/usr/share/maxima/5.32.1/src/irinte.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module irinte)
(load-macsyma-macros rzmac)
(declare-top (special checkcoefsignlist var zerosigntest productcase))
(defun hasvar (exp) (not (freevar exp)))
(defun zerp (a) (equal a 0))
(defun integerpfr (a) (if (not (maxima-integerp a)) (integerp1 a)))
(defun nonzerp (a) (not (equal a 0)))
(defun freevnz (a) (and (freevar a) (not (equal a 0))))
(defun inte (funct x)
(let ((checkcoefsignlist nil)
(*globalcareflag* nil)
($radexpand t))
(declare (special checkcoefsignlist *globalcareflag* $radexpand))
(intir-ref funct x)))
(defun intir-ref (fun x)
(prog (a)
(when (setq a (intir1 fun x)) (return a))
(when (setq a (intir2 fun x)) (return a))
(return (intir3 fun x))))
(defun intir1 (fun x)
(prog (assoclist e0 r0 e1 e2 r1 r2 d p)
(setq assoclist (factpow (specrepcheck fun) x))
(setq e1 (cdras 'e1 assoclist)
e2 (cdras 'e2 assoclist))
(cond ((null assoclist)(return nil)))
(setq d (cdras 'd assoclist)
p (cdras 'p assoclist)
e0 (cdras 'e0 assoclist)
r0 (cdras 'r0 assoclist)
r1 (cdras 'r1 assoclist)
r2 (cdras 'r2 assoclist))
(cond ((floatp e0)
(setq e0 (rdis (ration1 e0)))))
(cond ((floatp e1)
(setq e1 (rdis (ration1 e1)))))
(cond ((floatp e2)
(setq e2 (rdis (ration1 e2)))))
(return (intir1-ref d p r0 e0 r1 e1 r2 e2 x))))
(defun intir2 (funct x)
(let ((res (intir funct x)))
(if res
res
(intirfactoroot funct x))))
(defun intir3 (exp x)
(prog ((assoclist (elliptquad exp x)) e f g r0)
(cond (assoclist
(setq e (cdras 'e assoclist) f (cdras 'f assoclist)
g (cdras 'g assoclist) r0 (cdras 'r0 assoclist))
(assume `(($notequal) ,e 0))
(return (intir3-r0test assoclist x e f g r0))))
(return nil)))
(defun intir3-r0test (assoclist x e f g r0)
(if (root+anything r0 x)
nil
(intir3-ref assoclist x e f g r0)))
;; Handle integrals of the form d*p(x)*r1(x)^e1*r2(x)^e2*r0(x)^e0,
;; where p(x) is a polynomial, e1 and e2 are both half an odd integer,
;; and e3 is an integer.
(defun intir1-ref (d p r0 e0 r1 e1 r2 e2 x)
(let ((nume1 (cadr e1)) ;; nume1 = 2*e1
(nume2 (cadr e2))) ;; nume2 = 2*e2
;; I think what this does is try to rationalize r1(x)^e1 or
;; r2(x)^e2 so we end up with a new integrand of the form
;; d*p'(x)*r0'(x)^e0*ra(x)^ea, where p'(x) is a new polynomial
;; obtained from rationaling one term and r0'(x) is a more
;; complicated term.
(cond ((and (plusp nume1) (plusp nume2))
(pp-intir1 d p r0 e0 r1 e1 r2 e2 x))
((and (minusp nume1) (minusp nume2))
(mm-intir1 d p r0 e0 r1 e1 r2 e2 x))
((plusp nume1)
(pm-intir1 d p r0 e0 r1 e1 r2 e2 x))
(t
(pm-intir1 d p r0 e0 r2 e2 r1 e1 x)))))
(defun pp-intir1 (d p r0 e0 r1 e1 r2 e2 x)
(if (> (cadr e1) (cadr e2))
(pp-intir1-exec d p r0 e0 r1 e1 r2 e2 x)
(pp-intir1-exec d p r0 e0 r2 e2 r1 e1 x)))
;; Handle integrals of the form d*p(x)*r0(x)^e0*r1(x)^e1*r2(x)^e2
;; where p(x) is a polynomial, e1 < 0, and e2 < 0 and are both half an
;; odd integer, and e3 is an integer.
(defun mm-intir1 (d p r0 e0 r1 e1 r2 e2 x)
(if (> (cadr e1) (cadr e2))
(mm-intir1-exec d p r0 e0 r1 e1 r2 e2 x)
(mm-intir1-exec d p r0 e0 r2 e2 r1 e1 x)))
;; Handle integrals of the form d*p(x)*r0(x)^e0*r1(x)^e1*r2(x)^e2
;; where p(x) is a polynomial, e1 > 0, and e2 < 0 and are both half an
;; odd integer, and e3 is an integer.
;;
(defun pm-intir1 (d p r0 e0 rofpos epos rofneg eneg x)
(let ((numepos (cadr epos)) ;; numepos = 2*epos = 2*e1
(numul-1eneg (mul -1 (cadr eneg)))) ;; numul-1eneg = -2*eneg = -2*e2
(cond ((> numepos numul-1eneg)
(mm-intir1 d (mul p (power rofpos (sub epos eneg)))
r0 e0 rofpos eneg rofneg eneg x))
((or (equal e0 0) (plusp e0))
(pp-intir1 d (mul p (power rofneg (sub eneg epos)))
r0 e0 rofpos epos rofneg epos x))
(t
(mm-intir1 d (mul p (power rofpos (sub epos eneg)))
r0 e0 rofpos eneg rofneg eneg x)))))
(defun pp-intir1-exec (d p r0 e0 rofmax emax rofmin emin x)
(intir (mul d p (if (equal e0 0) 1 (power r0 e0))
(power rofmax (add emax (mul -1 emin)))
(power ($expand (mul rofmax rofmin)) emin)) x))
;; Handle integrals of the form d*p(x)*r0(x)^e0*r1(x)^e1*r2(x)^e2
;; where p(x) is a polynomial, e1 < 0, and e2 < 0 and are both half an
;; odd integer, and e3 is an integer. And e2 > e1.
(defun mm-intir1-exec (d p r0 e0 rofmin emin rofmax emax x)
(intir (mul d p
(if (equal e0 0) 1
(power r0 e0))
(power rofmax (add emax (mul -1 emin)))
(power ($expand (mul rofmax rofmin)) emin)) x))
;; Integrating the form (e*x^2+f*x+g)^m*r0(x)^e0.
(defun intir3-ref (assoclist x e f g r0)
(let ((signdisc (signdiscr e f g))
(d (cdras 'd assoclist))
(p (cdras 'p assoclist))
(e0 (cdras 'e0 assoclist)))
(cond ((eq signdisc '$positive)
(pns-intir3 x e f g d p r0 e0))
((eq signdisc '$negative)
(ns-intir3 x e f g d p r0 e0))
(t
(zs-intir3 x e f d p r0 e0)))))
(defun root+anything (exp var)
(m2 exp '((mplus)
((coeffpt) (c nonzerp) ((mexpt) (u hasvar) (v integerpfr)))
((coeffpp) (c true)))))
;; Handle d*p(x)/(e*x^2+f*x+g)*r0(x)^e0. We know that e*x^2+f*x+g has
;; no repeated roots. Let D be the discriminant of this quadratic,
;; sqrt(f^2-4*e*g). (If we're here, we already know that f^2-4*e*g >
;; 0). Thus, we can factor this quadratic as
;; (2*e*x+f-D)*(2*e*x+f+D)/(4*e). Thus, the original integrand
;; becomes
;;
;; 4*e*d/(2*e*x+f-D)/(2*e*x+f+D)*p(x)*r0(x)^e0.
;;
;; We can separate this as a partial fraction to get
;;
;; (2*d*e/D/(2*e*x+f-D) - 2*d*e/D/(2*e*x+f+D))*p(x)*r0(x)^e0.
;;
;; So we have separated this into two "simpler" integrals.
(defun pns-intir3 (x e f g d p r0 e0)
(let* ((discr (power (sub (mul f f) (mul 4 e g)) 1//2)) ;; Compute discriminant of
(p*r0^e0 (mul p (power r0 e0))) ;; quadratic: sqrt(f^2-4*e*g)
(2*e*x+f (add (mul 2 e x) f))
(2*e*d*invdisc (mul 2 e d (inv discr))))
(mul 2*e*d*invdisc
(sub (intir2 (mul (inv (sub 2*e*x+f discr)) p*r0^e0) x)
(intir2 (mul (inv (add 2*e*x+f discr)) p*r0^e0) x)))))
;; Handle d*p(x)/(e*x^2+f*x+g)*r0(x)^e0. We know that e*x^2+f*x+g has
;; repeated roots.
