^2/R^(p+1/2)
       ;;
       ;; G&R 2.268, m = 2
       ;;
       ;; integrate(1/x^2/R^(p+1/2),x) =
       ;;   -1/a/x/sqrt(R^(2*p-1))
       ;;     -(2*p+1)*b/2/a*integrate(1/x/sqrt(R^(2*p+1)),x)
       ;;     -2*p*c/a*integrate(1/sqrt(R^(2*p+1)),x)
       (setq res2 (add (augmult (mul -1 ea-1 (power x -1) exp1))
		       (augmult (mul -1 b (+ 1 p p) 1//2
				     ea-1 (den1denn p c b a x)))
		       (augmult (mul -2 p c ea-1 (denn p c b a x)))))
       (when (equal controlpow 2)
	 (setq result (add result (augmult (mul coef res2)))
	       count 3)
	 (go loop))

       jump3
       (setq count 4
	     m 3)

       jump
       ;; General case 1/x^m/R^(p+1/2)
       ;;
       ;; G&R 2.268
       ;;
       ;; integrate(1/x^2/R^(p+1/2),x) =
       ;;   -1/(m-1)/a/x^(m-1)/sqrt(R^(2*p-1))
       ;;     -(2*p+2*m-3)*b/2/(m-1)/a*integrate(1/x^(m-1)/sqrt(R^(2*p+1)),x)
       ;;     -(2*n+m-2)*c/(m-1)/a*integrate(1/x^(m-2)/sqrt(R^(2*p+1)),x)
       (setq partres
	     (let ((exp2 (div -1 (1- m))))
	       ;; exp2 = -1/(m-1)
	       (add (augmult (mul exp2 ea-1
				  (power x (1+ (- m)))
				  exp1))
		    (augmult (mul b (+ p p m m -3) 1//2
				  ea-1 exp2 res2))
		    (augmult (mul c ea-1 exp2
				  (+ p p m -2) res1)))))
       (incf m)
       (when (> m controlpow)
	 (setq result (add result (augmult (mul coef partres))))
	 (go loop))

       jump4
       (setq res1 res2 res2 partres)
       (go jump)

       loop
       (setq negpowlist (cdr negpowlist))
       (when (null negpowlist) (return result))
       (setq coef (cadar negpowlist)
	     controlpow (caar negpowlist))
       (when (equal count 4) (go jump4))
       (when (equal count 1) (go jump1))
       (when (equal count 2) (go jump2))
       (go jump3))))

;; Integral of 1/(c*x^2+b*x+a)^(n), n > 0.  p = n + 1/2.
;;
;; See G&R 2.263 formula 3.
;;
;; Let R = c*x^2+b*x+a.
(defun denn (p c b a x)
  (let ((signdisc (signdis1 c b a))
	(exp1 (add b (mul 2 c x)))             ;; exp1 = b + 2*c*x;
	(exp2 (add (mul 4 a c)	(mul b b -1))) ;; exp2 = (4*a*c-b^2)
	(exp3 (inv (+ p p -1)))		       ;; exp3 = 1/(2*p-1)
	(*ec-1* (inv c)))
    (declare (special *ec-1*))
    #+nil (format t "signdisc = ~A~%p = ~A~%" signdisc p)
    (cond ((and (eq signdisc '$zero) (zerop p))
	   ;; 1/sqrt(R), and R has duplicate roots.  That is, we have
	   ;; 1/sqrt(c*(x+b/(2c))^2) = 1/sqrt(c)/sqrt((x+b/2/c)^2).
	   ;;
	   ;; We return 1/sqrt(c)*log(x+b/2/c).  Shouldn't we return
	   ;; 1/c*log(|x+b/2/c|)?
	   (augmult (mul* (power *ec-1* 1//2)
			  `((%log) ,(add x (mul b 1//2 *ec-1*))))))
	  ((and (eq signdisc '$zero) (plusp p))
	   ;; 1/sqrt(R^(2*p+1)), with duplicate roots.
	   ;;
	   ;; That is, 1/sqrt((c*(x+b/2/c)^(2)^(2*p+1))), or
	   ;; 1/c^(p+1/2)/(x+b/2/c)^(2*p+1).  So the result is
	   ;; -1/2/p*c^(-p-1/2)/(x+b/2/c)^(2*p)
	   (augmult (mul (div -1 (+ p p))
			 (power c (mul -1//2 (+ p p 1)))
			 (power (add x (mul b 1//2  *ec-1*)) (* -2 p)))))
	  ((zerop p)
	   ;; 1/sqrt(R)
	   (den1 c b a x))
	  ((equal p 1)
	   ;; 1/sqrt(R^3).
	   ;;
	   ;; G&R 2.264 eq. 5 says
	   ;;
	   ;; 2*(2*c*x+b)/del/sqrt(R).
	   (augmult (mul 2 exp1 (inv exp2)
			 (power (polfoo c b a x) -1//2))))
	  (t
	   ;; The general case.  G&R 2.263 eq. 3.
	   ;;
	   ;; integrate(1/sqrt(R^(2*p+1)),x) =
	   ;;    2*(2*c*x+b)/(2*p-1)/c/sqrt(R^(2*p-1))
	   ;;    + 8*(p-1)*c/(2*p-1)/del*integrate(1/sqrt(R^(2*p-1)),x)
	   ;;
	   ;; where del = 4*a*c-b^2.
	   (add (augmult (mul 2 exp1
			      exp3 (inv exp2)
			      (power (polfoo c b a x)
				     (add 1//2 (- p)))))
		(augmult (mul 8 c (1- p)
			      exp3 (inv exp2)
			      (denn (1- p) c b a x))))))))

