/usr/share/maxima/5.32.1/src/limit.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module limit)
;;; **************************************************************
;;; ** **
;;; ** LIMIT PACKAGE **
;;; ** **
;;; **************************************************************
;;; I believe a large portion of this file is described in Paul
;;; Wang's thesis, "Evaluation of Definite Integrals by Symbolic
;;; Integration," MIT/LCS/TR-92, Oct. 1971. This can be found at
;;; http://www.lcs.mit.edu/publications/specpub.php?id=660, but some
;;; important pages are black.
;;; TOP LEVEL FUNCTION(S): $LIMIT $LDEFINT
(declare-top (special errorsw origval $lhospitallim low*
*indicator half%pi nn* dn* numer denom exp var val varlist
*zexptsimp? $tlimswitch $logarc taylored logcombed
$exponentialize lhp? lhcount $ratfac genvar
loginprod? $limsubst $logabs a context limit-assumptions
limit-top limitp integer-info old-integer-info $keepfloat $logexpand))
(defconstant +behavior-count+ 4)
(defvar *behavior-count-now*)
(load-macsyma-macros rzmac)
(defmvar infinities '($inf $minf $infinity)
"The types of infinities recognized by Maxima.
INFINITY is complex infinity")
(defmvar real-infinities '($inf $minf)
"The real infinities, `inf' is positive infinity, `minf' negative infinity")
(defmvar infinitesimals '($zeroa $zerob)
"The infinitesimals recognized by Maxima. ZEROA zero from above,
ZEROB zero from below")
(defmvar simplimplus-problems ()
"A list of all problems in the stack of recursive calls to simplimplus.")
(defmvar limit-answers ()
"An association list for storing limit answers.")
(defmvar limit-using-taylor ()
"Is the current limit computation using taylor expansion?")
(defmvar preserve-direction () "Makes `limit' return Direction info.")
(unless (boundp 'integer-info) (setq integer-info ()))
;; This should be made to give more information about the error.
;;(DEFun DISCONT ()
;; (cond (errorsw (throw 'errorsw t))
;; (t (merror "Discontinuity Encountered"))))
;;(DEFUN PUTLIMVAL (E V)
;; (let ((exp (cons '(%limit) (list e var val))))
;; (cond ((not (assolike exp limit-answers))
;; (setq limit-answers (cons (cons exp v) limit-answers))
;; v)
;; (t ()))))
(defun putlimval (e v &aux exp)
(setq exp `((%limit) ,e ,var ,val))
(unless (assolike exp limit-answers)
(push (cons exp v) limit-answers))
v)
(defun getlimval (e)
(let ((exp (cons '(%limit) (list e var val))))
(assolike exp limit-answers)))
(defmacro limit-catch (exp var val)
`(let ((errorsw t))
(let ((ans (catch 'errorsw
(catch 'limit (limit ,exp ,var ,val 'think)))))
(if (or (null ans) (eq ans t))
()
ans))))
(defmfun $limit (&rest args)
(let ((limit-assumptions ())
(old-integer-info ())
($keepfloat t)
(limit-top t))
(declare (special limit-assumptions old-integer-info
$keepfloat limit-top))
(unless limitp
(setq old-integer-info integer-info)
(setq integer-info ()))
(unwind-protect
(let ((exp1 ()) (lhcount $lhospitallim) (*behavior-count-now* 0)
(exp ()) (var ()) (val ()) (dr ())
(*indicator ()) (taylored ()) (origval ())
(logcombed ()) (lhp? ())
(varlist ()) (ans ()) (genvar ()) (loginprod? ())
(limit-answers ()) (limitp t) (simplimplus-problems ())
(lenargs (length args))
(genfoo ()))
(declare (special lhcount *behavior-count-now* exp var val *indicator
taylored origval logcombed lhp?
varlist genvar loginprod? limitp))
(prog ()
(unless (or (= lenargs 3) (= lenargs 4) (= lenargs 1))
(wna-err '$limit))
;; Is it a LIST of Things?
(when (setq ans (apply #'limit-list args))
(return ans))
(setq exp1 (specrepcheck (first args)))
(when (and (atom exp1)
(member exp1 '(nil t)))
;; The expression is 'T or 'NIL. Return immediately.
(return exp1))
(cond ((= lenargs 1)
(setq var (setq genfoo (gensym)) ; Use a gensym. Not foo.
val 0))
(t
(setq var (second args))
(when ($constantp var)
(merror (intl:gettext "limit: second argument must be a variable, not a constant; found: ~M") var))
(unless (or ($subvarp var) (atom var))
(merror (intl:gettext "limit: variable must be a symbol or subscripted symbol; found: ~M") var))
(setq val (infsimp (third args)))
;; infsimp converts -inf to minf. it also converts -infinity to
;; infinity, although perhaps this should generate the error below.
(when (and (not (atom val))
(some #'(lambda (x) (not (freeof x val)))
infinities))
(merror (intl:gettext "limit: third argument must be a finite value or one of: inf, minf, infinity; found: ~M") val))
(when (eq val '$zeroa) (setq dr '$plus))
(when (eq val '$zerob) (setq dr '$minus))))
(cond ((= lenargs 4)
(unless (member (fourth args) '($plus $minus) :test #'eq)
(merror (intl:gettext "limit: direction must be either 'plus' or 'minus'; found: ~M") (fourth args)))
(setq dr (fourth args))))
(if (and (atom var) (not (among var val)))
(setq exp exp1)
(let ((realvar var)) ;; Var is funny so make it a gensym.
(setq var (gensym))
(setq exp (maxima-substitute var realvar exp1))
(putprop var realvar 'limitsub)))
(unless (or $limsubst (eq var genfoo))
(when (limunknown exp)
(return `((%limit) ,@(cons exp1 (cdr args))))))
(setq varlist (ncons var) genvar nil origval val)
;; Transform limits to minf to limits to inf by
;; replacing var with -var everywhere.
(when (eq val '$minf)
(setq val '$inf
origval '$inf
exp (subin (m* -1 var) exp)))
;; Hide noun form of %derivative, %integrate.
(setq exp (hide exp))
;; Transform the limit value.
(unless (infinityp val)
(unless (zerop2 val)
(let ((*atp* t) (realvar var))
;; *atp* prevents substitution from applying to vars
;; bound by %sum, %product, %integrate, %limit
(setq var (gensym))
(putprop var t 'internal)
(setq exp (maxima-substitute (m+ val var) realvar exp))))
(setq val (cond ((eq dr '$plus) '$zeroa)
((eq dr '$minus) '$zerob)
(t 0)))
(setq origval 0))
;; Make assumptions about limit var being very small or very large.
;; Assumptions are forgotten upon exit.
(unless (= lenargs 1)
(limit-context var val dr))
;; Resimplify in light of new assumptions.