;;
(defun zs-intir3 (x e f d p r0 e0)
;; Since e*x^2+f*x+g has repeated roots, it can be written as e*(x+r)^2.
;; We easily see that r = f/(2*e), so rewrite the integrand as
;;
;; d*p(x)/e/(x+r)^2*r0(x)^e0.
(intir2 (mul d p (inv e)
(power (add x (div f (add e e))) -2)
(power r0 e0))
x))
;; Handle d*p(x)/(e*x^2+f*x+g)*r0(x)^e0. We know that e*x^2+f*x+g has
;; no real roots.
;;
;; G&R 2.252 shows how we can handle these integrals, but I'm too lazy
;; to implement them right now, so return NIL to indicate we don't
;; know what to do. But whatever it is we do, it's definitely not
;; calling intir or intir2 like zs-intir3 or pns-intir3 do because
;; they eventually call inti which only handles linear forms (e = 0.)
;; We'll need to write custom versions.
(defun ns-intir3 (xx ee fff gg dd pp r0 e0)
(declare (ignore xx ee fff gg dd pp r0 e0))
nil)
(defun cdras (a b)
(cdr (assoc a b :test #'equal)))
(defun intir (funct x)
(inti funct x (jmaug (specrepcheck funct) x)))
;; Integrate d*p(x)*(f*x+e)^m*(a*x^2+b*x+c)^n. p(x) is a polynomial,
;; m is an integer, n is a number(?). a, b, c, e, and f are
;; expressions independent of x (var).
(defun inti (funct x assoclist)
(prog (met n expr f e #+nil denom)
(setq n (cdras 'n assoclist))
(when (or (null assoclist) (maxima-integerp n))
(return nil))
(setq f (cdras 'f assoclist)
e (cdras 'e assoclist))
;; If e is 0 (or not given, we don't have to do the
;; transformation. Just integrate it and return.
(when (or (equal e 0) (null e))
(return (intira funct x)))
;; (unless (numberp f) (go jump))
;; (when (plusp f) (go jump))
;; I (rtoy) think this is the case where f is a negative number.
;; I think this is trying to convert f*x+e to -f*x-e to make the
;; coefficient of x positive. And if I'm right, the code below
;; isn't doing it correctly, except when m = 1 or m = -1.
;; (setq denom (add (mul f x) e)
;; f (mul -1 f)
;; e (mul -1 e)
;; funct (mul -1 (div (meval (mul denom funct))
;; (add (mul f x) e))))
jump
;; Apply the linear substitution y = f*x+e. That is x = (y-e)/f.
;; Then use INTIRA to integrate this. The integrand becomes
;; something like p(y)*y^m and other terms.
(setq expr (intira (distrexpandroot
(cdr ($substitute
(mul (inv f)
(add (setq met (make-symbol (symbol-name '#:yannis)))
(mul -1 e)))
x funct)))
met))
(setq expr (and expr (mul (inv f) expr)))
(return ($expand ($substitute (add (mul f x) e) met expr)))))
(defun distrexpandroot (expr)
(if (null expr)
1
(mul (expandroot (car expr))
(distrexpandroot (cdr expr)))))
(defun expandroot (expr)
(if (atom expr)
expr
(if (and (eq (caar expr) 'mexpt)
(integerpfr (caddr expr)))
($expand expr)
expr)))
(defun intirfactoroot (expr x)
(declare (special *globalcareflag*))
(prog (assoclist (exp expr))
(when (setq assoclist (jmaug (setq expr (distrfactor (timestest expr) x)) x))
(return (inti expr x assoclist)))
(setq *globalcareflag* 't)
(when (setq assoclist (jmaug (setq exp (distrfactor (timestest exp) x)) x))
(setq *globalcareflag* nil)
(return (inti exp x assoclist)))
(setq *globalcareflag* nil)
(return nil)))
(defun distrfactor (expr x)
(if (null expr)
1
(mul (factoroot (car expr) x)
(distrfactor (cdr expr) x))))
(defun factoroot (expr var)
(if (atom expr)
expr
(if (and (eq (caar expr) 'mexpt)
(hasvar expr)
(integerpfr (caddr expr)))
(carefulfactor expr var)
expr)))
(defun carefulfactor (expr x)
(declare (special *globalcareflag*))
(if (null *globalcareflag*)
($factor expr)
(restorex ($factor (power (div (cadr expr) x) (caddr expr))) x)))
(defun restorex (expr var)
(if (atom expr)
expr
(if (eq (caar expr) 'mtimes)
(distrestorex (cdr expr) var)
expr)))
(defun distrestorex (expr var)
(if (null expr)
1
(mul (restoroot (car expr) var)
(distrestorex (cdr expr) var))))
(defun restoroot (expr var)
(if (atom expr)
expr
(if (and (eq (caar expr) 'mexpt)
(integerpfr (caddr expr))
(mplusp (cadr expr)))
(power ($expand (mul var (cadr expr))) (caddr expr))
expr)))
(defun timestest (expr)
(if (atom expr)
(list expr)
(if (eq (caar expr) 'mtimes)
(cdr expr)
(list expr))))
;; Integrate a function of the form d*p(y)*y^m*(a*y^2+b*x+c)^n.
;; n is half of an integer.
(defun intira (funct x)
(prog (a b c *ec-1* d m n (assoclist (jmaug (specrepcheck funct) x))
pluspowfo1 pluspowfo2 minuspowfo
polfact signn poszpowlist negpowlist)
(declare (special *ec-1*))
(setq n (cdras 'n assoclist))
;; r12 1//2)
;; (format t "n = ~A~%" n)
(when (or (null assoclist)
(maxima-integerp n))
(return nil))
(when (floatp n)
(setq n (rdis (ration1 n))))
(setq d (cdras 'd assoclist))
(when (equal d 0) (return 0))
(setq c (cdras 'a assoclist))
(when (equal c 0) (return nil))
(setq m (cdras 'm assoclist)
polfact (cdras 'p assoclist)
;; We know that n is of the form s/2, so just make n = s,
;; and remember that the actual exponent needs to be
;; divided by 2.
n (cadr n)
signn (checksigntm n)
*ec-1* (power c -1)
b (cdras 'b assoclist)
a (cdras 'c assoclist)
;; pluspowfo1 = 1/2*(n-1), That is, the original exponent - 1/2.
pluspowfo1 (mul 1//2 (+ n -1))
;; minupowfo = 1/2*(n+1), that is, the original exponent + 1/2.
minuspowfo (mul 1//2 (+ n 1))
;; pluspowfo2 = -1/2*(n+1), that is, the negative of 1/2
;; plus the original exponent.
pluspowfo2 (* -1 minuspowfo))
(destructuring-bind (pos &optional neg)
(powercoeflist polfact m x)
(setf poszpowlist pos)
(setf negpowlist neg))
#+nil (progn
(format t "n = ~A~%" n)
(format t "pluspowfo1 = ~A~%" pluspowfo1)
(format t "minuspowfo = ~A~%" minuspowfo)
(format t "pluspowfo2 = ~A~%" pluspowfo2))
;; I (rtoy) think powercoeflist computes p(x)/x^m as a Laurent
;; series. POSZPOWLIST is a list of coefficients of the positive
;; powers and NEGPOWLIST is a list of the negative coefficients.
(when (and (null negpowlist)
(not (null poszpowlist)))
;; Only polynomial parts.
(when (eq signn '$positive)
(return (augmult (mul d
(nummnumn poszpowlist
pluspowfo1
minuspowfo c b a x)))))
(return (augmult (mul d
(nummdenn poszpowlist
pluspowfo2 c b a x)))))
(when (and (null poszpowlist)
(not (null negpowlist)))
;; No polynomial parts
(when (eq signn '$positive)
(return (augmult (mul d
(denmnumn negpowlist minuspowfo c b a x)))))
(return (augmult (mul d
(denmdenn negpowlist pluspowfo2 c b a x)))))
(when (and (not (null negpowlist))
(not (null poszpowlist)))
;; Positive and negative powers.
(when (eq signn '$positive)
(return (add (augmult (mul d
(nummnumn poszpowlist
pluspowfo1
minuspowfo c b a x)))
(augmult (mul d
(denmnumn negpowlist
minuspowfo c b a x))))))
(return (add (augmult (mul d
(nummdenn poszpowlist
pluspowfo2 c b a x)))
(augmult (mul d
(denmdenn negpowlist
pluspowfo2 c b a x))))))))
;; Match d*p(x)*(f*x+e)^m*(a*x^2+b*x+c)^n. p(x) is a polynomial, m is
;; an integer, n is half of an integer. a, b, c, e, and f are
;; expressions independent of x (var).
