/usr/share/maxima/5.32.1/src/lesfac.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1981 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module lesfac)
(load-macsyma-macros rzmac ratmac)
(defun newsym2 (p e &aux (g (gensym)))
(putprop g e 'disrep)
(valput g (1- (valget (car genvar))))
(setq genvar (cons g genvar))
(setq varlist (cons e varlist))
(putprop g p 'unhacked)
g)
(defun getunhack (gen) (or (get gen 'unhacked) (pget gen)))
(defmacro getdis (x) `(get ,x 'disrep))
(defmacro cons1 (x) `(cons ,x 1))
(defun frpoly? (r) (equal 1 (cdr r)))
(defmacro setcall (&rest l)
(setq l (cons 'setcall l))
(sublis (list (cons 'fncall (cdr l))
(cons 'a (caddr l))
(cons 'b (cadddr l)))
'(prog1 (car (setq a fncall)) (setq b (caddr a) a (cadr a)))))
(defun pquocof (p q)
(let ((qq (testdivide p q)))
(cond (qq (list q qq 1))
((list 1 p q)))))
(defun polyst (a)
(cond ((pcoefp a) (list a))
(t (cons (cons (car a) (cadr a)) (polyst (caddr a))))))
(defun cdinf (a b both)
(cond ((or (pcoefp a) (pcoefp b)) (list 1 a b))
(t (setq a (ncons (copy-tree a))
b (ncons (cond (both (copy-tree b))(t b))))
(list (cd1 a b both) (car a) (car b)))))
(defun cd1 (a b both)
(cond ((or (pcoefp (car a)) (pcoefp (car b))) 1)
((eq (caar a) (caar b))
(ptimes (pexpt (pget (caar a)) ;CHECK FOR ALG. TRUNC.
(prog1 (cond (both (+ (cadar a) (cadar b))) (t (cadar a)))
(rplaca a (caddar a))
(cond (both (rplaca b (caddar b)))
(t (setq b (cddar b))))))
(cd1 a b both)))
((pointergp (caar a) (caar b)) (cd1 (cddar a) b both))
(t (cd1 a (cddar b) both))))
(defun lmake (p l)
(cond ((pcoefp p) (cons p l))
((get (car p) 'unhacked)
(lmake (caddr p) (cons (cons (car p) (cadr p)) l)))
(t (setq l (lmake (caddr p) l))
(rplaca l (list (car p) (cadr p) (car l))))))
(defun lmake2 (p l)
(setq l (lmake p l))
(mapc #'(lambda (x) (rplaca x (getunhack (car x))))
(cdr l))
(cond ((equal (car l) 1) (cdr l))
(t (rplaca l (cons (car l) 1)))))
(defun pmake (l)
(cond ((null l) 1)
((= 0 (cdar l)) (pmake (cdr l)))
((numberp (caar l)) ;CLAUSE SHOULD BE ELIMINATED ASAP
(ptimes (cexpt (caar l) (cdar l)) (pmake (cdr l))))
(t (ptimes (list (caar l) (cdar l) 1) (pmake (cdr l))))))
(defun facmgcd (pl) ;GCD OF POLY LIST FOR EZGCD WITH RATFAC
(do ((l (cdr pl) (cdr l))
(ans nil (cons (caddr gcd) ans))
(gcd (car pl) (car gcd)))
((null l) (cons gcd (nreverse ans)))
(setq gcd (fpgcdco gcd (car l)))
(cond ((equal (car gcd) 1) (return (cons 1 pl)))
((null ans) (setq ans (list (cadr gcd))))
((not (equal (cadr gcd) 1))
(do ((l2 ans (cdr l2))) ((null l2))
(rplaca l2 (ptimes (cadr gcd) (car l2))))))))
(defun fpgcdco (p q)
(let ($ratfac gcdl) ;FACTORED PGCDCOFACTS
(cond ((or (pcoefp p) (pcoefp q)) (pgcdcofacts p q))
(t (list (ptimeschk
(setcall pgcdcofacts p q)
(car (setq p (lmake p nil)
q (lmake q nil)
gcdl (mapcar 'pmake (lgcd1 (cdr p) (cdr q)) ))))
(ptimeschk (car p) (cadr gcdl))
(ptimeschk (car q) (caddr gcdl)))))))
;; NOTE: ITEMS ON VARLIST ARE POS. NORMAL
;; INTEGER COEF GCD=1 AND LEADCOEF. IS POS.