;; Integral of 1/x/(c*x^2+b*x+a)^(p+1/2), p > 0.
(defun den1denn (p c b a x)
  (let ((signa (checksigntm (power a 2))) ;; signa = sign of a^2
	(ea-1 (inv a)))		  ;; ea-1 = 1/a
    (cond ((eq signa '$zero)
	   ;; This is wrong because noconstquad expects a
	   ;; powercoeflist for th first arg.  But I don't think
	   ;; there's any way to get here from anywhere.  I'm pretty
	   ;; sure den1denn is never called with a equal to 0.
	   (noconstquad 1 p c b x))
	  ((zerop p)
	   ;; 1/x/sqrt(c*x^2+b*x+a)
	   (den1den1 c b a x))
	  (t
	   ;; The general case.  See G&R 2.268:
	   ;;
	   ;; R=(c*x^2+b*x+a)
	   ;;
	   ;; integrate(1/x/sqrt(R^(2*p+1)),x) =
	   ;;
	   ;;   1/(2*p-1)/a/sqrt(R^(2*p-1))
	   ;;     - b/2/a*integrate(1/sqrt(R^(2*p+1)),x)
	   ;;     + 1/a*integrate(1/x/sqrt(R^(2*p-1)),x)
	   (add (augmult (mul (inv (+ p p -1))
			      ea-1
			      (power (polfoo c b a x)
				     (add 1//2 (- p)))))
		(augmult (mul ea-1 (den1denn (1- p) c b a x)))
		(augmult (mul -1 1//2 ea-1 b (denn p c b a x))))))))

;; Integral of 1/x/sqrt(c*x^2+b*x+a).
;;
;; G&R 2.266 gives the following results, where del is the
;; discriminant 4*a*c-b^2.  (I think this is the opposite of what we
;; compute below for the discriminant.)
;;
(defun den1den1 (c b a x)
  (let ((exp2 (add (mul b x) a a))                ; exp2 = b*x+2*a
        (exp3 (inv (simplify (list '(mabs) x))))) ; exp3 = 1/abs(x)
    (prog (signdiscrim
	   (condition (add (mul b x) a a))
	   (signa (checksigntm (simplifya a nil)))
	   exp1)
       (when (eq signa '$zero)
	 (return (noconstquad '((1 1)) 0 c b x)))
       (setq signdiscrim (signdis3 c b a signa)
	     exp1 (power a (inv -2)))
       #+nil (format t "signa = ~A~%signdiscrim = ~A~%" signa signdiscrim)

       (when (and (eq signa '$positive)
		  (eq signdiscrim '$negative))
	 ;; G&R case a > 0, del > 0
	 ;;
	 ;; -1/sqrt(a)*asinh((2*a+b*x)/x/sqrt(del)
	 (return (mul* -1 exp1
		       `((%asinh)
			 ,(augmult (mul exp2 exp3
					(power (add (mul 4 a c)
						    (mul -1 b b))
					       -1//2)))))))
       (when (and (eq signdiscrim '$zero)
		  (eq signa '$positive))
	 ;; G&R case del = 0, a > 0
	 ;;
	 ;; 1/sqrt(a)*log(x/(2*a+b*x))
	 (return (mul* (power -1 condition)
		       -1 exp1
		       `((%log) ,(augmult (mul exp3 exp2))))))
       (when (eq signa '$positive)
	 ;; G&R case a > 0
	 ;;
	 ;; -1/sqrt(a)*log((2*a+b*x+2*sqrt(a*R))/x)
	 ;;
	 ;; R = c*x^2+b*x+a.
	 (return (mul* -1 exp1
		       `((%log)
			 ,(add b (mul 2 a exp3)
			       (mul 2 exp3
				    (power a 1//2)
				    (power (polfoo c b a x) 1//2)))))))
       (when (and (eq signa '$negative)
		  (eq signdiscrim '$positive))
	 ;; G&R case a < 0, del < 0
	 ;;
	 ;; 1/sqrt(-a)*asin((2*a+b*x)/x/sqrt(b^2-4*a*c))
	 (return (mul* (power (mul -1 a) -1//2)
		       `((%asin)
			 ,(augmult (mul exp2 exp3
					(power (add (mul b b) (mul -4 a c)) -1//2)))))))
       ;; I think this is the case of a < 0.  We flip the sign of
       ;; coefficients of the quadratic to make a positive, and
       ;; multiply the result by 1/%i.
       ;;
       ;; Why can't we use the case a < 0 in G&R 2.266:
       ;;
       ;; 1/sqrt(-a)*atan((2*a+b*x)/2/sqrt(-a)/sqrt(R)
       ;;
       ;; FIXME:  Why the multiplication by -1?
       (return (mul #+nil -1
		    (power -1 1//2)
		    (den1den1 (mul -1 c) (mul -1 b) (mul -1 a) x))))))