(setq exp (resimplify
(factosimp
(tansc
(lfibtophi
(limitsimp ($expand exp 1 0) var))))))
(if (not (or (real-epsilonp val) ;; if direction of limit not specified
(infinityp val)))
(setq ans (both-side exp var val)) ;; compute from both sides
(let ((d (catch 'mabs (mabs-subst exp var val))))
(cond ;; otherwise try to remove absolute value
((eq d '$und) (return '$und))
((eq d 'retn) )
(t (setq exp d)))
(setq ans (limit-catch exp var val))));; and find limit from one side
;; try gruntz
(if (and (not ans)
(or (real-epsilonp val) ;; if direction of limit specified
(real-infinityp val)))
(setq ans (catch 'taylor-catch
(let ((silent-taylor-flag t))
(declare (special silent-taylor-flag))
(gruntz1 exp var val)))))
;; try taylor series expansion if simple limit didn't work
(if (and (null ans) ;; if no limit found and
$tlimswitch ;; user says ok to use taylor and
(not limit-using-taylor));; not already doing taylor
(let ((limit-using-taylor t))
(declare (special limit-using-taylor))
(setq ans (limit-catch exp var val))))
(if ans
(return (clean-limit-exp ans))
(return (cons '(%limit) args))))) ;; failure: return nounform
(restore-assumptions))))
(defun clean-limit-exp (exp)
(setq exp (restorelim exp))
(if preserve-direction exp (ridofab exp)))
(defmfun limit-list (exp1 &rest rest)
(if (mbagp exp1)
`(,(car exp1) ,@(mapcar #'(lambda (x) (apply #'$limit `(,x ,@rest))) (cdr exp1)))
()))
(defun limit-context (var val direction) ;Only works on entry!
(cond (limit-top
(assume '((mgreaterp) lim-epsilon 0))
(assume '((mlessp) lim-epsilon 1e-8))
(assume '((mgreaterp) prin-inf 1e+8))
(setq limit-assumptions (make-limit-assumptions var val direction))
(setq limit-top ()))
(t ()))
limit-assumptions)
(defun make-limit-assumptions (var val direction)
(let ((new-assumptions))
(cond ((or (null var) (null val))
())
((and (not (infinityp val)) (null direction))
())
((eq val '$inf)
`(,(assume `((mgreaterp) ,var 1e+8)) ,@new-assumptions))
((eq val '$minf)
`(,(assume `((mgreaterp) -1e+8 ,var)) ,@new-assumptions))
((eq direction '$plus)
`(,(assume `((mgreaterp) 1e-8 ,var))
,(assume `((mgreaterp) ,var 0)) ,@new-assumptions)) ;All limits around 0
((eq direction '$minus)
`(,(assume `((mgreaterp) ,var -1e-8))
,(assume `((mgreaterp) 0 ,var)) ,@new-assumptions))
(t
()))))
(defun restore-assumptions ()
;;;Hackery until assume and forget take reliable args. Nov. 9 1979.
;;;JIM.
(do ((assumption-list limit-assumptions (cdr assumption-list)))
((null assumption-list) t)
(forget (car assumption-list)))
(forget '((mgreaterp) lim-epsilon 0))
(forget '((mlessp) lim-epsilon 1.0e-8))
(forget '((mgreaterp) prin-inf 1.0e+8))
(cond ((and (not (null integer-info))
(not limitp))
(do ((list integer-info (cdr list)))
((null list) t)
(i-$remove `(,(cadar list) ,(caddar list))))
(setq integer-info old-integer-info))))
;; The optional arg allows the caller to decide on the value of
;; preserve-direction. Default is T, like it used to be.
(defun both-side (exp var val &optional (preserve t))
(let* ((preserve-direction preserve)
(la ($limit exp var val '$plus)) lb)
(when (eq la '$und) (return-from both-side '$und))
(setf lb ($limit exp var val '$minus))
(cond ((alike1 (ridofab la) (ridofab lb)) (ridofab la))
((or (not (free la '%limit))
(not (free lb '%limit))) ())
;; inf + minf => infinity
((and (infinityp la) (infinityp lb)) '$infinity)
(t '$und))))
;; Warning: (CATCH NIL ...) will catch all throws.
;; NIL should not be used as a tag name.
(defun limunknown (f)
(catch 'limunknown (limunknown1 (specrepcheck f))))
(defun limunknown1 (f)
(cond ((mapatom f) nil)
((or (not (safe-get (caar f) 'operators))
(member (caar f) '(%sum %product mncexpt) :test #'eq)
;;Special function code here i.e. for li[2](x).
(and (eq (caar f) 'mqapply)
(not (get (subfunname f) 'specsimp))))
(if (not (free f var)) (throw 'limunknown t)))
(t (mapc #'limunknown1 (cdr f)) nil)))
(defun factosimp(e)
(if (involve e '(%gamma)) (setq e ($makefact e)))
(cond ((involve e '(mfactorial))
(setq e (simplify ($minfactorial e))))
(t e)))
;; returns 1, 0, -1
;; or nil if sign unknown or complex
(defun getsignl (z)
(let ((z (ridofab z)))
(if (not (free z var)) (setq z ($limit z var val)))
(let ((sign ($csign z)))
(cond ((eq sign '$pos) 1)
((eq sign '$neg) -1)
((eq sign '$zero) 0)))))
(defun restorelim (exp)
(cond ((null exp) nil)
((atom exp) (or (and (symbolp exp) (get exp 'limitsub)) exp))
((and (consp (car exp)) (eq (caar exp) 'mrat))
(cons (car exp)
(cons (restorelim (cadr exp))
(restorelim (cddr exp)))))
(t (cons (car exp) (mapcar #'restorelim (cdr exp))))))
(defun mabs-subst (exp var val) ; RETURNS EXP WITH MABS REMOVED, OR THROWS.
(let ((d (involve exp '(mabs)))
arglim)
(cond ((null d) exp)
(t (cond
((not (and (equal ($imagpart (let ((v (limit-catch d var val)))
;; The above call might
;; throw 'limit, so we
;; need to catch it. If
;; we can't find the
;; limit without ABS, we
;; assume the limit is
;; undefined. Is this
;; right? Anyway, this
;; fixes Bug 1548643.
(unless v
(throw 'mabs '$und))
(setq arglim v)))
0)
(equal ($imagpart var) 0)))
(cond ((eq arglim '$infinity)
;; Check for $infinity as limit of argument.
'$inf)
(t
(throw 'mabs 'retn))))
(t (do ((ans d (involve exp '(mabs))) (a () ()))
((null ans) exp)
(setq a (mabs-subst ans var val))
(setq d (limit a var val t))
(cond
((and a d)
(cond ((zerop1 d)
(setq d (behavior a var val))
(if (zerop1 d) (throw 'mabs 'retn))))
(if (eq d '$und)
(throw 'mabs d))
(cond ((or (eq d '$zeroa) (eq d '$inf)
(eq d '$ind)
;; fails on limit(abs(sin(x))/sin(x), x, inf)
(eq ($sign d) '$pos))
(setq exp (maxima-substitute a `((mabs) ,ans) exp)))
((or (eq d '$zerob) (eq d '$minf)
(eq ($sign d) '$neg))
(setq exp (maxima-substitute (m* -1 a) `((mabs) ,ans) exp)))
(t (throw 'mabs 'retn))))
(t (throw 'mabs 'retn))))))))))
;; Called on an expression that might contain $INF, $MINF, $ZEROA, $ZEROB. Tries
;; to simplify it to sort out things like inf^inf or inf+1.
