/usr/share/maxima/5.32.1/src/laplac.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1981 Massachusetts Institute of Technology ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module laplac)
(declare-top (special var $savefactors
checkfactors $ratfac $keepfloat *nounl* *nounsflag*
errcatch $errormsg))
;;; The properties NOUN and VERB give correct linear display
(defprop $laplace %laplace verb)
(defprop %laplace $laplace noun)
(defprop $ilt %ilt verb)
(defprop %ilt $ilt noun)
(defun exponentiate (pow)
;;;COMPUTES %E**Z WHERE Z IS AN ARBITRARY EXPRESSION TAKING SOME OF THE WORK AWAY FROM SIMPEXPT
(cond ((zerop1 pow) 1)
((equal pow 1) '$%e)
(t (power '$%e pow))))
(defun fixuprest (rest)
;;;REST IS A PRODUCT WITHOUT THE MTIMES.FIXUPREST PUTS BACK THE MTIMES
(cond ((null rest) 1)
((cdr rest) (cons '(mtimes) rest))
(t (car rest))))
(defmacro posint (x)
`(and (integerp ,x) (> ,x 0)))
(defmacro negint (x)
`(and (integerp ,x) (< ,x 0)))
(defun isquadraticp (e x)
(let ((b (sdiff e x)))
(cond ((zerop1 b) (list 0 0 e))
((freeof x b) (list 0 b (maxima-substitute 0 x e)))
((setq b (islinear b x))
(list (div* (car b) 2) (cdr b) (maxima-substitute 0 x e))))))
;;;INITIALIZES SOME GLOBAL VARIABLES THEN CALLS THE DISPATCHING FUNCTION
(defmfun $laplace (fun var parm)
(setq fun (mratcheck fun))
(cond ((or *nounsflag* (member '%laplace *nounl* :test #'eq))
(setq fun (remlaplace fun))))
(cond ((and (null (atom fun)) (eq (caar fun) 'mequal))
(list '(mequal)
(laplace (cadr fun) parm)
(laplace (caddr fun) parm)))
(t (laplace fun parm))))
;;;LAMBDA BINDS SOME SPECIAL VARIABLES TO NIL AND DISPATCHES
(defun remlaplace (e)
(if (atom e)
e
(cons (delete 'laplace (append (car e) nil) :count 1 :test #'eq)
(mapcar #'remlaplace (cdr e)))))
(defun laplace (fun parm &optional (dvar nil))
(let ()
;;; Handles easy cases and calls appropriate function on others.
(cond ((equal fun 0) 0)
((equal fun 1)
(cond ((zerop1 parm) (simplify (list '($delta) 0)))
(t (power parm -1))))
((alike1 fun var) (power parm -2))
((or (atom fun) (freeof var fun))
(cond ((zerop1 parm) (mul2 fun (simplify (list '($delta) 0))))
(t (mul2 fun (power parm -1)))))
(t
(let ((op (caar fun)))
(let ((result ; We store the result of laplace for further work.
(cond ((eq op 'mplus)
(laplus fun parm))
((eq op 'mtimes)
(laptimes (cdr fun) parm))
((eq op 'mexpt)
(lapexpt fun nil parm))
((eq op '%sin)
(lapsin fun nil nil parm))
((eq op '%cos)
(lapsin fun nil t parm))
((eq op '%sinh)
(lapsinh fun nil nil parm))
((eq op '%cosh)
(lapsinh fun nil t parm))
((eq op '%log)
(laplog fun parm))
((eq op '%derivative)
(lapdiff fun parm))
((eq op '%integrate)
(lapint fun parm dvar))
((eq op '%sum)
(list '(%sum)
(laplace (cadr fun) parm)
(caddr fun)
(cadddr fun)
(car (cddddr fun))))
((eq op '%erf)
(laperf fun parm))
((and (eq op '%ilt)(eq (cadddr fun) var))
(cond ((eq parm (caddr fun))(cadr fun))
(t (subst parm (caddr fun)(cadr fun)))))
((eq op '$delta)
(lapdelta fun nil parm))
((setq op ($get op '$laplace))
(mcall op fun var parm))
(t (lapdefint fun parm)))))
(when (isinop result '%integrate)
;; Laplace has not found a result but returns a definit
;; integral. This integral can contain internal integration
;; variables. Replace such a result with the noun form.