;; Integral of d/x^m/(c*x^2+b*x)^(p+1/2), p > 0.  The values of m and
;; d are in NEGPOWLIST.
(defun noconstquad (negpowlist p c b x)
  (let ((exp1 (inv (+ p p 1)))	 ;; exp1 = 1/(2*p+1)
	(exp2 (inv x))	         ;; exp2 = 1/x
	(exp3 (- p)))		 ;; exp3 = -p
    (prog (result controlpow coef count res1 signb m partres eb-1)
       (setq signb (checksigntm (power b 2)))
       (when (eq signb '$zero)
	 (return (trivial1 negpowlist p c x)))
       (setq result 0
	     controlpow (caar negpowlist)
	     coef (cadar negpowlist)
	     eb-1 (inv b))
       (when (zerop controlpow)
	 ;; Not sure if we ever actually get here.  The case of
	 ;; m=0 is usually handled at a higher level.
	 (setq result (augmult (mul coef (denn p c b 0 x)))
	       count 1)
	 (go loop))
       jump1
       ;; Handle 1/x/R^(p+1/2)
       ;;
       ;; G&R 2.268, a = 0, m = 1
       ;;
       ;; integrate(1/x^m/sqrt(R^(2*p+1)),x) =
       ;;   -2/(2*p+1)/b/x/sqrt(R^(2*p-1))
       ;;     -4*p*c/(2*p+1)/b*integrate(1/sqrt(R^(2*p+1)),x)
       (setq res1 (add (augmult (mul -2 exp1 eb-1 exp2
				     (power (polfoo c b 0 x)
					    (add 1//2 exp3))))
		       (augmult (mul -4 p c exp1 eb-1 (denn p c b 0 x)))))
       (when (equal controlpow 1)
	 (setq result (add result (augmult (mul coef res1)))
	       count 2)
	 (go loop))
       jump2 (setq count 3 m 2)
       jump
       ;; Handle general case 1/x^m/R^(p+1/2)
       ;;
       ;; G&R 2.268, a = 0
       ;;
       ;; integrate(1/x^m/sqrt(R^(2*p+1)),x) =
       ;;   -2/(2*p+2*m-1)/b/x^m/sqrt(R^(2*p+1))
       ;;     -(4*p+2*m-2)*c/(2*p+2*m-1)/b*integrate(1/x^(m-1)/sqrt(R^(2*p+1)),x)
       (setq partres
	     (add (augmult (mul -2 (inv (+ p p m m -1))
				eb-1
				(power x (mul -1 m))
				(power (polfoo c b 0 x)
				       (add 1//2 exp3))))
		  (augmult (mul -2 c (+ p p m -1)
				eb-1
				(inv (+ p p m m -1))
				res1))))
       (incf m)
       (when (> m controlpow)
	 (setq result (add result (augmult (mul coef partres))))
	 (go loop))
       jump3
       (setq res1 partres)
       (go jump)
       loop
       (setq negpowlist (cdr negpowlist))
       (when (null negpowlist) (return result))
       (setq coef (cadar negpowlist)
	     controlpow (caar negpowlist))
       (when (= count 3) (go jump3))
       (when (= count 1) (go jump1))
       (go jump2))))

;; The trivial case of d/x^m/(c*x^2+b*x+a)^(p+1/2), p > 0, and a=b=0.
(defun trivial1 (negpowlist p c x)
  (cond ((null negpowlist) 0)
	(t
	 ;; d/x^m/c^(p+1/2)/x^(2*p+1) = d/c^(p+1/2)/x^(m+2*p+1)
	 ;; The integral is obviously
	 ;;
	 ;; -d/c^(p+1/2)/x^(m+2*p)/(m+2*p)
	 (add (augmult (mul (power x
				   (add (* -2 p)
					(mul -1 (caar negpowlist))))
			    (cadar negpowlist)
			    (power c (add (- p) -1//2))
			    (inv (add (* -2 p)
				      (mul -1 (caar negpowlist))))))
	      (trivial1 (cdr negpowlist) p c x)))))