(defun jmaug (exp var)
(m2 exp '((mtimes)
((coefftt) (d freevar))
((coefftt) (p polyp))
((mexpt) ((mplus) ((coeffpt) (f freevar) (x varp))
((coeffpp)(e freevar)))
(m maxima-integerp))
((mexpt) ((mplus)
((coeffpt) (a freevar) ((mexpt) (x varp) 2))
((coeffpt) (b freevar) (x varp))
((coeffpp) (c freevar)))
(n integerp1)))))
;; Match d*p(x)*r1(x)^e1*r2(x)^e2*r0(x)^e0, where p(x) is a
;; polynomial, e1 and e2 are both half an odd integer, and e3 is an
;; integer.
(defun factpow (exp var)
(m2 exp '((mtimes) ((coefftt) (d freevar))
((coefftt) (p polyp))
((mexpt) (r1 hasvar)
(e1 integerpfr))
((mexpt) (r2 hasvar)
(e2 integerpfr))
((mexpt) (r0 hasvar)
(e0 maxima-integerp)))))
;; Match EXP to the form
;; d*p/(e*x^2+f*x+g)*r0(x)^e0. p is a polynomial in x.
(defun elliptquad (exp var)
(m2 exp '((mtimes)
((coefftt) (d freevar))
((coefftt) (p polyp))
((mexpt) ((mplus) ((coeffpt) (e freevnz) ((mexpt) (x varp) 2))
((coeffpt) (f freevar) (x varp))
((coeffpp) (g freevar)))
-1)
((mexpt) (r0 hasvar)
(e0 integerpfr)))))
;; From the set of coefficients, generate the polynomial c*x^2+b*x+a.
(defun polfoo (c b a x)
(add (mul c x x)
(mul b x)
a))
;; I think this is computing the list of coefficients of fun(x)/x^m,
;; where fun(x) is a polynomial and m is a non-negative integer. The
;; result is a list of two lists. The first list contains the
;; polynomial part of fun(x)/x^m. The second is the principal part
;; containing negative powers.
;;
;; Each of the lists is itself a list of power and coefficient itself.
;;
;; Thus (x+3)^2/x^2 = 1 + 6/x + 9/x^2 returns
;;
;; '(((0 1)) ((1 6) (2 9)))
(defun powercoeflist (fun m var)
(prog ((expanfun (unquote ($expand (mul (prevconstexpan fun var) (power var m)))))
maxpowfun powfun coef poszpowlist negpowlist)
(when (and (equal fun 1) (plusp m))
(return (cons nil (list (list (cons m (list 1)))))))
(when (and (equal fun 1) (minusp m))
(return (cons nil (list (list (cons (- m) (list 1)))))))
(when (equal expanfun 1)
(return (cons (list (cons 0 (list 1))) (list nil))))
(setq maxpowfun ($hipow expanfun var)
powfun ($lopow expanfun var))
loop (setq coef ($coeff expanfun (power var powfun)))
(when (numberp coef) (go testjump))
(go nojump)
testjump (when (and (not (zerop powfun)) (zerop coef))
(go jump))
nojump (when (plusp powfun)
(setq poszpowlist (append poszpowlist
(list (cons powfun (list coef))))))
(when (zerop powfun)
(setq poszpowlist
(append poszpowlist
(list (cons 0 (list (consterm (cdr expanfun) var)))))))
(when (minusp powfun)
(setq negpowlist (append negpowlist (list (cons (- powfun) (list coef))))))
(when (= powfun maxpowfun)
(return (list poszpowlist (reverse negpowlist))))
jump (incf powfun)
(go loop)))
(defun consterm (fun var)
(cond ((null fun) 0)
((freeof var (car fun))
(add (car fun) (consterm (cdr fun) var)))
(t (consterm (cdr fun) var))))
(defun prevconstexpan (fun var)
(cond ((atom fun) fun)
((eq (caar fun) 'mplus)
(cond ((and (freeof var fun)
(not (inside fun 'mexpt)))
(list '(mquote) fun))
((and (freeof var fun) (inside fun 'mexpt))
(list '(mquote)
(distrinplusprev (cdr fun) var)))
((inside fun 'mexpt)
(distrinplusprev (cdr fun) var))
(t fun)))
((eq (caar fun) 'mtimes)
(distrintimesprev (cdr fun) var))
((and (not (inside (cdr fun) var))
(eq (caar fun) 'mexpt))
(power (prevconstexpan (cadr fun) var) (caddr fun)))
(t fun)))
(defun distrinplusprev (fun var)
(cond ((null fun) 0)
(t (add (prevconstexpan (car fun) var)
(distrinplusprev (cdr fun) var)))))
(defun distrintimesprev (fun var)
(cond ((null fun) 1)
(t (mul (prevconstexpan (car fun) var)
(distrintimesprev (cdr fun) var)))))
(defun inside (fun arg)
(cond ((atom fun)(equal fun arg))
((inside (car fun) arg) t)
(t (inside (cdr fun) arg))))
(defun unquote (fun)
(cond ((not (inside fun 'mquote)) fun)
(t (unquote (meval fun)))))
(defun checksigntm (expr)
(prog (aslist quest zerosigntest productcase)
(setq aslist checkcoefsignlist)
(cond ((atom expr) (go loop)))
(cond ((eq (caar expr) 'mtimes)(setq productcase t)))
loop (cond ((null aslist)
(setq checkcoefsignlist
(append checkcoefsignlist
(list (cons expr
(list
(setq quest (checkflagandact expr)))))))
(return quest)))
(cond ((equal (caar aslist) expr) (return (cadar aslist))))
(setq aslist (cdr aslist))
(go loop)))
(defun checkflagandact (expr)
(cond (productcase
(setq productcase nil)
(findsignoftheirproduct (findsignofactors (cdr expr))))
(t (asksign ($realpart expr)))))
(defun findsignofactors (listofactors)
(cond ((null listofactors) nil)
((eq zerosigntest '$zero) '$zero)
(t (append (list (setq zerosigntest (checksigntm (car listofactors))))
(findsignofactors (cdr listofactors))))))
(defun findsignoftheirproduct (llist)
(prog (sign)
(cond ((eq llist '$zero) (return '$zero)))
(setq sign '$positive)
loop (cond ((null llist) (return sign)))
(cond ((eq (car llist) '$positive)
(setq llist (cdr llist))
(go loop)))
(cond ((eq (car llist) '$negative)
(setq sign (changesign sign) llist (cdr llist))
(go loop)))
(return '$zero)))
(defun changesign (sign)
(if (eq sign '$positive)
'$negative
'$positive))
;; Integrate 1/sqrt(c*x^2+b*x+a).
;;
;; G&R 2.261 gives the following, where R = c*x^2+b*x+a and D =
;; 4*a*b-b^2:
;;
;; c > 0:
;; 1/sqrt(c)*log(2*sqrt(c*R)+2*c*x+b)
;;
;; c > 0, D > 0:
;; 1/sqrt(c)*asinh((2*c*x+b)/sqrt(D))
;;
;; c < 0, D < 0:
;; -1/sqrt(-c)*asin((2*c*x+b)/sqrt(-D))
;;
;; c > 0, D = 0:
;; 1/sqrt(c)*log(2*c*x+b)
;;
(defun den1 (c b a x)
(let* ((expr (add (mul 2 c x) b)) ;; expr = 2*c*x+b
(signc (checksigntm (power c -1)))
(signb (checksigntm (power b 2)))
(signdiscrim (signdis2 c b a signc signb)))
(when (and (eq signc '$positive)
(eq signdiscrim '$negative))
;; c > 0, D > 0
(return-from den1 (augmult (mul* (power c -1//2)
`((%asinh)
,(mul expr
(power (add (mul 4 c a)
(mul -1 b b))
-1//2)))))))
(when (and (eq signc '$positive)
(eq signdiscrim '$zero))
;; c > 0, D = 0
(return-from den1 (augmult (mul* (power -1 expr)
(power c -1//2)
`((%log) ,expr)))))
(when (eq signc '$positive)
;; c > 0
(return-from den1 (augmult (mul* (power c -1//2)
`((%log)
,(add (mul 2
(power c 1//2)
(power (polfoo c b a x) 1//2))
expr))))))
(when (and (eq signc '$negative)
(eq signdiscrim '$positive))
;; c < 0, D > 0
(return-from den1 (augmult (mul* -1
(power (mul -1 c) -1//2)
`((%asin)
,(mul expr
(power (add (mul b b)
(mul -4 c a))
-1//2)))))))
(when (eq signc '$negative)
;; c < 0. We try again, but flip the sign of the
;; polynomial, and multiply by -%i.
(return-from den1 (augmult (mul (power -1 -1//2)
(den1 (mul -1 c)
(mul -1 b)
(mul -1 a)
x)))))))
;; Compute sign of discriminant of the quadratic c*x^2+b*x+a. That
;; is, the sign of b^2-4*c*a.