(setq result (list '(%laplace) fun var parm)))
;; Check if we have a result, when not call $specint.
(check-call-to-$specint result fun parm)))))))
;;; Check if laplace has found a result, when not try $specint.
(defun check-call-to-$specint (result fun parm)
(cond
((or (isinop result '%laplace)
(isinop result '%limit) ; Try $specint for incomplete results
(isinop result '%at)) ; which contain %limit or %at too.
;; laplace returns a noun form or a result which contains %limit or %at.
;; We pass the function to $specint to look for more results.
(let (res)
;; laplace assumes the parameter s to be positive and does a
;; declaration before an integration is done. Therefore we declare
;; the parameter of the Laplace transform to be positive before
;; we call $specint too.
(with-new-context (context)
(progn
(meval `(($assume) ,@(list (list '(mgreaterp) parm 0))))
(setq res ($specint (mul fun (power '$%e (mul -1 var parm))) var))))
(if (or (isinop res '%specint) ; Both symobls are possible, that is
(isinop res '$specint)) ; not consistent! Check it! 02/2009
;; $specint has not found a result.
result
;; $specint has found a result
res)))
(t result)))
(defun laplus (fun parm)
(simplus (cons '(mplus) (mapcar #'(lambda (e) (laplace e parm)) (cdr fun))) 1 t))
(defun laptimes (fun parm)
;;;EXPECTS A LIST (PERHAPS EMPTY) OF FUNCTIONS MULTIPLIED TOGETHER WITHOUT THE MTIMES
;;;SEES IF IT CAN APPLY THE FIRST AS A TRANSFORMATION ON THE REST OF THE FUNCTIONS
(cond ((null fun) (list '(mexpt) parm -1.))
((null (cdr fun)) (laplace (car fun) parm))
((freeof var (car fun))
(simptimes (list '(mtimes)
(car fun)
(laptimes (cdr fun) parm))
1
t))
((eq (car fun) var)
(simptimes (list '(mtimes) -1 (sdiff (laptimes (cdr fun) parm) parm))
1
t))
(t
(let ((op (caaar fun)))
(cond ((eq op 'mexpt)
(lapexpt (car fun) (cdr fun) parm))
((eq op 'mplus)
(laplus ($multthru (fixuprest (cdr fun)) (car fun)) parm))
((eq op '%sin)
(lapsin (car fun) (cdr fun) nil parm))
((eq op '%cos)
(lapsin (car fun) (cdr fun) t parm))
((eq op '%sinh)
(lapsinh (car fun) (cdr fun) nil parm))
((eq op '%cosh)
(lapsinh (car fun) (cdr fun) t parm))
((eq op '$delta)
(lapdelta (car fun) (cdr fun) parm))
(t
(lapshift (car fun) (cdr fun) parm)))))))
(defun lapexpt (fun rest parm)
;;;HANDLES %E**(A*T+B)*REST(T), %E**(A*T**2+B*T+C),
;;; 1/SQRT(A*T+B), OR T**K*REST(T)
(prog (ab base-of-fun power result)
(setq base-of-fun (cadr fun) power (caddr fun))
(cond
((and
(freeof var base-of-fun)
(setq
ab
(isquadraticp
(cond ((eq base-of-fun '$%e) power)
(t (simptimes (list '(mtimes)
power
(list '(%log)
base-of-fun))
1
nil)))
var)))
(cond ((equal (car ab) 0) (go %e-case-lin))
((null rest) (go %e-case-quad))
(t (go noluck))))
((and (eq base-of-fun var) (freeof var power))
(go var-case))
((and (alike1 '((rat) -1 2) power) (null rest)
(setq ab (islinear base-of-fun var)))
(setq result (div* (cdr ab) (car ab)))
(return (simptimes
(list '(mtimes)
(list '(mexpt)
(div* '$%pi
(list '(mtimes)
(car ab)
parm))
'((rat) 1 2))
(exponentiate (list '(mtimes) result parm))
(list '(mplus)
1
(list '(mtimes)
-1
(list '(%erf)
(list '(mexpt)
(list '(mtimes)
result
parm)
'((rat) 1 2)))
))) 1 nil)))
(t (go noluck)))
%e-case-lin
(setq result
(cond
(rest (sratsimp ($at (laptimes rest parm)
(list '(mequal)
parm