(defun simpinf (exp)
(simpinf-ic exp (count-general-inf exp)))
(defun count-general-inf (expr)
(count-atoms-matching
(lambda (x) (or (infinityp x) (real-epsilonp x))) expr))
(defun count-atoms-matching (predicate expr)
"Count the number of atoms in the Maxima expression EXPR matching PREDICATE,
ignoring dummy variables and array indices."
(cond
((atom expr) (if (funcall predicate expr) 1 0))
;; Don't count atoms that occur as a limit of %integrate, %sum, %product,
;; %limit etc.
((member (caar expr) dummy-variable-operators)
(count-atoms-matching predicate (cadr expr)))
;; Ignore array indices
((member 'array (car expr)) 0)
(t (loop
for arg in (cdr expr)
summing (count-atoms-matching predicate arg)))))
(defun simpinf-ic (exp &optional infinity-count)
(case infinity-count
;; A very slow identity transformation...
(0 exp)
;; If there's only one infinity, we replace it by a variable and take the
;; limit as that variable goes to infinity. Use $gensym in case we can't
;; compute the answer and the limit leaks out.
(1 (let ((limit (or (inf-typep exp) (epsilon-typep exp)))
(var ($gensym)))
($limit (subst var limit exp) var limit)))
;; If more than one infinity, we have to be a bit more careful.
(otherwise
(let* ((arguments (mapcar 'simpinf (cdr exp)))
(new-expression (cons (list (caar exp)) arguments))
infinities-left)
(cond
;; If any of the arguments are undefined, we are too.
((among '$und arguments) '$und)
;; If we ended up with something indeterminate, we punt and just return
;; the input.
((amongl '(%limit $ind) arguments) exp)
;; Exponentiation & multiplication
((mexptp exp) (simpinf-expt (first arguments) (second arguments)))
((mtimesp exp) (simpinf-times arguments))
;; Down to at most one infinity? We do this after exponentiation to
;; avoid zeroa^zeroa => 0^0, which will raise an error rather than just
;; returning und. We do it after multiplication to avoid zeroa * inf =>
;; 0 * inf => 0.
((<= (setf infinities-left (count-general-inf new-expression)) 1)
(simpinf-ic new-expression infinities-left))
;; Addition
((mplusp exp) (simpinf-plus arguments))
;; Give up!
(t new-expression))))))
(defun simpinf-times (arguments)
(declare (special exp var val))
;; When we have a product, we need to spot that zeroa * zerob = zerob, zeroa *
;; inf = und etc. Note that (SIMPINF '$ZEROA) => 0, so a nonzero atom is not
;; an infinitesimal. Moreover, we can assume that each of ARGUMENTS is either
;; a number, computed successfully by the recursive SIMPINF call, or maybe a
;; %LIMIT noun-form (in which case, we aren't going to be able to tell the
;; answer).
(cond
((member 0 arguments)
(cond
((find-if #'infinityp arguments) '$und)
((every #'atom arguments) 0)
(t exp)))
((member '$infinity arguments)
(if (every #'atom arguments)
'$infinity
exp))
(t (simplimit (cons '(mtimes) arguments) var val))))
(defun simpinf-expt (base exponent)
;; In the comments below, zero* represents one of 0, zeroa, zerob.
;;
;; TODO: In some cases we give up too early. E.g. inf^(2 + 1/inf) => inf^2
;; (which should simplify to inf)
(case base
;; inf^inf = inf
;; inf^minf = 0
;; inf^zero* = und
;; inf^foo = inf^foo
($inf
(case exponent
($inf '$inf)
($minf 0)
((0 $zeroa $zerob) '$und)
(t (list '(mexpt) base exponent))))
;; minf^inf = infinity <== Or should it be und?
;; minf^minf = 0
;; minf^zero* = und
;; minf^foo = minf^foo
($minf
(case exponent
($inf '$infinity)
($minf 0)
((0 $zeroa $zerob) '$und)
(t (list '(mexpt) base exponent))))
;; zero*^inf = 0
;; zero*^minf = und
;; zero*^zero* = und
;; zero*^foo = zero*^foo
((0 $zeroa $zerob)
(case exponent
($inf 0)
($minf '$und)
((0 $zeroa $zerob) '$und)
(t (list '(mexpt) base exponent))))
;; a^b where a is pretty much anything except for a naked
;; inf,minf,zeroa,zerob or 0.
(t
(cond
;; When a isn't crazy, try a^b = e^(b log(a))
((not (amongl (append infinitesimals infinities) base))
(simpinf (m^ '$%e (m* base `((%log) ,exponent)))))
;; No idea. Just return what we've found so far.
(t (list '(mexpt) base exponent))))))
(defun simpinf-plus (arguments)
;; We know that none of the arguments are infinitesimals, since SIMPINF never
;; returns one of them. As such, we partition our arguments into infinities
;; and everything else. The latter won't have any "hidden" infinities like
;; lim(x,x,inf), since SIMPINF gave up on anything containing a %lim already.
(let ((bigs) (others))
(dolist (arg arguments)
(cond ((infinityp arg) (push arg bigs))
(t (push arg others))))
(cond
;; inf + minf or the like
((cdr (setf bigs (delete-duplicates bigs))) '$und)
;; inf + smaller + stuff
(bigs (car bigs))
;; I don't think this can happen, since SIMPINF goes back to the start if
;; there are fewer than two infinities in the arguments, but let's be
;; careful.
(t (cons '(mplus) others)))))
;; Simplify expression with zeroa or zerob.
(defun simpab (small)
(cond ((null small) ())
((member small '($zeroa $zerob $inf $minf $infinity) :test #'eq) small)
((not (free small '$ind)) '$ind) ;Not exactly right but not
((not (free small '$und)) '$und) ;causing trouble now.
((mapatom small) small)
(t (let ((preserve-direction t)
(new-small (subst (m^ '$inf -1) '$zeroa
(subst (m^ '$minf -1) '$zerob small))))
(simpinf new-small)))))
;;;*I* INDICATES: T => USE LIMIT1,THINK, NIL => USE SIMPLIMIT.
(defmfun limit (exp var val *i*)
(cond
((among '$und exp) '$und)
((eq var exp) val)
((atom exp) exp)
((not (among var exp))
(cond ((amongl '($inf $minf $infinity $ind) exp)
(simpinf exp))
((amongl '($zeroa $zerob) exp)
;; Simplify expression with zeroa or zerob.
(simpab exp))
(t exp)))
((getlimval exp))
(t (putlimval exp (cond ((and limit-using-taylor
(null taylored)
(tlimp exp))
(taylim exp var val *i*))
((ratp exp var) (ratlim exp))
((or (eq *i* t) (radicalp exp var))
(limit1 exp var val))
((eq *i* 'think)
(cond ((or (mtimesp exp) (mexptp exp))
(limit1 exp var val))
(t (simplimit exp var val))))
(t (simplimit exp var val)))))))
(defun limitsimp (exp var)
(limitsimp-expt (sin-sq-cos-sq-sub exp) var))
;;Hack for sin(x)^2+cos(x)^2.