(defun signdiscr (c b a)
(checksigntm (simplifya (add (power b 2) (mul -4 c a)) nil)))
(defun askinver (a)
(checksigntm (inv a)))
(defun signdis1 (c b a)
(cond ((equal (mul b a) 0)
(if (and (equal b 0) (equal a 0))
'$zero
'$nonzero))
(t
;; Why are we checking the sign of (b^2-4*a*c)^2?
(checksigntm (power (add (mul b b) (mul -4 c a)) 2)))))
;; Check sign of discriminant of c*x^2+b*x+a, but also taking into
;; account the sign of c and b.
(defun signdis2 (c b a signc signb)
(cond ((equal signb '$zero)
(cond ((equal a 0) '$zero)
(t (let ((askinv (askinver a)))
(if (or (and (eq signc '$positive)
(eq askinv '$negative))
(and (eq signc '$negative)
(eq askinv '$positive)))
'$positive
'$negative)))))
(t (if (equal a 0)
'$positive
(signdiscr c b a)))))
(defun signdis3 (c b a signa)
(declare (special *ec-1*))
(cond ((equal b 0)
(if (equal (checksigntm *ec-1*) signa)
'$negative
'$positive))
(t (signdiscr c b a))))
;; Integrate things like x^m*R^(p-1/2), p > 0, m > 0.
;;
;; I think pluspowfo1 = p - 1.
(defun nummnumn (poszpowlist pluspowfo1 p c b a x)
(declare (special *ec-1*))
(let ((expr (power (polfoo c b a x) (add p 1//2))) ;; expr = R^(p+1/2)
(expo *ec-1*) ;; expo = 1/c
(ex (power c -2))) ;; ex = 1/c^2
(prog ((result 0)
(controlpow (caar poszpowlist))
(coef (cadar poszpowlist))
count res1 res2 m partres)
#+nil (format t "p = ~A~%pluspowfo1 = ~A~%" p pluspowfo1)
(when (zerop controlpow)
;; Integrate R^(p-1/2)
(setq result (augmult (mul coef (numn pluspowfo1 c b a x)))
count 1)
(go loop))
jump1
;; Handle x*R^(p-1/2)
;;
;; G&R 2.260, m = 1
;;
;; integrate(x*R^(2*p-1),x) =
;; R^(p+1/2)/(2*p+1)/c
;; - b/2/c*integrate(sqrt(R^(2*p-1)),x)
(setq res1 (add (augmult (mul expr expo
(power (+ p p 1) -1)))
(augmult (mul -1 b 1//2 expo
(numn pluspowfo1 c b a x)))))
(when (equal controlpow 1)
(setq result (add result (augmult (mul coef res1)))
count 2)
(go loop))
jump2
;; Handle x^2*R^(p-1/2)
;;
;; G&R 2.260, m = 2
;;
;; integrate(x^2*R^(2*p-1),x) =
;; x*R^(p+1/2)/(2*p+2)/c
;; - (2*p+3)*b/2/(2*p+2)/c*integrate(x*sqrt(R^(2*p-1)),x)
;; - a/(2*p+2)/c*integrate(sqrt(R^(2*p-1)),x)
(setq res2 (add (augmult (mul* x expr expo
(inv (+ p p 2))))
(augmult (mul* b (+ p p 3)
'((rat) -1 4)
ex
(inv (+ p p p 1
(* p p)
(* p p)))
expr))
(augmult (mul (inv (1+ p))
ex
'((rat simp) 1 8)
(add (mul (power b 2)
(+ p p 3))
(mul -4 a c))
(numn pluspowfo1 c b a x)))))
(when (equal controlpow 2)
(setq result (add result (augmult (mul coef res2)))
count 3)
(go loop))
jump3
(setq count 4
m 3)
jump
;; The general case: x^m*R^(p-1/2)
(setq partres
(let ((pro (inv (+ m p p))))
;; pro = 1/(m+2*p)
;;
;; G&R 2.260, m = 2
;;
;; integrate(x^m*R^(2*p-1),x) =
;; x^(m-1)*R^(p+1/2)/(m+2*p)/c
;; - (2*m+2*p-1)*b/2/(m+2*p)/c*integrate(x^(m-1)*sqrt(R^(2*p-1)),x)
;; - (m-1)*a/(m+2*p)/c*integrate(x^(m-2)*sqrt(R^(2*p-1)),x)
(add (augmult (mul (power x (1- m))
expr expo pro))
(augmult (mul -1 b (+ p p m m -1)
1//2 expo pro res2))
(augmult (mul -1 a (1- m)
expo pro res1)))))
(incf m)
(when (> m controlpow)
(setq result (add result (augmult (mul coef partres))))
(go loop))
jump4
(setq res1 res2
res2 partres)
(go jump)
loop
(setq poszpowlist (cdr poszpowlist))
(when (null poszpowlist) (return result))
(setq coef (cadar poszpowlist))
(setq controlpow (caar poszpowlist))
(when (equal count 4) (go jump4))
(when (equal count 1) (go jump1))
(when (equal count 2) (go jump2))
(go jump3))))
;; Integrate R^(p+1/2)
(defun numn (p c b a x)
(declare (special *ec-1*))
(let ((exp1 *ec-1*) ;; exp1 = 1/c
(exp2 (add b (mul 2 c x))) ;; exp2 = b+2*c*x
(exp4 (add (mul 4 a c) (mul -1 b b))) ;; exp4 = 4*a*c-b^2
(exp5 (div 1 (1+ p)))) ;; exp5 = 1/(p+1)
(if (zerop p)
;; integrate(sqrt(R),x)
;;
;; G&R 2.262 says
;;
;; integrate(sqrt(R),x) =
;; (2*c*x+b)*sqrt(R)/4/c + del/8/c*integrate(1/sqrt(R),x)
;;
;; del = 4*a*c-b^2
(add (augmult (mul '((rat simp) 1 4)
exp1 exp2
(power (polfoo c b a x) 1//2)))
(augmult (mul '((rat simp) 1 8)
exp1 exp4
(den1 c b a x))))
;; The general case
;;
;; G&R 2.260, eq. 2:
;;
;; integrate(sqrt(R^(2*p+1)),x) =
;; (2*c*x+b)/4/(p+1)/c*R^(p+1/2)
;; + (2*p+1)*del/8/(p+1)/c*integrate(sqrt(R^(2*p-1)),x)
(add (augmult (mul '((rat simp) 1 4)
exp1 exp5 exp2
(power (polfoo c b a x) (add p 1//2))))
(augmult (mul '((rat simp) 1 8)
exp1 exp5 (+ p p 1)
exp4
(numn (1- p) c b a x)))))))
(defun augmult (x)
($multthru (simplifya x nil)))
;; Integrate things like 1/x^m/R^(p+1/2), p > 0.
(defun denmdenn (negpowlist p c b a x)
(let ((exp1 (power (polfoo c b a x) (add 1//2 (- p))))) ;; exp1 = 1/R^(p-1/2)
(prog (result controlpow coef count res1 res2 m partres
(signa (checksigntm (simplifya a nil)))
ea-1)
(when (eq signa '$zero)
(return (noconstquad negpowlist p c b x)))
(setq result 0
controlpow (caar negpowlist)
ea-1 (power a -1))
(setq coef (cadar negpowlist))
(when (zerop controlpow)
;; I'm not sure we ever get here because m = 0 is
;; usually handled elsewhere.
(setq result (augmult (mul coef (denn p c b a x)))
count 1)
(go loop))
jump1
;; Handle 1/x/R^(p+1/2)
(setq res1 (den1denn p c b a x))
(when (equal controlpow 1)
(setq result (add result (augmult (mul coef res1)))
count 2)
(go loop))
jump2
;; Handle 1/x^2/R^(p+1/2)
;;
;; G&R 2.268, m = 2
;;
;; integrate(1/x^2/R^(p+1/2),x) =
;; -1/a/x/sqrt(R^(2*p-1))
;; -(2*p+1)*b/2/a*integrate(1/x/sqrt(R^(2*p+1)),x)
;; -2*p*c/a*integrate(1/sqrt(R^(2*p+1)),x)
(setq res2 (add (augmult (mul -1 ea-1 (power x -1) exp1))
(augmult (mul -1 b (+ 1 p p) 1//2
ea-1 (den1denn p c b a x)))
(augmult (mul -2 p c ea-1 (denn p c b a x)))))
(when (equal controlpow 2)
(setq result (add result (augmult (mul coef res2)))
count 3)
(go loop))
jump3
(setq count 4
m 3)
jump
;; General case 1/x^m/R^(p+1/2)
;;
;; G&R 2.268
;;
;; integrate(1/x^2/R^(p+1/2),x) =
;; -1/(m-1)/a/x^(m-1)/sqrt(R^(2*p-1))
;; -(2*p+2*m-3)*b/2/(m-1)/a*integrate(1/x^(m-1)/sqrt(R^(2*p+1)),x)
;; -(2*n+m-2)*c/(m-1)/a*integrate(1/x^(m-2)/sqrt(R^(2*p+1)),x)
(setq partres
(let ((exp2 (div -1 (1- m))))
;; exp2 = -1/(m-1)
(add (augmult (mul exp2 ea-1
(power x (1+ (- m)))
exp1))
(augmult (mul b (+ p p m m -3) 1//2
ea-1 exp2 res2))
(augmult (mul c ea-1 exp2
(+ p p m -2) res1)))))
(incf m)
(when (> m controlpow)
(setq result (add result (augmult (mul coef partres))))
(go loop))
jump4
(setq res1 res2 res2 partres)
(go jump)
loop
(setq negpowlist (cdr negpowlist))
(when (null negpowlist) (return result))
(setq coef (cadar negpowlist)
controlpow (caar negpowlist))
(when (equal count 4) (go jump4))
(when (equal count 1) (go jump1))
(when (equal count 2) (go jump2))
(go jump3))))
;; Integral of 1/(c*x^2+b*x+a)^(n), n > 0. p = n + 1/2.