(list '(mplus)
parm
(afixsign (cadr ab)
nil))))))
(t (list '(mexpt)
(list '(mplus)
parm
(afixsign (cadr ab) nil))
-1))))
(return (simptimes (list '(mtimes)
(exponentiate (caddr ab))
result)
1
nil))
%e-case-quad
(setq result (afixsign (car ab) nil))
(setq
result
(list
'(mtimes)
(div* (list '(mexpt)
(div* '$%pi result)
'((rat) 1 2))
2)
(exponentiate (div* (list '(mexpt) parm 2)
(list '(mtimes) 4 result)))
(list '(mplus)
1
(list '(mtimes)
-1
(list '(%erf)
(div* parm
(list '(mtimes)
2
(list '(mexpt)
result
'((rat) 1 2)))))
))))
(and (null (equal (cadr ab) 0))
(setq result
(maxima-substitute (list '(mplus)
parm
(list '(mtimes)
-1
(cadr ab)))
parm
result)))
(return (simptimes (list '(mtimes)
(exponentiate (caddr ab))
result) 1 nil))
var-case
(cond ((or (null rest) (freeof var (fixuprest rest)))
(go var-easy-case)))
(cond ((posint power)
(return (afixsign (apply '$diff
(list (laptimes rest parm)
parm
power))
(even power))))
((negint power)
(return (mydefint (hackit power rest parm)
(createname parm (- power))
parm parm)))
(t (go noluck)))
var-easy-case
(setq power
(simplus (list '(mplus) 1 power) 1 t))
(or (eq (asksign power) '$positive) (go noluck))
(setq result (list (list '(%gamma) power)
(list '(mexpt)
parm
(afixsign power nil))))
(and rest (setq result (nconc result rest)))
(return (simptimes (cons '(mtimes) result) 1 nil))
noluck
(return
(cond
((and (posint power)
(member (caar base-of-fun)
'(mplus %sin %cos %sinh %cosh) :test #'eq))
(laptimes (cons base-of-fun
(cons (cond ((= power 2) base-of-fun)
(t (list '(mexpt)
base-of-fun
(1- power))))
rest)) parm))
(t (lapshift fun rest parm))))))
;;;INTEGRAL FROM A TO INFINITY OF F(X)
(defun mydefint (f x a parm)
(let ((tryint (and (not ($unknown f))
;; $defint should not throw a Maxima error,
;; therefore we set the flags errcatch and $errormsg.
;; errset catches the error and returns nil
(with-new-context (context)
(progn
(meval `(($assume) ,@(list (list '(mgreaterp) parm 0))))
(meval `(($assume) ,@(list (list '(mgreaterp) x 0))))
(meval `(($assume) ,@(list (list '(mgreaterp) a 0))))
(let ((errcatch t) ($errormsg nil))
(errset ($defint f x a '$inf))))))))
(if tryint
(car tryint)
(list '(%integrate) f x a '$inf))))
;;;CREATES UNIQUE NAMES FOR VARIABLE OF INTEGRATION
(defun createname (head tail)
(intern (format nil "~S~S" head tail)))
;;;REDUCES LAPLACE(F(T)/T**N,T,S) CASE TO LAPLACE(F(T)/T**(N-1),T,S) CASE
(defun hackit (exponent rest parm)
(cond ((equal exponent -1)
(let ((parm (createname parm 1)))
(laptimes rest parm)))
(t (mydefint (hackit (1+ exponent) rest parm)
(createname parm (- -1 exponent))
(createname parm (- exponent)) parm))))
(defun afixsign (funct signswitch)
;;;MULTIPLIES FUNCT BY -1 IF SIGNSWITCH IS NIL
(cond (signswitch funct)
(t (simptimes (list '(mtimes) -1 funct) 1 t))))
(defun lapshift (fun rest parm)
(cond ((atom fun) (merror "LAPSHIFT: expected a cons, not ~M" fun))
((or (member 'laplace (car fun) :test #'eq) (null rest))
(lapdefint (cond (rest (simptimes (cons '(mtimes)
(cons fun rest)) 1 t))
(t fun)) parm))
(t (laptimes (append rest
(ncons (cons (append (car fun)
'(laplace))
(cdr fun)))) parm))))
;;;COMPUTES %E**(W*B*%I)*F(S-W*A*%I) WHERE W=-1 IF SIGN IS T ELSE W=1
(defun mostpart (f parm sign a b)
(let ((substinfun ($at f
(list '(mequal)
parm