;; Integrate pl(x)/(c*x^2+b*x+a)^(p+1/2) where pl(x) is a polynomial
;; and p > 0.  The polynomial is given in POSZPOWLIST.
(defun nummdenn (poszpowlist p c b a x)
  (declare (special *ec-1*))
  (let ((exp1 (inv (+ p p -1)))	;; exp1 = 1/(2*p-1)
	(exp2 (power (polfoo c b a x) (add 1//2 (- p)))) ;; exp2 = (a*x^2+b*x+c)^(p-1/2)
	(exp3 (add (mul 4 a c) (mul -1 b b))) ;; exp3 = (4*a*c-b^2) (negative of the discriminant)
	(exp4 (add x (mul b 1//2 *ec-1*)))    ;; exp4 = x+b/2/c
	(exp5 (power c -2))		      ;; exp5 = 1/c^2
	(exp6 (+ 2 (* -2 p)))		      ;; exp6 = -2*p+2
	(exp7 (1+ (* -2 p))))		      ;; exp7 = -2*p+1
    (prog (result controlpow coef count res1 res2 m partres signdiscrim)
       ;; Let S=R^(p+1/2).
       ;;
       ;; We are trying to integrate pl(x)/S
       ;; = (p0 + p1*x + p2*x^3 + ...)/S
       ;;
       ;; So the general term is pm*x^m/S.  This integral is given by
       ;; G&R 2.263, eq.1:
       ;;
       ;; integrate(x^m/sqrt(R^(2*p+1)),x) =
       ;;
       ;;    x^(m-1)/(m-2*n)/sqrt(R^(2*p-1))
       ;;    - (2*m-2*n-1)*b/2/(m-2*n)/c*integrate(x^(m-1)/sqrt(R^(2*p+1)),x)
       ;;    - (m-1)*a/(m-2*n)/c*integrate(x^(m-2)/sqrt(R^(2*p+1)),x)
       ;;
       ;; Thus the integration of x^m/S involves x^(m-1)/S and x^(m-2)/S.
       ;;
       ;; I think what this loop does is integrate x^(m-1)/S and
       ;; x^(m-2)/S, and remember them so that we can integrate x^m/S
       ;; without having to do all the integrals again.  Thus we
       ;; start with the constant term and work our way up to the
       ;; highest term.
       ;;
       ;; I think this would be much simpler if we used memoization
       ;; and start with the highest power.  Then all the
       ;; intermediate forms will have been computed, and we can just
       ;; simply integrate all the lower terms by looking them up.
       (setq result 0
	     controlpow (caar poszpowlist))
       (setq coef (cadar poszpowlist)
	     signdiscrim (signdis1 c b a))
       ;; We're looking at coef*x^controlpow/R^(p+1/2) right now.
       (when (zerop controlpow)
	 ;; Actually it's coef/R^(p+1/2), so handle that now, go
	 ;; to the next coefficient.
	 (setq result (augmult (mul coef (denn p c b a x)))
	       count 1)
	 (go loop))

       jump1
       ;;
       ;; This handles the case coef*x/R^(p+1/2)
       ;;
       ;; res1 = -1/c/(2*p-1)*R^(p-1/2)
       ;;         -b/2/c*integrate(R^(p+1/2),x)
       ;;
       (setq res1
	     (add (augmult (mul -1  *ec-1* exp1 exp2))
		  (augmult (mul b -1//2 *ec-1* (denn p c b a x)))))
       (when (= controlpow 1)
	 ;; Integrate coef*x/R^(p+1/2).
	 ;;
	 ;; x/R^(p+1/2) is in res1.
	 (setq result (add result (augmult (mul coef res1)))
	       count 2)
	 (go loop))
       jump2
       ;; This handles the case coef*x^2/R^(p+1/2)
       (when (and (plusp p) (not (eq signdiscrim '$zero)))
	 ;; p > 0, no repeated roots
	 (setq res2
	       (add (augmult (mul *ec-1* exp1 (inv exp3) exp2
				  (add (mul 2 a b)
				       (mul 2 b b x)
				       (mul -4 a c x))))
		    (augmult (mul *ec-1* (inv exp3) exp1
				  (add (mul 4 a c)
				       (mul 2 b b p)
				       (mul -3 b b))
				  (denn (+ p -1)
					c b a x))))))
       (when (and (zerop p) (not (eq signdiscrim '$zero)))
	 ;; x^2/sqrt(R), no repeated roots.
	 ;;
	 ;; G&R 2.264, eq. 3
	 ;;
	 ;; integrate(x^2/sqrt(R),x) =
	 ;;   (x/2/c-3*b/4/c^2)*sqrt(R)
	 ;;   + (3*b^2/8/c^2-a/2/c)*integrate(1/sqrt(R),x)
	 ;;
	 ;;  = (2*c*x-3*b)/4/c^2*sqrt(R)
	 ;;      + (3*b^2-4*a*c)/8/c^2*integrate(1/sqrt(R),x)
	 (setq res2
	       (add (augmult (mul '((rat simp) 1 4)
				  exp5
				  (add (mul 2 c x)
				       (mul -3 b))
				  (power (polfoo c b a x)
					 1//2)))
		    (augmult (mul '((rat simp) 1 8)
				  exp5
				  (add (mul 3 b b)
				       (mul -4 a c))
				  (den1 c b a x))))))
       (when (and (zerop p) (eq signdiscrim '$zero))
	 ;; x^2/sqrt(R), repeated roots
	 ;;
	 ;; With repeated roots, R is really of the form
	 ;; c*x^2+b*x+b^2/4/c = c*(x+b/2/c)^2.  So we have
	 ;;
	 ;; x^2/sqrt(c)/(x+b/2/c)
	 ;;
	 ;; And the integral of this is
	 ;;
	 ;; b^2*log(x+b/2/c)/4/c^(5/2) + x^2/2/sqrt(c) - b*x/2/c^(3/2).
	 ;;
	 (setq res2
	       ;; (add (augmult (mul* b b (list '(rat) 1 4)
	       ;;			   (power c -3)
	       ;;			   (list '(%log) exp4)))
	       ;;	    (augmult (mul *ec-1* 1//2 (power exp4 2)))
	       ;;	    (augmult (mul -1 b x exp5)))
	       (add (augmult (mul* b b '((rat) 1 4)
				   (power c (div -5 2))
				   `((%log) ,exp4)))
		    (augmult (mul (power c -1//2) 1//2 (power x 2)))
		    (augmult (mul -1//2 b x (power c (div -3 2)))))))