;;
;; See G&R 2.263 formula 3.
;;
;; Let R = c*x^2+b*x+a.
(defun denn (p c b a x)
(let ((signdisc (signdis1 c b a))
(exp1 (add b (mul 2 c x))) ;; exp1 = b + 2*c*x;
(exp2 (add (mul 4 a c) (mul b b -1))) ;; exp2 = (4*a*c-b^2)
(exp3 (inv (+ p p -1))) ;; exp3 = 1/(2*p-1)
(*ec-1* (inv c)))
(declare (special *ec-1*))
#+nil (format t "signdisc = ~A~%p = ~A~%" signdisc p)
(cond ((and (eq signdisc '$zero) (zerop p))
;; 1/sqrt(R), and R has duplicate roots. That is, we have
;; 1/sqrt(c*(x+b/(2c))^2) = 1/sqrt(c)/sqrt((x+b/2/c)^2).
;;
;; We return 1/sqrt(c)*log(x+b/2/c). Shouldn't we return
;; 1/c*log(|x+b/2/c|)?
(augmult (mul* (power *ec-1* 1//2)
`((%log) ,(add x (mul b 1//2 *ec-1*))))))
((and (eq signdisc '$zero) (plusp p))
;; 1/sqrt(R^(2*p+1)), with duplicate roots.
;;
;; That is, 1/sqrt((c*(x+b/2/c)^(2)^(2*p+1))), or
;; 1/c^(p+1/2)/(x+b/2/c)^(2*p+1). So the result is
;; -1/2/p*c^(-p-1/2)/(x+b/2/c)^(2*p)
(augmult (mul (div -1 (+ p p))
(power c (mul -1//2 (+ p p 1)))
(power (add x (mul b 1//2 *ec-1*)) (* -2 p)))))
((zerop p)
;; 1/sqrt(R)
(den1 c b a x))
((equal p 1)
;; 1/sqrt(R^3).
;;
;; G&R 2.264 eq. 5 says
;;
;; 2*(2*c*x+b)/del/sqrt(R).
(augmult (mul 2 exp1 (inv exp2)
(power (polfoo c b a x) -1//2))))
(t
;; The general case. G&R 2.263 eq. 3.
;;
;; integrate(1/sqrt(R^(2*p+1)),x) =
;; 2*(2*c*x+b)/(2*p-1)/c/sqrt(R^(2*p-1))
;; + 8*(p-1)*c/(2*p-1)/del*integrate(1/sqrt(R^(2*p-1)),x)
;;
;; where del = 4*a*c-b^2.
(add (augmult (mul 2 exp1
exp3 (inv exp2)
(power (polfoo c b a x)
(add 1//2 (- p)))))
(augmult (mul 8 c (1- p)
exp3 (inv exp2)
(denn (1- p) c b a x))))))))
;; Integral of 1/x/(c*x^2+b*x+a)^(p+1/2), p > 0.
(defun den1denn (p c b a x)
(let ((signa (checksigntm (power a 2))) ;; signa = sign of a^2
(ea-1 (inv a))) ;; ea-1 = 1/a
(cond ((eq signa '$zero)
;; This is wrong because noconstquad expects a
;; powercoeflist for th first arg. But I don't think
;; there's any way to get here from anywhere. I'm pretty
;; sure den1denn is never called with a equal to 0.
(noconstquad 1 p c b x))
((zerop p)
;; 1/x/sqrt(c*x^2+b*x+a)
(den1den1 c b a x))
(t
;; The general case. See G&R 2.268:
;;
;; R=(c*x^2+b*x+a)
;;
;; integrate(1/x/sqrt(R^(2*p+1)),x) =
;;
;; 1/(2*p-1)/a/sqrt(R^(2*p-1))
;; - b/2/a*integrate(1/sqrt(R^(2*p+1)),x)
;; + 1/a*integrate(1/x/sqrt(R^(2*p-1)),x)
(add (augmult (mul (inv (+ p p -1))
ea-1
(power (polfoo c b a x)
(add 1//2 (- p)))))
(augmult (mul ea-1 (den1denn (1- p) c b a x)))
(augmult (mul -1 1//2 ea-1 b (denn p c b a x))))))))
;; Integral of 1/x/sqrt(c*x^2+b*x+a).
;;
;; G&R 2.266 gives the following results, where del is the
;; discriminant 4*a*c-b^2. (I think this is the opposite of what we
;; compute below for the discriminant.)
;;
(defun den1den1 (c b a x)
(let ((exp2 (add (mul b x) a a)) ; exp2 = b*x+2*a
(exp3 (inv (simplify (list '(mabs) x))))) ; exp3 = 1/abs(x)
(prog (signdiscrim
(condition (add (mul b x) a a))
(signa (checksigntm (simplifya a nil)))
exp1)
(when (eq signa '$zero)
(return (noconstquad '((1 1)) 0 c b x)))
(setq signdiscrim (signdis3 c b a signa)
exp1 (power a (inv -2)))
#+nil (format t "signa = ~A~%signdiscrim = ~A~%" signa signdiscrim)
(when (and (eq signa '$positive)
(eq signdiscrim '$negative))
;; G&R case a > 0, del > 0
;;
;; -1/sqrt(a)*asinh((2*a+b*x)/x/sqrt(del)
(return (mul* -1 exp1
`((%asinh)
,(augmult (mul exp2 exp3
(power (add (mul 4 a c)
(mul -1 b b))
-1//2)))))))
(when (and (eq signdiscrim '$zero)
(eq signa '$positive))
;; G&R case del = 0, a > 0
;;
;; 1/sqrt(a)*log(x/(2*a+b*x))
(return (mul* (power -1 condition)
-1 exp1
`((%log) ,(augmult (mul exp3 exp2))))))
(when (eq signa '$positive)
;; G&R case a > 0
;;
;; -1/sqrt(a)*log((2*a+b*x+2*sqrt(a*R))/x)
;;
;; R = c*x^2+b*x+a.
(return (mul* -1 exp1
`((%log)
,(add b (mul 2 a exp3)
(mul 2 exp3
(power a 1//2)
(power (polfoo c b a x) 1//2)))))))
(when (and (eq signa '$negative)
(eq signdiscrim '$positive))
;; G&R case a < 0, del < 0
;;
;; 1/sqrt(-a)*asin((2*a+b*x)/x/sqrt(b^2-4*a*c))
(return (mul* (power (mul -1 a) -1//2)
`((%asin)
,(augmult (mul exp2 exp3
(power (add (mul b b) (mul -4 a c)) -1//2)))))))
;; I think this is the case of a < 0. We flip the sign of
;; coefficients of the quadratic to make a positive, and
;; multiply the result by 1/%i.
;;
;; Why can't we use the case a < 0 in G&R 2.266:
;;
;; 1/sqrt(-a)*atan((2*a+b*x)/2/sqrt(-a)/sqrt(R)
;;
;; FIXME: Why the multiplication by -1?
(return (mul #+nil -1
(power -1 1//2)
(den1den1 (mul -1 c) (mul -1 b) (mul -1 a) x))))))
;; Integral of d/x^m/(c*x^2+b*x)^(p+1/2), p > 0. The values of m and
;; d are in NEGPOWLIST.
(defun noconstquad (negpowlist p c b x)
(let ((exp1 (inv (+ p p 1))) ;; exp1 = 1/(2*p+1)
(exp2 (inv x)) ;; exp2 = 1/x
(exp3 (- p))) ;; exp3 = -p
(prog (result controlpow coef count res1 signb m partres eb-1)
(setq signb (checksigntm (power b 2)))
(when (eq signb '$zero)
(return (trivial1 negpowlist p c x)))
(setq result 0
controlpow (caar negpowlist)
coef (cadar negpowlist)
eb-1 (inv b))
(when (zerop controlpow)
;; Not sure if we ever actually get here. The case of
;; m=0 is usually handled at a higher level.