(list '(mplus) parm (afixsign (list '(mtimes) a '$%i) sign))))))
(if (zerop1 b)
substinfun
(list '(mtimes)
(exponentiate (afixsign (list '(mtimes) b '$%i) (null sign)))
substinfun))))
;;;IF WHICHSIGN IS NIL THEN SIN TRANSFORM ELSE COS TRANSFORM
(defun compose (fun parm whichsign a b)
(let ((result (list '((rat) 1 2)
(list '(mplus)
(mostpart fun parm t a b)
(afixsign (mostpart fun parm nil a b)
whichsign)))))
(sratsimp (simptimes (cons '(mtimes)
(if whichsign
result
(cons '$%i result)))
1 nil))))
;;;FUN IS OF THE FORM SIN(A*T+B)*REST(T) OR COS
(defun lapsin (fun rest trigswitch parm)
(let ((ab (islinear (cadr fun) var)))
(cond (ab
(cond (rest
(compose (laptimes rest parm)
parm
trigswitch
(car ab)
(cdr ab)))
(t
(simptimes
(list '(mtimes)
(cond ((zerop1 (cdr ab))
(if trigswitch parm (car ab)))
(t
(cond (trigswitch
(list '(mplus)
(list '(mtimes)
parm
(list '(%cos) (cdr ab)))
(list '(mtimes)
-1
(car ab)
(list '(%sin) (cdr ab)))))
(t
(list '(mplus)
(list '(mtimes)
parm
(list '(%sin) (cdr ab)))
(list '(mtimes)
(car ab)
(list '(%cos) (cdr ab))))))))
(list '(mexpt)
(list '(mplus)
(list '(mexpt) parm 2)
(list '(mexpt) (car ab) 2))
-1))
1 nil))))
(t
(lapshift fun rest parm)))))
;;;FUN IS OF THE FORM SINH(A*T+B)*REST(T) OR IS COSH
(defun lapsinh (fun rest switch parm)
(cond ((islinear (cadr fun) var)
(sratsimp
(laplus
(simplus
(list '(mplus)
(nconc (list '(mtimes)
(list '(mexpt)
'$%e
(cadr fun))
'((rat) 1 2))
rest)
(afixsign (nconc (list '(mtimes)
(list '(mexpt)
'$%e
(afixsign (cadr fun)
nil))
'((rat) 1 2))
rest)
switch))
1
nil) parm)))
(t (lapshift fun rest parm))))
;;;FUN IS OF THE FORM LOG(A*T)
(defun laplog (fun parm)
(let ((ab (islinear (cadr fun) var)))
(cond ((and ab (zerop1 (cdr ab)))
(simptimes (list '(mtimes)
(list '(mplus)
(subfunmake '$psi '(0) (ncons 1))
(list '(%log) (car ab))
(list '(mtimes) -1 (list '(%log) parm)))
(list '(mexpt) parm -1))
1 nil))
(t
(lapdefint fun parm)))))
(defun raiseup (fbase exponent)
(if (equal exponent 1)
fbase
(list '(mexpt) fbase exponent)))
;;TAKES TRANSFORM OF DELTA(A*T+B)*F(T)
(defun lapdelta (fun rest parm)
(let ((ab (islinear (cadr fun) var))
(sign nil)
(recipa nil))
(cond (ab
(setq recipa (power (car ab) -1) ab (div (cdr ab) (car ab)))
(setq sign (asksign ab) recipa (simplifya (list '(mabs) recipa) nil))
(simplifya (cond ((eq sign '$positive)
0)
((eq sign '$zero)
(list '(mtimes)
(maxima-substitute 0 var (fixuprest rest))
recipa))
(t
(list '(mtimes)
(maxima-substitute (neg ab) var (fixuprest rest))
(list '(mexpt) '$%e (cons '(mtimes) (cons parm (ncons ab))))
recipa)))
nil))
(t
(lapshift fun rest parm)))))
(defun laperf (fun parm)
(let ((ab (islinear (cadr fun) var)))
(cond ((and ab (equal (cdr ab) 0))
(simptimes (list '(mtimes)
(div* (exponentiate (div* (list '(mexpt) parm 2)
(list '(mtimes)
4
(list '(mexpt) (car ab) 2))))
parm)
(list '(mplus)
1
(list '(mtimes)
-1
(list '(%erf) (div* parm (list '(mtimes) 2 (car ab)))))))
1
nil))
(t
(lapdefint fun parm)))))
(defun lapdefint (fun parm)
(prog (tryint mult)
(and ($unknown fun)(go skip))
(setq mult (simptimes (list '(mtimes) (exponentiate
(list '(mtimes) -1 var parm)) fun) 1 nil))
(with-new-context (context)
(progn
(meval `(($assume) ,@(list (list '(mgreaterp) parm 0))))
(setq tryint
;; $defint should not throw a Maxima error.