;; if var appears in base and power of expt,
;; push var into power of of expt
(defun limitsimp-expt (exp var)
(cond ((or (atom exp)
(mnump exp)
(freeof var exp)) exp)
((and (mexptp exp)
(not (freeof var (cadr exp)))
(not (freeof var (caddr exp))))
(m^ '$%e (simplify `((%log) ,exp))))
(t (subst0 (cons (cons (caar exp) ())
(mapcar #'(lambda (x)
(limitsimp-expt x var))
(cdr exp)))
exp))))
(defun sin-sq-cos-sq-sub (exp) ;Hack ... Hack
(let ((arg (involve exp '(%sin %cos))))
(cond
((null arg) exp)
(t (let ((new-exp ($substitute (m+t 1 (m- (m^t `((%sin simp) ,arg) 2)))
(m^t `((%cos simp) ,arg) 2)
($substitute
(m+t 1 (m- (m^t `((%cos simp) ,arg) 2)))
(m^t `((%sin simp) ,arg) 2)
exp))))
(cond ((not (involve new-exp '(%sin %cos))) new-exp)
(t exp)))))))
(defun expand-trigs (x var)
(cond ((atom x) x)
((mnump x) x)
((and (or (eq (caar x) '%sin)
(eq (caar x) '%cos))
(not (free (cadr x) var)))
($trigexpand x))
((member 'array (car x))
;; Some kind of array reference. Return it.
x)
(t (simplify (cons (ncons (caar x))
(mapcar #'(lambda (x)
(expand-trigs x var))
(cdr x)))))))
(defun tansc (e)
(cond ((not (involve e
'(%cot %csc %binomial
%sec %coth %sech %csch
%acot %acsc %asec %acoth
%asech %acsch
%jacobi_ns %jacobi_nc %jacobi_cs
%jacobi_ds %jacobi_dc)))
e)
(t ($ratsimp (tansc1 e)))))
(defun tansc1 (e &aux tem)
(cond ((atom e) e)
((and (setq e (cons (car e) (mapcar 'tansc1 (cdr e)))) ()))
((setq tem (assoc (caar e) '((%cot . %tan) (%coth . %tanh)
(%sec . %cos) (%sech . %cosh)
(%csc . %sin) (%csch . %sinh)) :test #'eq))
(tansc1 (m^ (list (ncons (cdr tem)) (cadr e)) -1.)))
((setq tem (assoc (caar e) '((%jacobi_nc . %jacobi_cn)
(%jacobi_ns . %jacobi_sn)
(%jacobi_cs . %jacobi_sc)
(%jacobi_ds . %jacobi_sd)
(%jacobi_dc . %jacobi_cd)) :test #'eq))
;; Converts Jacobi elliptic function to its reciprocal
;; function.
(tansc1 (m^ (list (ncons (cdr tem)) (cadr e) (third e)) -1.)))
((setq tem (member (caar e) '(%sinh %cosh %tanh) :test #'eq))
(let (($exponentialize t))
(resimplify e)))
((setq tem (assoc (caar e) '((%acsc . %asin) (%asec . %acos)
(%acot . %atan) (%acsch . %asinh)
(%asech . %acosh) (%acoth . %atanh)) :test #'eq))
(list (ncons (cdr tem)) (m^t (cadr e) -1.)))
((and (eq (caar e) '%binomial) (among var (cdr e)))
(m// `((mfactorial) ,(cadr e))
(m* `((mfactorial) ,(m+t (cadr e) (m- (caddr e))))
`((mfactorial) ,(caddr e)))))
(t e)))
(defun hyperex (ex)
(cond ((not (involve ex '(%sin %cos %tan %asin %acos %atan
%sinh %cosh %tanh %asinh %acosh %atanh)))
ex)
(t (hyperex0 ex))))
(defun hyperex0 (ex)
(cond ((atom ex) ex)
((eq (caar ex) '%sinh)
(m// (m+ (m^ '$%e (cadr ex)) (m- (m^ '$%e (m- (cadr ex)))))
2))
((eq (caar ex) '%cosh)
(m// (m+ (m^ '$%e (cadr ex)) (m^ '$%e (m- (cadr ex))))
2))
((and (member (caar ex)
'(%sin %cos %tan %asin %acos %atan %sinh
%cosh %tanh %asinh %acosh %atanh) :test #'eq)
(among var ex))
(hyperex1 ex))
(t (cons (car ex) (mapcar #'hyperex0 (cdr ex))))))
(defun hyperex1 (ex)
(resimplify ex))
;;Used by tlimit also.
(defmfun limit1 (exp var val)
(prog ()
(let ((lhprogress? lhp?) (lhp? ()) (ans ()))
(cond ((setq ans (and (not (atom exp))
(getlimval exp)))
(return ans))
((and (not (infinityp val))
(setq ans (simplimsubst val exp)))
(return ans))
(t nil))
;;;NUMDEN* => (numerator . denominator)
(destructuring-let (((n . dn) (numden* exp)))
(cond
((not (among var dn))
(return (simplimit (m// (simplimit n var val) dn)
var
val)))
((not (among var n))
(return (simplimit (m* n
(simplimexpt dn
-1
(simplimit dn var val)
-1))
var
val)))
((and lhprogress?
(/#alike n (car lhprogress?))
(/#alike dn (cdr lhprogress?)))
(throw 'lhospital nil)))
(return (limit2 n dn var val))))))
(defun /#alike (e f)
(cond ((alike1 e f)
t)
(t (let ((deriv (sdiff (m// e f) var)))
(cond ((=0 deriv)
t)
((=0 ($ratsimp deriv))
t)
(t nil))))))
(defun limit2 (n dn var val)
(prog (n1 d1 lim-sign gcp sheur-ans)
(setq n (hyperex n) dn (hyperex dn))
;;;Change to uniform limit call.
(cond ((infinityp val)
(setq d1 (limit dn var val nil))
(setq n1 (limit n var val nil)))
(t (cond ((setq n1 (simplimsubst val n)) nil)
(t (setq n1 (limit n var val nil))))
(cond ((setq d1 (simplimsubst val dn)) nil)
(t (setq d1 (limit dn var val nil))))))
(cond ((or (null n1) (null d1)) (return nil))
(t (setq n1 (sratsimp n1) d1 (sratsimp d1))))
(cond ((or (involve n '(mfactorial)) (involve dn '(mfactorial)))
(let ((ans (limfact2 n dn var val)))
(cond (ans (return ans))))))
(cond ((and (zerop2 n1) (zerop2 d1))
(cond ((not (equal (setq gcp (gcpower n dn)) 1))
(return (colexpt n dn gcp)))
((and (real-epsilonp val)
(not (free n '%log))
(not (free dn '%log)))
(return (liminv (m// n dn))))
((setq n1 (try-lhospital-quit n dn nil))
(return n1))))
((and (zerop2 n1) (not (member d1 '($ind $und) :test #'eq))) (return 0))
((zerop2 d1)
(setq n1 (ridofab n1))
(return (simplimtimes `(,n1 ,(simplimexpt dn -1 d1 -1))))))
(setq n1 (ridofab n1))
(setq d1 (ridofab d1))
(cond ((or (eq d1 '$und)
(and (eq n1 '$und) (not (real-infinityp d1))))
(return '$und))
((eq d1 '$ind)
;; At this point we have n1/$ind. Look if n1 is one of the
;; infinities or zero.