(setq result (augmult (mul coef (denn p c b 0 x)))
count 1)
(go loop))
jump1
;; Handle 1/x/R^(p+1/2)
;;
;; G&R 2.268, a = 0, m = 1
;;
;; integrate(1/x^m/sqrt(R^(2*p+1)),x) =
;; -2/(2*p+1)/b/x/sqrt(R^(2*p-1))
;; -4*p*c/(2*p+1)/b*integrate(1/sqrt(R^(2*p+1)),x)
(setq res1 (add (augmult (mul -2 exp1 eb-1 exp2
(power (polfoo c b 0 x)
(add 1//2 exp3))))
(augmult (mul -4 p c exp1 eb-1 (denn p c b 0 x)))))
(when (equal controlpow 1)
(setq result (add result (augmult (mul coef res1)))
count 2)
(go loop))
jump2 (setq count 3 m 2)
jump
;; Handle general case 1/x^m/R^(p+1/2)
;;
;; G&R 2.268, a = 0
;;
;; integrate(1/x^m/sqrt(R^(2*p+1)),x) =
;; -2/(2*p+2*m-1)/b/x^m/sqrt(R^(2*p+1))
;; -(4*p+2*m-2)*c/(2*p+2*m-1)/b*integrate(1/x^(m-1)/sqrt(R^(2*p+1)),x)
(setq partres
(add (augmult (mul -2 (inv (+ p p m m -1))
eb-1
(power x (mul -1 m))
(power (polfoo c b 0 x)
(add 1//2 exp3))))
(augmult (mul -2 c (+ p p m -1)
eb-1
(inv (+ p p m m -1))
res1))))
(incf m)
(when (> m controlpow)
(setq result (add result (augmult (mul coef partres))))
(go loop))
jump3
(setq res1 partres)
(go jump)
loop
(setq negpowlist (cdr negpowlist))
(when (null negpowlist) (return result))
(setq coef (cadar negpowlist)
controlpow (caar negpowlist))
(when (= count 3) (go jump3))
(when (= count 1) (go jump1))
(go jump2))))
;; The trivial case of d/x^m/(c*x^2+b*x+a)^(p+1/2), p > 0, and a=b=0.
(defun trivial1 (negpowlist p c x)
(cond ((null negpowlist) 0)
(t
;; d/x^m/c^(p+1/2)/x^(2*p+1) = d/c^(p+1/2)/x^(m+2*p+1)
;; The integral is obviously
;;
;; -d/c^(p+1/2)/x^(m+2*p)/(m+2*p)
(add (augmult (mul (power x
(add (* -2 p)
(mul -1 (caar negpowlist))))
(cadar negpowlist)
(power c (add (- p) -1//2))
(inv (add (* -2 p)
(mul -1 (caar negpowlist))))))
(trivial1 (cdr negpowlist) p c x)))))
;; Integrate pl(x)/(c*x^2+b*x+a)^(p+1/2) where pl(x) is a polynomial
;; and p > 0. The polynomial is given in POSZPOWLIST.
(defun nummdenn (poszpowlist p c b a x)
(declare (special *ec-1*))
(let ((exp1 (inv (+ p p -1))) ;; exp1 = 1/(2*p-1)
(exp2 (power (polfoo c b a x) (add 1//2 (- p)))) ;; exp2 = (a*x^2+b*x+c)^(p-1/2)
(exp3 (add (mul 4 a c) (mul -1 b b))) ;; exp3 = (4*a*c-b^2) (negative of the discriminant)
(exp4 (add x (mul b 1//2 *ec-1*))) ;; exp4 = x+b/2/c
(exp5 (power c -2)) ;; exp5 = 1/c^2
(exp6 (+ 2 (* -2 p))) ;; exp6 = -2*p+2
(exp7 (1+ (* -2 p)))) ;; exp7 = -2*p+1
(prog (result controlpow coef count res1 res2 m partres signdiscrim)
;; Let S=R^(p+1/2).
;;
;; We are trying to integrate pl(x)/S
;; = (p0 + p1*x + p2*x^3 + ...)/S
;;
;; So the general term is pm*x^m/S. This integral is given by
;; G&R 2.263, eq.1:
;;
;; integrate(x^m/sqrt(R^(2*p+1)),x) =
;;
;; x^(m-1)/(m-2*n)/sqrt(R^(2*p-1))
;; - (2*m-2*n-1)*b/2/(m-2*n)/c*integrate(x^(m-1)/sqrt(R^(2*p+1)),x)
;; - (m-1)*a/(m-2*n)/c*integrate(x^(m-2)/sqrt(R^(2*p+1)),x)
;;
;; Thus the integration of x^m/S involves x^(m-1)/S and x^(m-2)/S.
;;
;; I think what this loop does is integrate x^(m-1)/S and
;; x^(m-2)/S, and remember them so that we can integrate x^m/S
;; without having to do all the integrals again. Thus we
;; start with the constant term and work our way up to the
;; highest term.
;;
;; I think this would be much simpler if we used memoization
;; and start with the highest power. Then all the
;; intermediate forms will have been computed, and we can just
;; simply integrate all the lower terms by looking them up.
(setq result 0
controlpow (caar poszpowlist))
(setq coef (cadar poszpowlist)
signdiscrim (signdis1 c b a))
;; We're looking at coef*x^controlpow/R^(p+1/2) right now.
(when (zerop controlpow)
;; Actually it's coef/R^(p+1/2), so handle that now, go
;; to the next coefficient.
(setq result (augmult (mul coef (denn p c b a x)))
count 1)
(go loop))
jump1
;;
;; This handles the case coef*x/R^(p+1/2)
;;
;; res1 = -1/c/(2*p-1)*R^(p-1/2)
;; -b/2/c*integrate(R^(p+1/2),x)
;;
(setq res1
(add (augmult (mul -1 *ec-1* exp1 exp2))
(augmult (mul b -1//2 *ec-1* (denn p c b a x)))))
(when (= controlpow 1)
;; Integrate coef*x/R^(p+1/2).
;;
;; x/R^(p+1/2) is in res1.
(setq result (add result (augmult (mul coef res1)))
count 2)
(go loop))
jump2
;; This handles the case coef*x^2/R^(p+1/2)
(when (and (plusp p) (not (eq signdiscrim '$zero)))
;; p > 0, no repeated roots
(setq res2
(add (augmult (mul *ec-1* exp1 (inv exp3) exp2
(add (mul 2 a b)
(mul 2 b b x)
(mul -4 a c x))))
(augmult (mul *ec-1* (inv exp3) exp1
(add (mul 4 a c)
(mul 2 b b p)
(mul -3 b b))
(denn (+ p -1)
c b a x))))))
(when (and (zerop p) (not (eq signdiscrim '$zero)))
;; x^2/sqrt(R), no repeated roots.
;;
;; G&R 2.264, eq. 3
;;
;; integrate(x^2/sqrt(R),x) =
;; (x/2/c-3*b/4/c^2)*sqrt(R)
;; + (3*b^2/8/c^2-a/2/c)*integrate(1/sqrt(R),x)
;;
;; = (2*c*x-3*b)/4/c^2*sqrt(R)
;; + (3*b^2-4*a*c)/8/c^2*integrate(1/sqrt(R),x)
(setq res2
(add (augmult (mul '((rat simp) 1 4)
exp5
(add (mul 2 c x)
(mul -3 b))
(power (polfoo c b a x)
1//2)))
(augmult (mul '((rat simp) 1 8)
exp5
(add (mul 3 b b)
(mul -4 a c))
(den1 c b a x))))))
(when (and (zerop p) (eq signdiscrim '$zero))
;; x^2/sqrt(R), repeated roots
;;
;; With repeated roots, R is really of the form
;; c*x^2+b*x+b^2/4/c = c*(x+b/2/c)^2. So we have
;;
;; x^2/sqrt(c)/(x+b/2/c)
;;
;; And the integral of this is
;;
;; b^2*log(x+b/2/c)/4/c^(5/2) + x^2/2/sqrt(c) - b*x/2/c^(3/2).
;;
(setq res2
;; (add (augmult (mul* b b (list '(rat) 1 4)
;; (power c -3)
;; (list '(%log) exp4)))
;; (augmult (mul *ec-1* 1//2 (power exp4 2)))
;; (augmult (mul -1 b x exp5)))
(add (augmult (mul* b b '((rat) 1 4)
(power c (div -5 2))
`((%log) ,exp4)))
(augmult (mul (power c -1//2) 1//2 (power x 2)))
(augmult (mul -1//2 b x (power c (div -3 2)))))))
(when (and (= p 1) (eq signdiscrim '$zero))
;; x^2/sqrt(R^3), repeated roots
;;
;; As above, we have c*(x+b/2/c)^2, so
;;
;; x^2/sqrt(R^3) = x^2/sqrt(c^3)/(x+b/2/c)^3
;;
;; And the integral is
;;
;; log(x+b/2/c)/c^(3/2) + z*(3*z+4*x)/2/c^(3/2)/(z+x)^2
;;
;; where z = b/2/c.