;; therefore we set the flags errcatch and errormsg.
;; errset catches an error and returns nil.
(let ((errcatch t) ($errormsg nil))
(errset ($defint mult var 0 '$inf))))))
(and tryint (not (eq (and (listp (car tryint))
(caaar tryint))
'%integrate))
(return (car tryint)))
skip (return (list '(%laplace) fun var parm))))
(defun lapdiff (fun parm)
;;;FUN IS OF THE FORM DIFF(F(T),T,N) WHERE N IS A POSITIVE INTEGER
(prog (difflist degree frontend resultlist newdlist order arg2)
(setq newdlist (setq difflist (copy-tree (cddr fun))))
(setq arg2 (list '(mequal) var 0))
a (cond ((null difflist)
(return (cons '(%derivative)
(cons (list '(%laplace)
(cadr fun)
var
parm)
newdlist))))
((eq (car difflist) var)
(setq degree (cadr difflist)
difflist (cddr difflist))
(go out)))
(setq difflist (cdr (setq frontend (cdr difflist))))
(go a)
out (cond ((null (posint degree))
(return (list '(%laplace) fun var parm))))
(cond (frontend (rplacd frontend difflist))
(t (setq newdlist difflist)))
(cond (newdlist (setq fun (cons '(%derivative)
(cons (cadr fun)
newdlist))))
(t (setq fun (cadr fun))))
(setq order 0)
loop (decf degree)
(setq resultlist
(cons (list '(mtimes)
(raiseup parm degree)
($at ($diff fun var order) arg2))
resultlist))
(incf order)
(and (> degree 0) (go loop))
(setq resultlist (cond ((cdr resultlist)
(cons '(mplus)
resultlist))
(t (car resultlist))))
(return (simplus (list '(mplus)
(list '(mtimes)
(raiseup parm order)
(laplace fun parm))
(list '(mtimes)
-1
resultlist))
1 nil))))
;;;FUN IS OF THE FORM INTEGRATE(F(X)*G(T)*H(T-X),X,0,T)
(defun lapint (fun parm dvar)
(prog (newfun parm-list f var-list var-parm-list)
(and dvar (go convolution))
(setq dvar (cadr (setq newfun (cdr fun))))
(and (cddr newfun)
(zerop1 (caddr newfun))
(eq (cadddr newfun) var)
(go convolutiontest))
notcon
(setq newfun (cdr fun))
(cond ((cddr newfun)
(cond ((and (freeof var (caddr newfun))
(freeof var (cadddr newfun)))
(return (list '(%integrate)
(laplace (car newfun) parm dvar)
dvar
(caddr newfun)
(cadddr newfun))))
(t (go giveup))))
(t (return (list '(%integrate)
(laplace (car newfun) parm dvar)
dvar))))
giveup
(return (list '(%laplace) fun var parm))
convolutiontest
(setq newfun ($factor (car newfun)))
(cond ((eq (caar newfun) 'mtimes)
(setq f (cadr newfun) newfun (cddr newfun)))
(t (setq f newfun newfun nil)))
gothrulist
(cond ((freeof dvar f)
(setq parm-list (cons f parm-list)))
((freeof var f) (setq var-list (cons f var-list)))
((freeof dvar
(sratsimp (maxima-substitute (list '(mplus)
var
dvar)
var
f)))
(setq var-parm-list (cons f var-parm-list)))
(t (go notcon)))
(cond (newfun (setq f (car newfun) newfun (cdr newfun))
(go gothrulist)))
(and
parm-list
(return
(laplace
(cons
'(mtimes)
(nconc parm-list
(ncons (list '(%integrate)
(cons '(mtimes)
(append var-list
var-parm-list))
dvar
0