       (when (and (= p 1) (eq signdiscrim '$zero))
	 ;; x^2/sqrt(R^3), repeated roots
	 ;;
	 ;; As above, we have c*(x+b/2/c)^2, so
	 ;;
	 ;; x^2/sqrt(R^3) = x^2/sqrt(c^3)/(x+b/2/c)^3
	 ;;
	 ;; And the integral is
	 ;;
	 ;; log(x+b/2/c)/c^(3/2) + z*(3*z+4*x)/2/c^(3/2)/(z+x)^2
	 ;;
	 ;; where z = b/2/c.
	 (setq res2
	       ;; (add (augmult (mul* *ec-1* (list '(%log) exp4)))
	       ;;	    (augmult (mul b exp5 (power exp4 -1)))
	       ;;	    (augmult (mul (list '(rat) -1 8)
	       ;;			  (power c -3)
	       ;;			  b b (power exp4 -2))))
	       (add (augmult (mul* (power c (div -3 2)) `((%log) ,exp4)))
		    (augmult (mul b x (power c (div -5 2)) (power exp4 -2)))
		    (augmult (mul (div 3 8)
				  (power c (div -7 2))
				  b b (power exp4 -2))))))

       (when (and (eq signdiscrim '$zero) (> p 1))
	 ;; x^2/R^(p+1/2), repeated roots, p > 1
	 ;;
	 ;; As above, we have R=c*(x+b/2/c)^2, so the integral is
	 ;;
	 ;; x^2/(x+b/2/c)^(2*p+1)/c^(p+1/2).
	 ;;
	 ;; Let d = b/2/c.  Then write x^2 =
	 ;; (x+d)^2-2*d*(x+d)+d^2.  The integrand becomes
	 ;;
	 ;; 1/(x+d)^(2*p-1) - 2*d/(x+d)^(2*p) + d^2/(x+d)^(2*p+1)
	 ;;
	 ;; whose integral is
	 ;;
	 ;; 1/(2*p-2)/(x+d)^(2*p-2) - 2*d/(2*p-1)/(x+d)^(2*p-1)
	 ;;   + d^2/(2*p)/(x+d)^(2*p)
	 ;;
	 ;; And don't forget the factor c^(-p-1/2).  Finally,
	 ;;
	 ;; 1/c^(p+1/2)/(2*p-2)/(x+d)^(2*p-2)
	 ;;  - b/c^(p+3/2)/(2*p-1)/(x+d)^(2*p-1)
	 ;;  + b^2/8/c^(p+5/2)/p/(x+d)^(2*p)
	 (setq res2
	       ;; (add (augmult (mul *ec-1*
	       ;;			  (power exp4 exp6)
	       ;;			  (inv exp6)))
	       ;;	    (augmult (mul -1 b exp5 (inv exp7)
	       ;;			  (power exp4 exp7)))
	       ;;	    (augmult (mul b b (list '(rat) -1 8)
	       ;;			  (power c -3)
	       ;;			  (inv p)
	       ;;			  (power exp4
	       ;;				 (* -2 p)))))
	       (add (augmult (mul (inv (power c (add p 1//2)))
				  (power exp4 exp6)
				  (inv exp6)))
		    (augmult (mul -1 b
				  (inv (power c (add p (div 3 2))))
				  (inv exp7)
				  (power exp4 exp7)))
		    (augmult (mul b b '((rat simp) -1 8)
				  (inv (power c (add p (div 5 2))))
				  (inv p)
				  (power exp4
					 (* -2 p)))))))
       (when (= controlpow 2)
	 ;; x^2/R^(p+1/2)
	 ;;
	 ;; We computed this result above, so just multiply by
	 ;; the coefficient and add it to the result.
	 (setq result (add result (augmult (mul coef res2)))
	       count 3)
	 (go loop))
       jump3
       (setq count 4
	     m 3)
       jump
       ;; coef*x^m/R^(p+1/2).  m >= 3
       (setq partres
	     (let ((denom (+ p p (- m))))
	       ;; denom = 2*p-m