(setq res2
;; (add (augmult (mul* *ec-1* (list '(%log) exp4)))
;; (augmult (mul b exp5 (power exp4 -1)))
;; (augmult (mul (list '(rat) -1 8)
;; (power c -3)
;; b b (power exp4 -2))))
(add (augmult (mul* (power c (div -3 2)) `((%log) ,exp4)))
(augmult (mul b x (power c (div -5 2)) (power exp4 -2)))
(augmult (mul (div 3 8)
(power c (div -7 2))
b b (power exp4 -2))))))
(when (and (eq signdiscrim '$zero) (> p 1))
;; x^2/R^(p+1/2), repeated roots, p > 1
;;
;; As above, we have R=c*(x+b/2/c)^2, so the integral is
;;
;; x^2/(x+b/2/c)^(2*p+1)/c^(p+1/2).
;;
;; Let d = b/2/c. Then write x^2 =
;; (x+d)^2-2*d*(x+d)+d^2. The integrand becomes
;;
;; 1/(x+d)^(2*p-1) - 2*d/(x+d)^(2*p) + d^2/(x+d)^(2*p+1)
;;
;; whose integral is
;;
;; 1/(2*p-2)/(x+d)^(2*p-2) - 2*d/(2*p-1)/(x+d)^(2*p-1)
;; + d^2/(2*p)/(x+d)^(2*p)
;;
;; And don't forget the factor c^(-p-1/2). Finally,
;;
;; 1/c^(p+1/2)/(2*p-2)/(x+d)^(2*p-2)
;; - b/c^(p+3/2)/(2*p-1)/(x+d)^(2*p-1)
;; + b^2/8/c^(p+5/2)/p/(x+d)^(2*p)
(setq res2
;; (add (augmult (mul *ec-1*
;; (power exp4 exp6)
;; (inv exp6)))
;; (augmult (mul -1 b exp5 (inv exp7)
;; (power exp4 exp7)))
;; (augmult (mul b b (list '(rat) -1 8)
;; (power c -3)
;; (inv p)
;; (power exp4
;; (* -2 p)))))
(add (augmult (mul (inv (power c (add p 1//2)))
(power exp4 exp6)
(inv exp6)))
(augmult (mul -1 b
(inv (power c (add p (div 3 2))))
(inv exp7)
(power exp4 exp7)))
(augmult (mul b b '((rat simp) -1 8)
(inv (power c (add p (div 5 2))))
(inv p)
(power exp4
(* -2 p)))))))
(when (= controlpow 2)
;; x^2/R^(p+1/2)
;;
;; We computed this result above, so just multiply by
;; the coefficient and add it to the result.
(setq result (add result (augmult (mul coef res2)))
count 3)
(go loop))
jump3
(setq count 4
m 3)
jump
;; coef*x^m/R^(p+1/2). m >= 3
(setq partres
(let ((denom (+ p p (- m))))
;; denom = 2*p-m
;; G&R 2.263, eq 1:
;;
;; integrate(x^m/sqrt(R^(2*p+1)),x) =
;; x^(m-1)/c/(m-2*p)/sqrt(R^(2*p-1))
;; - b*(2*m-2*p-1)/2/(m-2*p)*integrate(x^(m-1)/sqrt(R^(2*p+1)),x)
;; + (m-1)*a/(m-2*p)/c*integrate(x^(m-2)/sqrt(R^(2*p+1)),x)
;;
;; The two integrals here were computed above in res2
;; and res1, respectively.
(add (augmult (mul* (power x (1- m))
*ec-1* (div -1 denom)
(power (polfoo c b a x)
(add 1//2 (- p)))))
(augmult (mul b (+ p p 1 (* -2 m))
-1//2
*ec-1* (inv denom) res2))
(augmult (mul a (1- m) *ec-1* (inv denom) res1)))))
on
;; Move on to next higher power
(incf m)
(when (> m controlpow)
(setq result (add result (augmult (mul coef partres))))
(go loop))
jump4
(setq res1 res2
res2 partres)
(when (= m (+ p p))
(setq partres
(let ((expr (nummdenn (list (list (1- m) 1)) p c b a x)))
(add (mul x expr)
(mul -1 (distrint (cdr ($expand expr)) x)))))
(go on))
(go jump)
loop
;; Done with first term of polynomial. Exit if we're done.
(setq poszpowlist (cdr poszpowlist))
(when (null poszpowlist) (return result))
(setq coef (cadar poszpowlist) controlpow (caar poszpowlist))
(when (= count 4) (go jump4))
(when (= count 1) (go jump1))
(when (= count 2) (go jump2))
(go jump3))))
;; Integrate functions of the form coef*R^(pow-1/2)/x^m. NEGPOWLIST
;; contains the list of coef's and m's.
(defun denmnumn (negpowlist pow c b a x)
(let ((exp1 (inv x)) ;; exp1 = 1/x
(exp2 (+ pow pow -1))) ;; exp2 = 2*pow-1
(prog (result controlpow coef count res1 res2 m partres signa ea-1
(p (+ pow pow -1))) ;; p = 2*pow-1.
;; NOTE: p is not the same here as in other routines!
;; Why is there this special case for negpowlist?
;; CASE1 calls this in this way.
(when (eq (car negpowlist) 't)
(setq negpowlist (cdr negpowlist))
(go there))
(setq signa (checksigntm (power a 2)))
(when (eq signa '$zero)
(return (nonconstquadenum negpowlist p c b x)))
(setq ea-1 (inv a))
there
(setq result 0
controlpow (caar negpowlist)
coef (cadar negpowlist))
(when (zerop controlpow)
;; integrate(sqrt(R)).
;; I don't think we can normally get here.
(setq result (augmult (mul coef
(numn (add (mul p 1//2) 1//2)
c b a x)))
count 1)
(go loop))
jump1
;; Handle integrate(sqrt(R^(2*pow-1))/x),x
(setq res1 (den1numn pow c b a x))
(when (equal controlpow 1)
(setq result (add result (augmult (mul coef res1)))
count 2)
(go loop))
jump2
;; Handle integrate(sqrt(R^(2*pow-1))/x^2,x)
(unless (= p 1)
;; integrate(sqrt(R^(2*pow-1))/x^2,x)
;;
;; We can use integration by parts to get
;;
;; integrate(sqrt(R^(2*pow-1))/x^2,x) =
;; -R^(pow-1/2)/x
;; + (2*pow-1)*b/2*integrate(sqrt(R^(2*pow-3))/x,x)
;; + (2*pow-1)*c*integrate(sqrt(R^(2*pow-3)),x)
(setq res2
(add (augmult (mul -1 exp1
(power (polfoo c b a x)
(add pow -1//2))))
(augmult (mul b (div exp2 2)
(den1numn (1- pow) c b a x)))
(augmult (mul c exp2 (numn (- pow 2) c b a x))))))
(when (= p 1)
;; integrate(sqrt(R)/x^2,x)
;;
;; G&R 2.267, eq. 2
;;
;; integrate(sqrt(R)/x^2,x) =
;; -sqrt(R)/x
;; + b/2*integrate(1/x/sqrt(R),x)
;; + c*integrate(1/sqrt(R),x)
;;
(setq res2 (add (augmult (mul -1 (power (polfoo c b a x) 1//2)
exp1))
(augmult (mul b 1//2 (den1den1 c b a x)))
(augmult (mul c (den1 c b a x))))))
(when (equal controlpow 2)
(setq result (add result (augmult (mul coef res2)))
count 3)
(go loop))
jump3
(setq count 4
m 3)
jump
;; The general case sqrt(R^(2*p-1))/x^m
;;
;; G&R 2.265
;;
;; integrate(sqrt(R^(2*p-1))/x^m,x) =
;; -sqrt(R^(2*p+1))/(m-1)/a/x^(m-1)
;; + (2*p-2*m+3)*b/2/(m-1)/a*integrate(sqrt(R^(2*p-3))/x^(m-1),x)
;; + (2*p-m+2)*c/(m-1)/a*integrate(sqrt(R^(2*n-3))/x^(m-2),x)
;;
;; NOTE: The p here is 2*pow-1. And we're
;; integrating R^(pow-1/2).