(defun lgcd1 (a b)
(prog (ptlist g bj c t1 d1 d2)
(setq ptlist (mapcar #'(lambda (ig) (declare (ignore ig)) b) a))
(do ((a a (cdr a))
(ptlist ptlist (cdr ptlist)))
((null a))
(do ((ai (getunhack (caar a)))
(b (car ptlist) (cdr b)))
((null b))
(and (zerop (cdar b)) (go nextb))
(setq d1 1 d2 1)
(setq bj (getunhack (caar b)))
(setq c (cond ((pirredp (caar a))
(cond ((pirredp (caar b)) 1)
(t (setcall pquocof bj ai))))
((pirredp (caar b)) (setcall pquocof ai bj))
(t (setcall pgcdcofacts ai bj))))
(cond ((equal c 1) (go nextb))
((equal ai 1) (go bloop)))
aloop
(cond ((setq t1 (testdivide ai c))
(setq ai t1 d1 (1+ d1))
(go aloop)))
bloop
(and (= d1 1)
(not (equal bj 1))
(do ((t1
(testdivide bj c)
(testdivide bj c)))
((null t1))
(setq bj t1 d2 (1+ d2))))
(setq g (cons (cons (makprodg c t)
(min (setq d1 (* d1 (cdar a)))
(setq d2 (* d2 (cdar b)))))
g))
(cond ((> d1 (cdar g))
(rplacd (last a)
(ncons (cons (caar g) (- d1 (cdar g)))))
(rplacd (last ptlist) (ncons (cdr b)))))
(cond ((> d2 (cdar g))
(rplacd (last b)
(ncons (cons (caar g) (- d2 (cdar g)))))))
(rplaca (car a) (makprodg ai t))
(rplaca (car b) (makprodg bj t))
(and (equal bj 1) (rplacd (car b) 0))
(and (equal ai 1) (rplacd (car a) 0) (return nil))
nextb))
(return (list g a b))))
(defun makprodg (p sw)
(cond ((pcoefp p) p)
(t (car (makprod p sw)))))
(defun dopgcdcofacts (x y)
(let (($gcd
$gcd)( $ratfac nil)) (or (member $gcd *gcdl* :test #'eq) (setq $gcd '$ez))
(pgcdcofacts x y)))
(defun facrplus (x y)
(let ((a (car x))
(b (cdr x))
(c (car y))
(d (cdr y)))
(setq x (setcall dopgcdcofacts a c)
y (setcall fpgcdco b d))
(setq a (makprod
(pplus (pflatten (ptimeschk a d))
(pflatten (ptimeschk b c))) nil))
(setq b (ptimeschk b d))
(cond ($algebraic (setq y (ptimeschk y b))
(setcall fpgcdco y a) ;for unexpected gcd
(cons (ptimes x a) y))
(t (setq c (setcall cdinf y b nil))
(setcall fpgcdco y a)
(cons (ptimes x a) (ptimeschk y (ptimeschk c b)))))))
(defun mfacpplus (l)
(let (($gcd (or $gcd '$ez))
($ratfac nil)
(g nil))
(setq g (oldcontent2 (sort (copy-list l) 'contodr) 0))
(cond ((pzerop g) g)
((do ((a (pflatten (pquotient (car l) g))
(pplus a (pflatten (pquotient (car ll) g))))
(ll (cdr l) (cdr ll)))
((null ll) (ptimes g (makprod a nil))))))))
(defun facrtimes (x y gcdsw)
(cond ((not gcdsw)
(cons (ptimes (car x) (car y)) (ptimeschk (cdr x) (cdr y))))
(t (let ((g (cdinf (car x) (car y) t))
(h (cdinf (cdr x) (cdr y) t)))
(setq x (fpgcdco (cadr g) (caddr h)))
(setq y (fpgcdco (caddr g) (cadr h)))
(cons (ptimes (car g) (ptimes (cadr x) (cadr y)))
(ptimeschk (car h) (ptimeschk (caddr x) (caddr y))))))))
(defun pfacprod (poly) ;FOR RAT3D
(cond ((pcoefp poly) (cfactor poly))
(t (nconc (pfacprod (caddr poly))
(list (pget (car poly)) (cadr poly))))))
(defun fpcontent (poly)
(let (($ratfac
nil)) ;algebraic uses
(setq poly (oldcontent poly)) ;rattimes?
(let ((a (lowdeg (cdadr poly)))) ;main var. content
(cond ((> a 0) (setq a (list (caadr poly) a 1))
(setq poly
(list (ptimes (car poly) a)
(pquotient (cadr poly) a))))))
(if (pminusp (cadr poly))
(list (pminus (car poly)) (pminus (cadr poly)))
poly)))
;; LOWDEG written to compute the lowest degree of a polynomial. - RZ
(defmfun lowdeg (p)
(do ((l p (cddr l)))
((null (cddr l)) (car l))))
(defun makprod (poly contswitch)
(cond ((pureprod poly) poly)
((null (cdddr poly))
(ptimes (list (car poly) (cadr poly) 1)
(makprod (caddr poly) contswitch)))
(contswitch (makprod1 poly))
(t (setq poly (fpcontent poly))
(ptimes (makprod (car poly) contswitch) (makprod1 (cadr poly))))))
(defun makprod1 (poly)
(do ((v varlist (cdr v))
(g genvar (cdr g))
(p (pdis poly)))
((null v) (maksymp poly))
(and (alike1 p (car v)) (return (pget (car g))))))
(defun maksym (p)
(newsym2 p (pdis p)))
(defun maksymp (p)
(cond ((atom p) p)
(t (pget (maksym p)))))
(defun pflatten (h)
(prog (m)
(setq m (listovars h))
checkmore
(cond ((null m) (return h))
((not (let ((p (getunhack (car m))))
(or (null p) (eq (car m) (car p)))))
(go redo))
(t (setq m (cdr m)) (go checkmore)))
redo (return (let ($ratfac) (pflat1 h)))))
(defun pflat1 (p)
(cond ((pcoefp p) p)
((null (cdddr p))
(ptimes (pexpt (getunhack (car p)) (cadr p)) (pflat1 (caddr p))))
(t (do ((val (getunhack (car p)))
(ld (cadr p) (car a))
(a (cdddr p) (cddr a))
(ans (pflat1 (caddr p))))
((null a) (ptimes ans (pexpt val ld)))
(setq ans
(pplus (ptimes ans
(pexpt val (- ld (car a))))
(pflat1 (cadr a))))))))
(defun pirredp (x)
(and (setq x (getdis x))
(or (atom x) (member 'irreducible (cdar x) :test #'eq))))
(defun knownfactors (d)
(prog (h)
(cond ((pcoefp d) (return d)))
(setq h (getdis (car d)))
(return (cond ((or (atom h) (not (eq (caar h) 'mtimes)))
(ptimes (knownfactors (caddr d))
(list (car d) (cadr d) 1)))
(t (setq h (getunhack (car d)))
(ptimes (knownfactors (caddr d))
(pexpt (knownfactors h) (cadr d))))))))
|