	       ;; G&R 2.263, eq 1:
	       ;;
	       ;; integrate(x^m/sqrt(R^(2*p+1)),x) =
	       ;;   x^(m-1)/c/(m-2*p)/sqrt(R^(2*p-1))
	       ;;     - b*(2*m-2*p-1)/2/(m-2*p)*integrate(x^(m-1)/sqrt(R^(2*p+1)),x)
	       ;;     + (m-1)*a/(m-2*p)/c*integrate(x^(m-2)/sqrt(R^(2*p+1)),x)
	       ;;
	       ;; The two integrals here were computed above in res2
	       ;; and res1, respectively.
	       (add (augmult (mul* (power x (1- m))
				   *ec-1* (div -1 denom)
				   (power (polfoo c b a x)
					  (add 1//2 (- p)))))
		    (augmult (mul b (+ p p 1 (* -2 m))
				  -1//2
				  *ec-1* (inv denom) res2))
		    (augmult (mul a (1- m) *ec-1* (inv denom) res1)))))
       on
       ;; Move on to next higher power
       (incf m)
       (when (> m controlpow)
	 (setq result (add result (augmult (mul coef partres))))
	 (go loop))
       jump4
       (setq res1 res2
	     res2 partres)
       (when (= m (+ p p))
	 (setq partres
	       (let ((expr (nummdenn (list (list (1- m) 1)) p c b a x)))
		 (add (mul x expr)
		      (mul -1 (distrint (cdr ($expand expr)) x)))))
	 (go on))
       (go jump)
       loop
       ;; Done with first term of polynomial.  Exit if we're done.
       (setq poszpowlist (cdr poszpowlist))
       (when (null poszpowlist) (return result))
       (setq coef (cadar poszpowlist) controlpow (caar poszpowlist))
       (when (= count 4) (go jump4))
       (when (= count 1) (go jump1))
       (when (= count 2) (go jump2))
       (go jump3))))

;; Integrate functions of the form coef*R^(pow-1/2)/x^m.  NEGPOWLIST
;; contains the list of coef's and m's.
(defun denmnumn (negpowlist pow c b a x)
  (let ((exp1 (inv x))		    ;; exp1 = 1/x
	(exp2 (+ pow pow -1)))	    ;; exp2 = 2*pow-1
    (prog (result controlpow coef count res1 res2 m partres signa ea-1
	   (p (+ pow pow -1))) ;; p = 2*pow-1.
			       ;; NOTE: p is not the same here as in other routines!
       ;; Why is there this special case for negpowlist?
       ;; CASE1 calls this in this way.
       (when (eq (car negpowlist) 't)
	 (setq negpowlist (cdr negpowlist))
	 (go there))
       (setq signa (checksigntm (power a 2)))
       (when (eq signa '$zero)
	 (return (nonconstquadenum negpowlist p c b x)))
       (setq ea-1 (inv a))
       there
       (setq result 0
	     controlpow (caar negpowlist)
	     coef (cadar negpowlist))
       (when (zerop controlpow)
	 ;; integrate(sqrt(R)).
	 ;; I don't think we can normally get here.
	 (setq result (augmult (mul coef
				    (numn (add (mul p 1//2) 1//2)
					  c b a x)))
	       count 1)
	 (go loop))
       jump1
       ;; Handle integrate(sqrt(R^(2*pow-1))/x),x
       (setq res1 (den1numn pow c b a x))
       (when (equal controlpow 1)
	 (setq result (add result (augmult (mul coef res1)))
	       count 2)
	 (go loop))
       jump2
       ;; Handle integrate(sqrt(R^(2*pow-1))/x^2,x)
       (unless (= p 1)
	 ;; integrate(sqrt(R^(2*pow-1))/x^2,x)
	 ;;
	 ;; We can use integration by parts to get
	 ;;
	 ;; integrate(sqrt(R^(2*pow-1))/x^2,x) =
	 ;;   -R^(pow-1/2)/x
	 ;;     + (2*pow-1)*b/2*integrate(sqrt(R^(2*pow-3))/x,x)
	 ;;     + (2*pow-1)*c*integrate(sqrt(R^(2*pow-3)),x)
	 (setq res2
	       (add (augmult (mul -1 exp1
				  (power (polfoo c b a x)
					 (add pow -1//2))))
		    (augmult (mul b (div exp2 2)
				  (den1numn (1- pow) c b a x)))
		    (augmult (mul c exp2 (numn (- pow 2) c b a x))))))
       (when (= p 1)
	 ;; integrate(sqrt(R)/x^2,x)
	 ;;
	 ;; G&R 2.267, eq. 2
	 ;;
	 ;; integrate(sqrt(R)/x^2,x) =
	 ;;   -sqrt(R)/x
	 ;;     + b/2*integrate(1/x/sqrt(R),x)
	 ;;     + c*integrate(1/sqrt(R),x)
	 ;;
	 (setq res2 (add (augmult (mul -1 (power (polfoo c b a x) 1//2)
					    exp1))
			      (augmult (mul b 1//2 (den1den1 c b a x)))
			      (augmult (mul c (den1 c b a x))))))
       (when (equal controlpow 2)
	 (setq result (add result (augmult (mul coef res2)))
	       count 3)
	 (go loop))
       jump3
       (setq count 4
	     m 3)
       jump
       ;; The general case sqrt(R^(2*p-1))/x^m
       ;;
       ;; G&R 2.265
       ;;
       ;; integrate(sqrt(R^(2*p-1))/x^m,x) =
       ;;   -sqrt(R^(2*p+1))/(m-1)/a/x^(m-1)
       ;;     + (2*p-2*m+3)*b/2/(m-1)/a*integrate(sqrt(R^(2*p-3))/x^(m-1),x)
       ;;     + (2*p-m+2)*c/(m-1)/a*integrate(sqrt(R^(2*n-3))/x^(m-2),x)
       ;;
       ;; NOTE: The p here is 2*pow-1.  And we're
       ;; integrating R^(pow-1/2).