(cond ((and (infinityp n1) (eq ($sign dn) '$pos))
(return n1))
((and (infinityp n1) (eq ($sign dn) '$neg))
(return (simpinf (m* -1 n1))))
((and (not (eq n1 '$ind))
(eq ($csign n1) '$zero))
(return 0))
(t (return '$und))))
((eq n1 '$ind) (return (cond ((infinityp d1) 0)
((equal d1 0) '$und)
(t '$ind)))) ;SET LB
((and (real-infinityp d1) (member n1 '($inf $und $minf) :test #'eq))
(cond ((and (not (atom dn)) (not (atom n))
(cond ((not (equal (setq gcp (gcpower n dn)) 1))
(return (colexpt n dn gcp)))
((and (eq '$inf val)
(or (involve dn '(mfactorial %gamma))
(involve n '(mfactorial %gamma))))
(return (limfact n dn))))))
((eq n1 d1) (setq lim-sign 1) (go cp))
(t (setq lim-sign -1) (go cp))))
((and (infinityp d1) (infinityp n1))
(setq lim-sign (if (or (eq d1 '$minf) (eq n1 '$minf)) -1 1))
(go cp))
(t (return (simplimtimes `(,n1 ,(m^ d1 -1))))))
cp (setq n ($expand n) dn ($expand dn))
(cond ((mplusp n)
(let ((new-n (m+l (maxi (cdr n)))))
(cond ((not (alike1 new-n n))
(return (limit (m// new-n dn) var val 'think))))
(setq n1 new-n)))
(t (setq n1 n)))
(cond ((mplusp dn)
(let ((new-dn (m+l (maxi (cdr dn)))))
(cond ((not (alike1 new-dn dn))
(return (limit (m// n new-dn) var val 'think))))
(setq d1 new-dn)))
(t (setq d1 dn)))
(setq sheur-ans (sheur0 n1 d1))
(cond ((or (member sheur-ans '($inf $zeroa) :test #'eq)
(free sheur-ans var))
(return (simplimtimes `(,lim-sign ,sheur-ans))))
((and (alike1 sheur-ans dn)
(not (mplusp n))))
((member (setq n1 (cond ((expfactorp n1 d1) (expfactor n1 d1 var))
(t ())))
'($inf $zeroa) :test #'eq)
(return n1))
((not (null (setq n1 (cond ((expfactorp n dn) (expfactor n dn var))
(t ())))))
(return n1))
((and (alike1 sheur-ans dn) (not (mplusp n))))
((not (alike1 sheur-ans (m// n dn)))
(return (simplimit (m// ($expand (m// n sheur-ans))
($expand (m// dn sheur-ans)))
var
val))))
(cond ((and (not (and (eq val '$inf) (expp n) (expp dn)))
(setq n1 (try-lhospital-quit n dn nil))
(not (eq n1 '$und)))
(return n1)))
(throw 'limit t)))
;; Test whether both n and dn have form
;; product of poly^poly
(defun expfactorp (n dn)
(do ((llist (append (cond ((mtimesp n) (cdr n))
(t (ncons n)))
(cond ((mtimesp dn) (cdr dn))
(t (ncons dn))))
(cdr llist))
(exp? t) ;IS EVERY ELEMENT SO FAR
(factor nil)) ;A POLY^POLY?
((or (null llist)
(not exp?))
exp?)
(setq factor (car llist))
(setq exp? (or (polyinx factor var ())
(and (mexptp factor)
(polyinx (cadr factor) var ())
(polyinx (caddr factor) var ()))))))
(defun expfactor (n dn var) ;Attempts to evaluate limit by grouping
(prog (highest-deg) ; terms with similar exponents.
(let ((new-exp (exppoly n))) ;exppoly unrats expon
(setq n (car new-exp) ;and rtns deg of expons
highest-deg (cdr new-exp)))
(cond ((null n) (return nil))) ;nil means expon is not
(let ((new-exp (exppoly dn))) ;a rat func.
(setq dn (car new-exp)
highest-deg (max highest-deg (cdr new-exp))))
(cond ((or (null dn)
(= highest-deg 0)) ; prevent infinite recursion
(return nil)))
(return
(do ((answer 1)
(degree highest-deg (1- degree))
(numerator n)
(denominator dn)
(numfactors nil)
(denfactors nil))
((= degree -1)
(m* answer
(limit (m// numerator denominator)
var
val
'think)))
(let ((newnumer-factor (get-newexp&factors
numerator
degree
var)))
(setq numerator (car newnumer-factor)
numfactors (cdr newnumer-factor)))
(let ((newdenom-factor (get-newexp&factors
denominator
degree
var)))
(setq denominator (car newdenom-factor)
denfactors (cdr newdenom-factor)))
(setq answer (simplimit (list '(mexpt)
(m* answer
(m// numfactors denfactors))
(cond ((> degree 0) var)
(t 1)))
var
val))
(cond ((member answer '($ind $und) :test #'equal)
(return nil))
((member answer '($inf $minf 0) :test #'equal) ;Really? ZEROA ZEROB?
(return (simplimtimes (list (m// numerator denominator) answer)))))))))
(defun exppoly (exp) ;RETURNS EXPRESSION WITH UNRATTED EXPONENTS
(do ((factor nil)
(highest-deg 0)
(new-exp 1)
(exp (cond ((mtimesp exp)
(cdr exp))
(t (ncons exp)))
(cdr exp)))
((null exp) (cons new-exp highest-deg))
(setq factor (car exp))
(setq new-exp
(m* (cond ((or (not (mexptp factor))
(not (ratp (caddr factor) var)))
factor)
(t (setq highest-deg
(max highest-deg
(ratdegree (caddr factor))))
(m^ (cadr factor) (unrat (caddr factor)))))
new-exp))))
(defun unrat (exp) ;RETURNS UNRATTED EXPRESION
(let ((n-dn (numden* exp)))
(let ((tem ($divide (car n-dn) (cdr n-dn))))
(m+ (cadr tem)
(m// (caddr tem)
(cdr n-dn))))))
(defun get-newexp&factors (exp degree var) ;RETURNS (CONS NEWEXP FACTORS)
(do ((terms (cond ((mtimesp exp)(cdr exp)) ; SUCH THAT
(t (ncons exp))) ; NEWEXP*FACTORS^(VAR^DEGREE)
(cdr terms)) ; IS EQUAL TO EXP.
(factors 1)
(newexp 1)
(factor nil))
((null terms)
(cons newexp
factors))
(setq factor (car terms))
(cond ((not (mexptp factor))
(cond ((= degree 0)
(setq factors (m* factor factors)))
(t (setq newexp (m* factor newexp)))))
((or (= degree -1)
(= (ratdegree (caddr factor))
degree))
(setq factors (m* (m^ (cadr factor)
(leading-coef (caddr factor)))
factors)
newexp (m* (m^ (cadr factor)
(m- (caddr factor)
(m* (leading-coef (caddr factor))
(m^ var degree))))
newexp)))
(t (setq newexp (m* factor newexp))))))
(defun leading-coef (rat)
(ratlim (m// rat (m^ var (ratdegree rat)))))
(defun ratdegree (rat)
(let ((n-dn (numden* rat)))
(- (deg (car n-dn))
(deg (cdr n-dn)))))
(defun limfact2 (n d var val)
(let ((n1 (reflect0 n var val))
(d1 (reflect0 d var val)))
(cond ((and (alike1 n n1)
(alike1 d d1))
nil)
(t (limit (m// n1 d1) var val 'think)))))
;; takes expression and returns operator at front with all flags removed
;; except array flag.