var)))) parm dvar)))
convolution
(return
(simptimes
(list
'(mtimes)
(laplace ($expand (maxima-substitute var
dvar
(fixuprest var-list))) parm dvar)
(laplace
($expand (maxima-substitute 0 dvar (fixuprest var-parm-list))) parm dvar))
1
t))))
(declare-top (special varlist ratform ils ilt))
(defmfun $ilt (exp ils ilt)
;;;EXP IS F(S)/G(S) WHERE F AND G ARE POLYNOMIALS IN S AND DEGR(F) < DEGR(G)
(let (varlist ($savefactors t) checkfactors $ratfac $keepfloat)
;;; MAKES ILS THE MAIN VARIABLE
(setq varlist (list ils))
(newvar exp)
(orderpointer varlist)
(setq var (caadr (ratrep* ils)))
(cond ((and (null (atom exp))
(eq (caar exp) 'mequal))
(list '(mequal)
($ilt (cadr exp) ils ilt)
($ilt (caddr exp) ils ilt)))
((zerop1 exp) 0)
((freeof ils exp)
(list '(%ilt) exp ils ilt))
(t (ilt0 exp)))))
(defun maxima-rationalp (le v)
(cond ((null le))
((and (null (atom (car le))) (null (freeof v (car le))))
nil)
(t (maxima-rationalp (cdr le) v))))
;;;THIS FUNCTION DOES THE PARTIAL FRACTION DECOMPOSITION
(defun ilt0 (exp)
(prog (wholepart frpart num denom y content real factor
apart bpart parnumer ratarg ratform)
(and (mplusp exp)
(return (simplus (cons '(mplus)
(mapcar #'(lambda (f) ($ilt f ils ilt)) (cdr exp))) 1 t)))
(and (null (atom exp))
(eq (caar exp) '%laplace)
(eq (cadddr exp) ils)
(return (cond ((eq (caddr exp) ilt) (cadr exp))
(t (subst ilt
(caddr exp)
(cadr exp))))))
(setq ratarg (ratrep* exp))
(or (maxima-rationalp varlist ils)
(return (list '(%ilt) exp ils ilt)))
(setq ratform (car ratarg))
(setq denom (ratdenominator (cdr ratarg)))
(setq frpart (pdivide (ratnumerator (cdr ratarg)) denom))
(setq wholepart (car frpart))
(setq frpart (ratqu (cadr frpart) denom))
(cond ((not (zerop1 (car wholepart)))
(return (list '(%ilt) exp ils ilt)))
((zerop1 (car frpart)) (return 0)))
(setq num (car frpart) denom (cdr frpart))
(setq y (oldcontent denom))
(setq content (car y))
(setq real (cadr y))
(setq factor (pfactor real))
loop (cond ((null (cddr factor))
(setq apart real
bpart 1
y '((0 . 1) 1 . 1))
(go skip)))
(setq apart (pexpt (car factor) (cadr factor)))
(setq bpart (car (ratqu real apart)))
(setq y (bprog apart bpart))
skip (setq frpart
(cdr (ratdivide (ratti (ratnumerator num)
(cdr y)
t)
(ratti (ratdenominator num)
(ratti content apart t)
t))))
(setq
parnumer
(cons (ilt1 (ratqu (ratnumerator frpart)
(ratti (ratdenominator frpart)
(ratti (ratdenominator num)
content
t)
t))
(car factor)
(cadr factor))
parnumer))
(setq factor (cddr factor))
(cond ((null factor)
(return (simplus (cons '(mplus) parnumer) 1 t))))
(setq num (cdr (ratdivide (ratti num (car y) t)
(ratti content bpart t))))
(setq real bpart)
(go loop)))
(declare-top (special q z))
(defun ilt1 (p q k)
(let (z)
(cond ((onep1 k) (ilt3 p ))
(t (setq z (bprog q (pderivative q var)))
(ilt2 p k)))))
;;;INVERTS P(S)/Q(S)**K WHERE Q(S) IS IRREDUCIBLE