       (setq partres
	     (add (augmult (mul (div -1 (1- m))
				ea-1
				(power x (1+ (- m)))
				(power (polfoo c b a x)
				       (add (div p 2) 1))))
		  (augmult (mul (inv (+ m m -2))
				ea-1 b
				(+ p 4 (* -2 m))
				res2))
		  (augmult (mul c ea-1
				(+ p 3 (- m))
				(inv (1- m)) res1))))
       (incf m)
       (when (> m controlpow)
	 (setq result (add result (augmult (mul coef partres))))
	 (go loop))
       jump4
       (setq res1 res2
	     res2 partres)
       (go jump)
       loop
       (setq negpowlist (cdr negpowlist))
       (when (null negpowlist) (return result))
       (setq coef (cadar negpowlist)
	     controlpow (caar negpowlist))
       (when (= count 4)
	 (go jump4))
       (when (= count 1)
	 (go jump1))
       (when (= count 2)
	 (go jump2))
       (go jump3))))

;; Like denmnumn, but a = 0.
(defun nonconstquadenum (negpowlist p c b x)
  (prog (result coef m)
     (cond ((equal p 1)
	    (return (case1 negpowlist c b x))))
     (setq result 0)
     loop
     (setq m (caar negpowlist)
	   coef (cadar negpowlist))
     (setq result (add result (augmult (mul coef (casegen m p c b x))))
	   negpowlist (cdr negpowlist))
     (cond ((null negpowlist) (return result)))
     (go loop)))

;; Integrate (c*x^2+b*x)^(p-1/2)/x^m
(defun casegen (m p c b x)
  (let ((exp1 (power (polfoo c b 0 x) (div p 2)))    ;; exp1 = R^(p/2)
	(exp3 (power x (1+ (- m)))))                 ;; exp3 = 1/x^(m-1)
    (cond ((= p 1)
	   ;; sqrt(c*x^2+b*x)/x^m
	   (case1 (list (list m 1)) c b x))
	  ((zerop m)
	   ;; (c*x^2+b*x)^(p-1/2)
	   (case0 p c b x))
	  ((= m (1+ p))
	   ;; (c*x^2+b*x)^(p-1/2)/x^(p+1)
	   (add (augmult (mul -1 exp1 (inv (1- m)) exp3))
		(augmult (mul b 1//2 (casegen (1- m) (- p 2) c b x)))
		(augmult (mul c (casegen (- m 2) (- p 2) c b x)))))
	  ((= m 1)
	   ;; (c*x^2+b*x)^(p-1/2)/x
	   ;;
	   (add (augmult (mul (inv p) exp1))
		(augmult (mul b 1//2 (case0 (- p 2) c b x)))))
	  (t
	   ;; (c*x^2+b*x)^(p-1/2)/x^m
	   (add (augmult (mul -1 exp1 (inv (- m (1+ p))) exp3))
		(augmult (mul -1 p b 1//2 (inv (- m (1+ p)))
			      (casegen (1- m) (- p 2) c b x))))))))

;; Integrate things like sqrt(c*x^2+b*x))/x^m.
(defun case1 (negpowlist c b x)
  (declare (special *ec-1*))
  (let ((exp1 (power c -1//2)) ;; exp1 = 1/sqrt(c)
	(eb-1 (inv b)))	       ;; eb-1 = 1/b
    (prog ((result 0) (controlpow (caar negpowlist)) (coef (cadar negpowlist))
	   m1 count res1 res2 m signc signb partres res)
       (setq m1 (- controlpow 2))
       (when (zerop controlpow)
	 (setq result (augmult (mul coef (case0 1 c b x)))
	       count 1)
	 (go loop))
       jump1
       ;; sqrt(R)/x
       (when (= controlpow 1)
	 (setq result
	       (add result
		    (augmult (mul coef (den1numn 1 c b 0 x))))
	       count 2)
	 (go loop))
       jump2
       ;; sqrt(R)/x^2
       (when (= controlpow 2)
	 (setq result
	       (add result
		    (augmult (mul coef
				  (denmnumn '(t (2 1)) 1 c b 0 x))))
	       count 3)
	 (go loop))
       jump3
       (setq signb (checksigntm (power b 2)))
       (when (eq signb '$zero)
	 (setq count 5)
	 (go jump5))
       (setq count 4
	     m 0
	     signc (checksigntm *ec-1*))
       (when (eq signc '$positive)
	 (setq res
	       (augmult (mul* 2 exp1
			      `((%log)
				,(add (power (mul c x) 1//2)
				      (power (add b (mul c x)) 1//2))))))
	 (go jump4))
       (setq res
	     (augmult (mul* 2 exp1
			    `((%atan)
			      ,(power (mul c x
					   (inv (add b (mul -1 c x))))
				      1//2)))))
       jump4
       (incf m)
       (setq res (add (augmult (mul -2 (power (polfoo c b 0 x) 1//2)
				    eb-1 (inv (+ m m -1))
				    (power x (- m))))
		      (augmult (mul (div -2 (+ m m -1))
				    c (1- m) eb-1 res))))
       (when (= m m1)
	 (setq res2 res)
	 (go jump4))
       (when (= (1- m) m1)
	 (if (null res2)
	     (return nil))
	 (setq res1 res
	       partres (add (augmult (mul -1
					  (power (polfoo c b 0 x) 1//2)
					  (r1m m)
					  (power x (- m))))
			    (augmult (mul b 1//2 (r1m m) res1))
			    (augmult (mul c (r1m m) res2))))
	 (go on))
       (go jump4)
       jump5
       (setq m controlpow)
       (when (zerop m)
	 (setq partres (mul* exp1 `((%log) ,x)))
	 (go on))
       (setq partres (mul -1 exp1 (power x (- m)) (r1m m)))
       on
       (setq result (add result (augmult (mul coef partres))))
       loop
       (setq negpowlist (cdr negpowlist))
       (when (null negpowlist) (return result))
       (setq coef (cadar negpowlist)
	     controlpow (caar negpowlist))
       (when (= count 5) (go jump5))
       (when (= count 1) (go jump1))
       (when (= count 2) (go jump2))
       (when (= count 3) (go jump3))
       (setq m1 (- controlpow 2))
       (when (= m1 m)
	 (setq res2 res1))
       (go jump4))))