;; array flag must match for alike1 to consider two things to be the same.
;; ((MTIMES SIMP) ... ) => (MTIMES)
;; ((PSI SIMP ARRAY) 0) => (PSI ARRAY)
(defun operator-with-array-flag (exp)
(cond ((member 'array (car exp) :test #'eq)
(list (caar exp) 'array))
(t (list (caar exp)))))
(defun reflect0 (exp var val)
(cond ((atom exp) exp)
((and (eq (caar exp) 'mfactorial)
(let ((argval (limit (cadr exp) var val 'think)))
(or (eq argval '$minf)
(and (numberp argval)
(> 0 argval)))))
(reflect (cadr exp)))
(t (cons (operator-with-array-flag exp)
(mapcar (function
(lambda (term)
(reflect0 term var val)))
(cdr exp))))))
(defun reflect (arg)
(m* -1
'$%pi
(m^ (list (ncons 'mfactorial)
(m+ -1
(m* -1 arg)))
-1)
(m^ (list (ncons '%sin)
(m* '$%pi arg))
-1)))
(defun limfact (n d)
(let ((ans ()))
(setq n (stirling0 n)
d (stirling0 d))
(setq ans ($limit (m// n d) var '$inf))
(cond ((and (atom ans)
(not (member ans '(und ind ) :test #'eq))) ans)
((eq (caar ans) '%limit) ())
(t ans))))
;; substitute asymptotic approximations for gamma, factorial, and
;; polylogarithm
(defun stirling0 (e)
(cond ((atom e) e)
((and (setq e (cons (car e) (mapcar 'stirling0 (cdr e))))
nil))
((and (eq (caar e) '%gamma)
(eq (limit (cadr e) var val 'think) '$inf))
(stirling (cadr e)))
((and (eq (caar e) 'mfactorial)
(eq (limit (cadr e) var val 'think) '$inf))
(m* (cadr e) (stirling (cadr e))))
((and (eq (caar e) 'mqapply) ;; polylogarithm
(eq (subfunname e) '$li)
(integerp (car (subfunsubs e))))
(li-asymptotic-expansion (m- (car (subfunsubs e)) 1)
(car (subfunsubs e))
(car (subfunargs e))))
(t e)))
(defun stirling (x)
(maxima-substitute x '$z
'((mtimes simp)
((mexpt simp) 2 ((rat simp) 1 2))
((mexpt simp) $%pi ((rat simp) 1 2))
((mexpt simp) $z ((mplus simp) ((rat simp) -1 2) $z))
((mexpt simp) $%e ((mtimes simp) -1 $z)))))
(defun no-err-sub (v e &aux ans)
(let ((errorsw t) (*zexptsimp? t)
(errcatch t)
;; Don't print any error messages
($errormsg nil))
(declare (special errcatch))
;; Should we just use IGNORE-ERRORS instead HANDLER-CASE here? I
;; (rtoy) am choosing the latter so that unexpected errors will
;; actually show up instead of being silently discarded.
(handler-case
(setq ans (catch 'errorsw
(ignore-rat-err
(sratsimp (subin v e)))))
(maxima-$error ()
(setq ans nil)))
(cond ((null ans) t) ; Ratfun package returns NIL for failure.
(t ans))))
;; substitute value v for var into expression e.
;; if result is defined and e is continuous, we have the limit.
(defun simplimsubst (v e)
(let (ans)
(cond ((involve e '(mfactorial)) nil)
;; functions that are defined at their discontinuities
((amongl '($atan2 $floor $round $ceiling %signum %integrate
%gamma_incomplete)
e) nil)
;; substitute value into expression
((eq (setq ans (no-err-sub (ridofab v) e)) t)
nil)
((and (member v '($zeroa $zerob) :test #'eq) (=0 ($radcan ans)))
(setq ans (behavior e var v))
(cond ((equal ans 1) '$zeroa)
((equal ans -1) '$zerob)
(t nil))) ; behavior can't find direction
(t ans))))
;;;returns (cons numerator denominator)
(defun numden* (e)
(let ((e (factor (simplify e)))
(numer ()) (denom ()))
(cond ((atom e)
(push e numer))
((mtimesp e)
(mapc 'forq (cdr e)))
(t (forq e)))
(cond ((null numer)
(setq numer 1.))
((null (cdr numer))
(setq numer (car numer)))
(t (setq numer (m*l numer))))
(cond ((null denom)
(setq denom 1.))
((null (cdr denom))
(setq denom (car denom)))
(t (setq denom (m*l denom))))
(cons (factor numer) (factor denom))))
;;;FACTOR OR QUOTIENT
;;;Setq's the special vars numer and denom from numden*
(defun forq (e)
(cond ((and (mexptp e)
(not (freeof var e))
(null (pos-neg-p (caddr e))))
(push (m^ (cadr e) (m* -1. (caddr e))) denom))
(t (push e numer))))
;;;Predicate to tell whether an expression is pos,zero or neg as var -> val.
;;;returns T if pos,zero. () if negative or don't know.
(defun pos-neg-p (exp)
(let ((ans (limit exp var val 'think)))
(cond ((and (not (member ans '($und $ind $infinity) :test #'eq))
(equal ($imagpart ans) 0))
(let ((sign (getsignl ans)))
(cond ((or (equal sign 1)
(equal sign 0))
t)
((equal sign -1) nil))))
(t 'unknown))))
(declare-top (unspecial n dn))
(defun expp (e)
(cond ((radicalp e var) nil)
((member (caar e) '(%log %sin %cos %tan %sinh %cosh %tanh mfactorial
%asin %acos %atan %asinh %acosh %atanh) :test #'eq) nil)
((simplexp e) t)
((do ((e (cdr e) (cdr e)))
((null e) nil)
(and (expp (car e)) (return t))))))
(defun simplexp (e)
(and (mexptp e)
(radicalp (cadr e) var)
(among var (caddr e))
(radicalp (caddr e) var)))
(defun gcpower (a b)
($gcd (getexp a) (getexp b)))
(defun getexp (exp)
(cond ((and (mexptp exp)
(free (caddr exp) var)
(eq (ask-integer (caddr exp) '$integer) '$yes))
(caddr exp))
((mtimesp exp) (getexplist (cdr exp)))
(t 1)))
(defun getexplist (list)
(cond ((null (cdr list))
(getexp (car list)))
(t ($gcd (getexp (car list))
(getexplist (cdr list))))))
(defun limroot (exp power)
(cond ((or (atom exp) (not (member (caar exp) '(mtimes mexpt) :test #'eq)))
(limroot (list '(mexpt) exp 1) power)) ;This is strange-JIM.
((mexptp exp) (m^ (cadr exp)
(sratsimp (m* (caddr exp) (m^ power -1.)))))
(t (m*l (mapcar #'(lambda (x)
(limroot x power))
(cdr exp))))))
;;NUMERATOR AND DENOMINATOR HAVE EXPONENTS WITH GCD OF GCP.