;;;DOESN'T CALL ILT3 IF Q(S) IS LINEAR
(defun ilt2 (p k)
(prog (y a b)
(and (onep1 k) (return (ilt3 p)))
(decf k)
(setq a (ratti p (car z) t))
(setq b (ratti p (cdr z) t))
(setq y (pexpt q k))
(cond
((or (null (equal (pdegree q var) 1))
(> (pdegree (car p) var) 0))
(return
(simplus
(list
'(mplus)
(ilt2
(cdr (ratdivide (ratplus a (ratqu (ratderivative b var) k)) y))
k)
($multthru (simptimes (list '(mtimes)
ilt
(power k -1)
(ilt2 (cdr (ratdivide b y)) k))
1
t)))
1
t))))
(setq a (disrep (polcoef q 1))
b (disrep (polcoef q 0)))
(return
(simptimes (list '(mtimes)
(disrep p)
(raiseup ilt k)
(simpexpt (list '(mexpt)
'$%e
(list '(mtimes)
-1
ilt
b
(list '(mexpt) a -1)))
1
nil)
(list '(mexpt)
a
(- -1 k))
(list '(mexpt)
(factorial k)
-1))
1
nil))))
(declare-top(notype k))
;;(DEFUN COEF MACRO (POL) (SUBST (CADR POL) (QUOTE DEG)
;; '(DISREP (RATQU (POLCOEF (CAR P) DEG) (CDR P)))))
(defmacro coef (pol)
`(disrep (ratqu (polcoef (car p) ,pol) (cdr p))))
(defmfun lapsum (&rest args)
(cons '(mplus) args))
(defmfun lapprod (&rest args)
(cons '(mtimes) args))
(defmfun expo (&rest args)
(cons '(mexpt) args))
;;;INVERTS P(S)/Q(S) WHERE Q(S) IS IRREDUCIBLE
(defun ilt3 (p)
(prog (discrim sign a c d e b1 b0 r term1 term2 degr)
(setq e (disrep (polcoef q 0))
d (disrep (polcoef q 1))
degr (pdegree q var))
(and (equal degr 1)
(return
(simptimes (lapprod
(disrep p)
(expo d -1)
(expo '$%e (lapprod -1 ilt e (expo d -1))))
1
nil)))
(setq c (disrep (polcoef q 2)))
(and (equal degr 2) (go quadratic))
(and (equal degr 3) (zerop1 c) (zerop1 d)
(go cubic))
(return (list '(%ilt) (div* (disrep p)(disrep q)) ils ilt))
cubic (setq a (disrep (polcoef q 3))
r (simpnrt (div* e a) 3))
(setq d (div* (disrep p)(lapprod a (lapsum
(expo ils 3)(expo '%r 3)))))
(return (ilt0 (maxima-substitute r '%r ($partfrac d ils))))
quadratic (setq b0 (coef 0) b1 (coef 1))
(setq discrim
(simplus (lapsum
(lapprod 4 e c)
(lapprod -1 d d))
1
nil))
(setq sign (cond ((free discrim '$%i) (asksign discrim)) (t '$positive))
term1 '(%cos)
term2 '(%sin))
(setq degr (expo '$%e (lapprod ilt d (power c -1) '((rat) -1 2))))
(cond ((eq sign '$zero)
(return (simptimes (lapprod degr (lapsum (div* b1 c)
(lapprod
(div* (lapsum (lapprod 2 b0 c) (lapprod -1 b1 d))
(lapprod 2 c c)) ilt))) 1 nil))
) ((eq sign '$negative)
(setq term1 '(%cosh)
term2 '(%sinh)
discrim (simptimes (lapprod -1 discrim) 1 t))))
(setq discrim (simpnrt discrim 2))
(setq sign
(simptimes
(lapprod
(lapsum
(lapprod 2 b0 c)
(lapprod -1 b1 d))
(expo discrim -1))
1
nil))
(setq c (power c -1))
(setq discrim (simptimes (lapprod
discrim
ilt
'((rat) 1 2)
c)
1
t))
(return
(simptimes
(lapprod c degr
(lapsum
(lapprod b1 (list term1 discrim))
(lapprod sign (list term2 discrim))))
1
nil))))
(declare-top (unspecial ils ilt *nounl* q ratform var
varlist z))
|