(defun r1m (m)
  (div 1 m))

;; Integrate (c*x^2+b*x)^(p-1/2)
(defun case0 (power c b x)
  (let ((exp1 '((rat simp) 1 4))
	(exp2 (add b (mul 2 c x)))
	(exp3 (power c '((rat simp) -3 2)))
	(exp4 (add (mul 2 c x) (mul -1 b))))
    ;; exp1 = 1/4
    ;; exp2 = b+2*c*x
    ;; exp3 = 1/c^(3/2)
    ;; exp4 = 2*c*x-b
    (declare (special *ec-1*))
    (prog (signc p result)
       (setq signc (checksigntm *ec-1*)
	     p 1)
       ;; sqrt(c*x^2+b*x)
       ;;
       ;; This could be handled by numn.  Why don't we?
       (when (eq signc '$positive)
	 (setq result
	       (add (augmult (mul exp1 *ec-1* exp2
				  (power (polfoo c b 0 x) 1//2)))
		    (augmult (mul* b b '((rat) -1 8)
				   exp3
				   `((%log)
				     ,(add exp2
					   (mul 2
						(power c 1//2)
						(power (polfoo c b 0 x) 1//2)))))))))
       (when (eq signc '$negative)
	 (setq result
	       (add (augmult (mul exp1 *ec-1* exp4
				  (power (polfoo (mul -1 c) b 0 x) 1//2)))
		    (augmult (mul* b b '((rat) 1 8)
				   exp3
				   `((%asin) ,(mul (inv b) exp4)))))))
       loop
       (when (equal power p) (return result))
       (incf p 2)

       ;; integrate(sqrt(R^(2*n+1)),x) =
       ;;   (2*c*x+b)/4/(n+1)/c*sqrt(R^(2*n+1))
       ;;     + (2*n+1)*del/8/(n+1)/c*integrate(sqrt(R^(2*n-1)),x)

       (setq result (add (augmult (mul 1//2 *ec-1* (inv (1+ p)) exp2
				       (power (polfoo c b 0 x)
					      (div p 2))))
			 (augmult (mul p b b '((rat simp) -1 4)
				       *ec-1* (inv (1+ p)) result))))
       (go loop))))

;; Integrate R^(p-1/2)/x, p >= 1.
(defun den1numn (p c b a x)
  (cond ((= p 1)
	 ;; integrate(sqrt(R)/x,x)
	 ;;
	 ;; G&R 2.267 eq. 1
	 ;;
	 ;; integrate(sqrt(R)/x,x) =
	 ;;  sqrt(R)
	 ;;    + a*integrate(1/x/sqrt(R),x)
	 ;;    + b/2*integrate(1/sqrt(R),x)
	 (add (power (polfoo c b a x) 1//2)
	      (augmult (mul a (den1den1 c b a x)))
	      (augmult (mul b 1//2 (den1 c b a x)))))
	(t
	 ;; General case
	 ;;
	 ;; G&R 2.265
	 ;;
	 ;; integrate(sqrt(R^(2*p-1)/x,x) =
	 ;;   R^(p-1/2)/(2*p-1)
	 ;;     + b/2*integrate(sqrt(R^(2*p-3)),x)
	 ;;     + a*integrate(sqrt(2^(2*p-3))/x,x)
	 (add (augmult (mul (power (polfoo c b a x)
				   (add p -1//2))
			    (inv (+ p p -1))))
	      (augmult (mul a (den1numn (+ p -1) c b a x)))
	      (augmult (mul b 1//2 (numn (+ p -2) c b a x)))))))

;; L is a list of expressions that INTIRA should be applied to.
;; Sum up the results of applying INTIRA to each.
(defun distrint (l x)
  (addn (mapcar #'(lambda (e)
		    (let ((ie (intira e x)))
		      (if ie 
			  ie 
			`((%integrate simp) ,e ,x)))) 
		l)
	t))