;;; Used to call simplimit but some of the transformations used here
;;; were not stable w.r.t. the simplifier, so try keeping exponent separate
;;; from bas.
(defun colexpt (n dn gcp)
(let ((bas (m* (limroot n gcp) (limroot dn (m* -1 gcp))))
(expo gcp)
baslim expolim)
(setq baslim (limit bas var val 'think))
(setq expolim (limit expo var val 'think))
(simplimexpt bas expo baslim expolim)))
;;; This function will transform an expression such that either all logarithms
;;; contain arguments not becoming infinite or are of the form
;;; LOG(LOG( ... LOG(VAR))) This reduction takes place only over the operators
;;; MPLUS, MTIMES, MEXPT, and %LOG.
(defun log-red-contract (facs)
(do ((l facs (cdr l))
(consts ())
(log ()))
((null l)
(if log (cons (cadr log) (m*l consts))
()))
(cond ((freeof var (car l)) (push (car l) consts))
((mlogp (car l))
(if (null log) (setq log (car l))
(return ())))
(t (return ())))))
(defun log-reduce (x)
(cond ((atom x) x)
((freeof var x) x)
((mplusp x)
(do ((l (cdr x) (cdr l))
(sum ())
(weak-logs ())
(strong-logs ())
(temp))
((null l) (m+l `(((%log) ,(m*l strong-logs))
((%log) ,(m*l weak-logs))
,@sum)))
(setq x (log-reduce (car l)))
(cond ((mlogp x)
(if (infinityp (limit (cadr x) var val 'think))
(push (cadr x) strong-logs)
(push (cadr x) weak-logs)))
((and (mtimesp x) (setq temp (log-red-contract (cdr x))))
(if (infinityp (limit (car temp) var val 'think))
(push (m^ (car temp) (cdr temp)) strong-logs)
(push (m^ (car temp) (cdr temp)) weak-logs)))
(t (push x sum)))))
((mtimesp x)
(do ((l (cdr x) (cdr l))
(ans 1))
((null l) ans)
(setq ans ($expand (m* (log-reduce (car l)) ans)))))
((mexptp x) (m^t (log-reduce (cadr x)) (caddr x)))
((mlogp x)
(cond ((not (infinityp (limit (cadr x) var val 'think))) x)
(t
(cond ((eq (cadr x) var) x)
((mplusp (cadr x))
(let ((strongl (maxi (cdadr x))))
(m+ (log-reduce `((%log) ,(car strongl))) `((%log) ,(m// (cadr x) (car strongl))))))
((mtimesp (cadr x))
(do ((l (cdadr x) (cdr l)) (ans 0)) ((null l) ans)
(setq ans (m+ (log-reduce (simplify `((%log) ,(log-reduce (car l))))) ans))))
(t
(let ((red-log (simplify `((%log) ,(log-reduce (cadr x))))))
(if (alike1 red-log x) x (log-reduce red-log))))))))
(t x)))
(defun ratlim (e)
(cond ((member val '($inf $infinity) :test #'eq)
(setq e (maxima-substitute (m^t 'x -1) var e)))
((eq val '$minf)
(setq e (maxima-substitute (m^t -1 (m^t 'x -1)) var e)))
((eq val '$zerob)
(setq e (maxima-substitute (m- 'x) var e)))
((eq val '$zeroa)
(setq e (maxima-substitute 'x var e)))
((setq e (maxima-substitute (m+t 'x val) var e))))
(destructuring-let* ((e (let (($ratfac ()))
($rat (sratsimp e) 'x)))
((h n . d) e)
(g (genfind h 'x))
(nd (lodeg n g))
(dd (lodeg d g)))
(cond ((and (setq e
(subst var
'x
(sratsimp (m// ($ratdisrep `(,h ,(locoef n g) . 1))
($ratdisrep `(,h ,(locoef d g) . 1))))))
(> nd dd))
(cond ((not (member val '($zerob $zeroa $inf $minf) :test #'eq))
0)
((not (equal ($imagpart e) 0))
0)
((null (setq e (getsignl ($realpart e))))
0)
((equal e 1) '$zeroa)
((equal e -1) '$zerob)
(t 0)))
((equal nd dd) e)
((not (member val '($zerob $zeroa $infinity $inf $minf) :test #'eq))
(throw 'limit t))
((eq val '$infinity) '$infinity)
((not (equal ($imagpart e) 0)) '$infinity)
((null (setq e (getsignl ($realpart e)))) '$infinity)
((equal e 1) '$inf)
((equal e -1) '$minf)
(t 0))))
(defun lodeg (n x)
(if (or (atom n) (not (eq (car n) x)))
0
(lowdeg (cdr n))))
(defun locoef (n x)
(if (or (atom n) (not (eq (car n) x)))
n
(car (last n))))
(defun behavior (exp var val) ; returns either -1, 0, 1.
(if (= *behavior-count-now* +behavior-count+)
0
(let ((*behavior-count-now* (1+ *behavior-count-now*)) pair sign)
(cond ((real-infinityp val)
(setq val (cond ((eq val '$inf) '$zeroa)
((eq val '$minf) '$zerob)))
(setq exp (sratsimp (subin (m^ var -1) exp)))))
(cond ((eq val '$infinity) 0) ; Needs more hacking for complex.
((and (mtimesp exp)
(prog2 (setq pair (partition exp var 1))
(not (mtimesp (cdr pair)))))
(setq sign (getsignl (car pair)))
(if (not (fixnump sign))
0
(mul sign (behavior (cdr pair) var val))))
((and (=0 (no-err-sub (ridofab val) exp))
(mexptp exp)
(free (caddr exp) var)
(equal (getsignl (caddr exp)) 1))
(let ((bas (cadr exp)) (expo (caddr exp)))
(behavior-expt bas expo)))
(t (behavior-by-diff exp var val))))))
(defun behavior-expt (bas expo)
(let ((behavior (behavior bas var val)))
(cond ((= behavior 1) 1)
((= behavior 0) 0)
((eq (ask-integer expo '$integer) '$yes)
(cond ((eq (ask-integer expo '$even) '$yes) 1)
(t behavior)))
((ratnump expo)
(cond ((evenp (cadr expo)) 1)
((oddp (caddr expo)) behavior)
(t 0)))
(t 0))))
(defun behavior-by-diff (exp var val)
(cond ((not (or (eq val '$zeroa) (eq val '$zerob))) 0)
(t (let ((old-val val) (old-exp exp))
(setq val (ridofab val))
(do ((ct 0 (1+ ct))
(exp (sratsimp (sdiff exp var)) (sratsimp (sdiff exp var)))
(n () (not n))
(ans ())) ; This do wins by a return.
((> ct 0) 0) ; This loop used to run up to 5 times,
;; but the size of some expressions would blow up.
(setq ans (no-err-sub val exp)) ;Why not do an EVENFN and ODDFN
;test here.
(cond ((eq ans t)
(return (behavior-numden old-exp var old-val)))
((=0 ans) ()) ;Do it again.
(t (setq ans (getsignl ans))
(cond (n (return ans))
((equal ans 1)
(return (if (eq old-val '$zeroa) 1 -1)))
((equal ans -1)
(return (if (eq old-val '$zeroa) -1 1)))
(t (return 0))))))))))
(defun behavior-numden (exp var val)
(let ((num ($num exp)) (denom ($denom exp)))
(cond ((equal denom 1) 0) ;Could be hacked more from here.