(setq partres
(add (augmult (mul (div -1 (1- m))
ea-1
(power x (1+ (- m)))
(power (polfoo c b a x)
(add (div p 2) 1))))
(augmult (mul (inv (+ m m -2))
ea-1 b
(+ p 4 (* -2 m))
res2))
(augmult (mul c ea-1
(+ p 3 (- m))
(inv (1- m)) res1))))
(incf m)
(when (> m controlpow)
(setq result (add result (augmult (mul coef partres))))
(go loop))
jump4
(setq res1 res2
res2 partres)
(go jump)
loop
(setq negpowlist (cdr negpowlist))
(when (null negpowlist) (return result))
(setq coef (cadar negpowlist)
controlpow (caar negpowlist))
(when (= count 4)
(go jump4))
(when (= count 1)
(go jump1))
(when (= count 2)
(go jump2))
(go jump3))))
;; Like denmnumn, but a = 0.
(defun nonconstquadenum (negpowlist p c b x)
(prog (result coef m)
(cond ((equal p 1)
(return (case1 negpowlist c b x))))
(setq result 0)
loop
(setq m (caar negpowlist)
coef (cadar negpowlist))
(setq result (add result (augmult (mul coef (casegen m p c b x))))
negpowlist (cdr negpowlist))
(cond ((null negpowlist) (return result)))
(go loop)))
;; Integrate (c*x^2+b*x)^(p-1/2)/x^m
(defun casegen (m p c b x)
(let ((exp1 (power (polfoo c b 0 x) (div p 2))) ;; exp1 = R^(p/2)
(exp3 (power x (1+ (- m))))) ;; exp3 = 1/x^(m-1)
(cond ((= p 1)
;; sqrt(c*x^2+b*x)/x^m
(case1 (list (list m 1)) c b x))
((zerop m)
;; (c*x^2+b*x)^(p-1/2)
(case0 p c b x))
((= m (1+ p))
;; (c*x^2+b*x)^(p-1/2)/x^(p+1)
(add (augmult (mul -1 exp1 (inv (1- m)) exp3))
(augmult (mul b 1//2 (casegen (1- m) (- p 2) c b x)))
(augmult (mul c (casegen (- m 2) (- p 2) c b x)))))
((= m 1)
;; (c*x^2+b*x)^(p-1/2)/x
;;
(add (augmult (mul (inv p) exp1))
(augmult (mul b 1//2 (case0 (- p 2) c b x)))))
(t
;; (c*x^2+b*x)^(p-1/2)/x^m
(add (augmult (mul -1 exp1 (inv (- m (1+ p))) exp3))
(augmult (mul -1 p b 1//2 (inv (- m (1+ p)))
(casegen (1- m) (- p 2) c b x))))))))
;; Integrate things like sqrt(c*x^2+b*x))/x^m.
(defun case1 (negpowlist c b x)
(declare (special *ec-1*))
(let ((exp1 (power c -1//2)) ;; exp1 = 1/sqrt(c)
(eb-1 (inv b))) ;; eb-1 = 1/b
(prog ((result 0) (controlpow (caar negpowlist)) (coef (cadar negpowlist))
m1 count res1 res2 m signc signb partres res)
(setq m1 (- controlpow 2))
(when (zerop controlpow)
(setq result (augmult (mul coef (case0 1 c b x)))
count 1)
(go loop))
jump1
;; sqrt(R)/x
(when (= controlpow 1)
(setq result
(add result
(augmult (mul coef (den1numn 1 c b 0 x))))
count 2)
(go loop))
jump2
;; sqrt(R)/x^2
(when (= controlpow 2)
(setq result
(add result
(augmult (mul coef
(denmnumn '(t (2 1)) 1 c b 0 x))))
count 3)
(go loop))
jump3
(setq signb (checksigntm (power b 2)))
(when (eq signb '$zero)
(setq count 5)
(go jump5))
(setq count 4
m 0
signc (checksigntm *ec-1*))
(when (eq signc '$positive)
(setq res
(augmult (mul* 2 exp1
`((%log)
,(add (power (mul c x) 1//2)
(power (add b (mul c x)) 1//2))))))
(go jump4))
(setq res
(augmult (mul* 2 exp1
`((%atan)
,(power (mul c x
(inv (add b (mul -1 c x))))
1//2)))))
jump4
(incf m)
(setq res (add (augmult (mul -2 (power (polfoo c b 0 x) 1//2)
eb-1 (inv (+ m m -1))
(power x (- m))))
(augmult (mul (div -2 (+ m m -1))
c (1- m) eb-1 res))))
(when (= m m1)
(setq res2 res)
(go jump4))
(when (= (1- m) m1)
(if (null res2)
(return nil))
(setq res1 res
partres (add (augmult (mul -1
(power (polfoo c b 0 x) 1//2)
(r1m m)
(power x (- m))))
(augmult (mul b 1//2 (r1m m) res1))
(augmult (mul c (r1m m) res2))))
(go on))
(go jump4)
jump5
(setq m controlpow)
(when (zerop m)
(setq partres (mul* exp1 `((%log) ,x)))
(go on))
(setq partres (mul -1 exp1 (power x (- m)) (r1m m)))
on
(setq result (add result (augmult (mul coef partres))))
loop
(setq negpowlist (cdr negpowlist))
(when (null negpowlist) (return result))
(setq coef (cadar negpowlist)
controlpow (caar negpowlist))
(when (= count 5) (go jump5))
(when (= count 1) (go jump1))
(when (= count 2) (go jump2))
(when (= count 3) (go jump3))
(setq m1 (- controlpow 2))
(when (= m1 m)
(setq res2 res1))
(go jump4))))
(defun r1m (m)
(div 1 m))
;; Integrate (c*x^2+b*x)^(p-1/2)
(defun case0 (power c b x)
(let ((exp1 '((rat simp) 1 4))
(exp2 (add b (mul 2 c x)))
(exp3 (power c '((rat simp) -3 2)))
(exp4 (add (mul 2 c x) (mul -1 b))))
;; exp1 = 1/4
;; exp2 = b+2*c*x
;; exp3 = 1/c^(3/2)
;; exp4 = 2*c*x-b
(declare (special *ec-1*))
(prog (signc p result)
(setq signc (checksigntm *ec-1*)
p 1)
;; sqrt(c*x^2+b*x)
;;
;; This could be handled by numn. Why don't we?
(when (eq signc '$positive)
(setq result
(add (augmult (mul exp1 *ec-1* exp2
(power (polfoo c b 0 x) 1//2)))
(augmult (mul* b b '((rat) -1 8)
exp3
`((%log)
,(add exp2
(mul 2
(power c 1//2)
(power (polfoo c b 0 x) 1//2)))))))))
(when (eq signc '$negative)
(setq result
(add (augmult (mul exp1 *ec-1* exp4
(power (polfoo (mul -1 c) b 0 x) 1//2)))
(augmult (mul* b b '((rat) 1 8)
exp3
`((%asin) ,(mul (inv b) exp4)))))))
loop
(when (equal power p) (return result))
(incf p 2)
;; integrate(sqrt(R^(2*n+1)),x) =
;; (2*c*x+b)/4/(n+1)/c*sqrt(R^(2*n+1))
;; + (2*n+1)*del/8/(n+1)/c*integrate(sqrt(R^(2*n-1)),x)
(setq result (add (augmult (mul 1//2 *ec-1* (inv (1+ p)) exp2
(power (polfoo c b 0 x)
(div p 2))))
(augmult (mul p b b '((rat simp) -1 4)
*ec-1* (inv (1+ p)) result))))
(go loop))))
;; Integrate R^(p-1/2)/x, p >= 1.
(defun den1numn (p c b a x)
(cond ((= p 1)
;; integrate(sqrt(R)/x,x)
;;
;; G&R 2.267 eq. 1
;;
;; integrate(sqrt(R)/x,x) =
;; sqrt(R)
;; + a*integrate(1/x/sqrt(R),x)
;; + b/2*integrate(1/sqrt(R),x)
(add (power (polfoo c b a x) 1//2)
(augmult (mul a (den1den1 c b a x)))
(augmult (mul b 1//2 (den1 c b a x)))))
(t
;; General case
;;
;; G&R 2.265
;;
;; integrate(sqrt(R^(2*p-1)/x,x) =
;; R^(p-1/2)/(2*p-1)
;; + b/2*integrate(sqrt(R^(2*p-3)),x)
;; + a*integrate(sqrt(2^(2*p-3))/x,x)
(add (augmult (mul (power (polfoo c b a x)
(add p -1//2))
(inv (+ p p -1))))
(augmult (mul a (den1numn (+ p -1) c b a x)))
(augmult (mul b 1//2 (numn (+ p -2) c b a x)))))))
;; L is a list of expressions that INTIRA should be applied to.
;; Sum up the results of applying INTIRA to each.
(defun distrint (l x)
(addn (mapcar #'(lambda (e)
(let ((ie (intira e x)))
(if ie
ie
`((%integrate simp) ,e ,x))))
l)
t))
|