(t (let ((num-behav (behavior num var val))
(denom-behav (behavior denom var val)))
(cond ((or (= num-behav 0) (= denom-behav 0)) 0)
((= num-behav denom-behav) 1)
(t -1)))))))
(defun try-lhospital (n d ind)
;;Make one catch for the whole bunch of lhospital trials.
(let ((ans (lhospital-catch n d ind)))
(cond ((null ans) ())
((not (free-infp ans)) (simpinf ans))
((not (free-epsilonp ans)) (simpab ans))
(t ans))))
(defun try-lhospital-quit (n d ind)
(let ((ans (or (lhospital-catch n d ind)
(lhospital-catch (m^ d -1) (m^ n -1) ind))))
(cond ((null ans) (throw 'limit t))
((not (free-infp ans)) (simpinf ans))
((not (free-epsilonp ans)) (simpab ans))
(t ans))))
(defun lhospital-catch (n d ind)
(cond ((> 0 lhcount)
(setq lhcount $lhospitallim)
(throw 'lhospital nil))
((equal lhcount $lhospitallim)
(let ((lhcount (m+ lhcount -1)))
(catch 'lhospital (lhospital n d ind))))
(t (setq lhcount (m+ lhcount -1))
(prog1 (lhospital n d ind)
(setq lhcount (m+ lhcount 1))))))
;;If this succeeds then raise LHCOUNT.
(defun lhospital (n d ind)
(declare (special val lhp?))
(if (mtimesp n)
(setq n (m*l (mapcar #'(lambda (term) (lhsimp term var val))
(cdr n)))))
(if (mtimesp d)
(setq d (m*l (mapcar #'(lambda (term) (lhsimp term var val))
(cdr d)))))
(destructuring-let (((n . d) (lhop-numden n d))
const nconst dconst)
(setq lhp? (and (null ind) (cons n d)))
(desetq (nconst . n) (var-or-const n))
(desetq (dconst . d) (var-or-const d))
(setq n (stirling0 n)) ;; replace factorial and %gamma
(setq d (stirling0 d)) ;; with approximations
(setq n (sdiff n var) ;; take derivatives for l'hospital
d (sdiff d var))
(if (or (not (free n '%derivative)) (not (free d '%derivative)))
(throw 'lhospital ()))
(setq n (expand-trigs (tansc n) var))
(setq d (expand-trigs (tansc d) var))
(desetq (const . (n . d)) (remove-singularities n d))
(setq const (m* const (m// nconst dconst)))
(simpinf
(cond (ind (let ((ans (limit2 n d var val)))
(if ans (m* const ans))))
(t (let ((ans (limit
($multthru (sratsimp (m// n d)))
var val 'think)))
(if ans (m* const ans))))))))
;; Heuristics for picking the right way to express a LHOSPITAL problem.
(defun lhop-numden (num denom)
(declare (special var))
(cond ((let ((log-num (involve num '(%log))))
(cond ((null log-num) ())
((lessthan (num-of-logs (factor (sratsimp (sdiff (m^ num -1) var))))
(num-of-logs (factor (sratsimp (sdiff num var)))))
(psetq num (m^ denom -1) denom (m^ num -1))
t)
(t t))))
((let ((log-denom (involve denom '(%log))))
(cond ((null log-denom) ())
((lessthan (num-of-logs (sratsimp (sdiff (m^ denom -1) var)))
(num-of-logs (sratsimp (sdiff denom var))))
(psetq denom (m^ num -1) num (m^ denom -1))
t)
(t t))))
((let ((exp-num (%einvolve num)))
(cond (exp-num
(cond ((%e-right-placep exp-num)
t)
(t (psetq num (m^ denom -1)
denom (m^ num -1)) t)))
(t ()))))
((let ((exp-den (%einvolve denom)))
(cond (exp-den
(cond ((%e-right-placep exp-den)
t)
(t (psetq num (m^ denom -1)
denom (m^ num -1)) t)))
(t ()))))
((let ((scnum (involve num '(%sin))))
(cond (scnum (cond ((trig-right-placep '%sin scnum) t)
(t (psetq num (m^ denom -1)
denom (m^ num -1)) t)))
(t ()))))
((let ((scden (involve denom '(%sin))))
(cond (scden (cond ((trig-right-placep '%sin scden) t)
(t (psetq num (m^ denom -1)
denom (m^ num -1)) t)))
(t ()))))
((let ((scnum (involve num '(%asin %acos %atan))))
;; If the numerator contains an inverse trig and the
;; denominator or reciprocal of denominator is polynomial,
;; leave everthing as is. If the inverse trig is moved to
;; the denominator, things get messy, even if the numerator
;; becomes a polynomial. This is not perfect.
(cond ((and scnum (or (polyinx denom var ())
(polyinx (m^ denom -1) var ())))
t)
(t nil))))
((or (oscip num) (oscip denom)))
((frac num)
(psetq num (m^ denom -1) denom (m^ num -1))))
(cons num denom))
;;i don't know what to do here for some cases, may have to be refined.
(defun num-of-logs (exp)
(cond ((mapatom exp) 0)
((equal (caar exp) '%log)
(m+ 1 (num-of-log-l (cdr exp))))
((and (mexptp exp) (mnump (caddr exp)))
(m* (simplify `((mabs) ,(caddr exp)))
(num-of-logs (cadr exp))))
(t (num-of-log-l (cdr exp)))))
(defun num-of-log-l (llist)
(do ((temp llist (cdr temp)) (ans 0))
((null temp) ans)
(setq ans (m+ ans (num-of-logs (car temp))))))
(defun %e-right-placep (%e-arg)
(let ((%e-arg-diff (sdiff %e-arg var)))
(cond
((free %e-arg-diff var)) ;simple cases
((or (and (mexptp denom)
(equal (cadr denom) -1))
(polyinx (m^ denom -1) var ())) ())
((let ((%e-arg-diff-lim (ridofab (limit %e-arg-diff var val 'think)))
(%e-arg-exp-lim (ridofab (limit (m^ '$%e %e-arg) var val 'think))))
#+nil
(progn
(format t "%e-arg-dif-lim = ~A~%" %e-arg-diff-lim)
(format t "%e-arg-exp-lim = ~A~%" %e-arg-exp-lim))
(cond ((equal %e-arg-diff-lim %e-arg-exp-lim)
t)
((and (mnump %e-arg-diff-lim) (mnump %e-arg-exp-lim))
t)
((and (mnump %e-arg-diff-lim) (infinityp %e-arg-exp-lim))
;; This is meant to make maxima handle bug 1469411
;; correctly. Undoubtedly, this needs work.
t)
(t ())))))))
(defun trig-right-placep (trig-type arg)
(let ((arglim (ridofab (limit arg var val 'think)))
(triglim (ridofab (limit `((,trig-type) ,arg) var val 'think))))
(cond ((and (equal arglim 0) (equal triglim 0)) t)
((and (infinityp arglim) (infinityp triglim)) t)
(t ()))))
;;Takes a numerator and a denominator. If they tries all combinations of
;;products to try and make a simpler set of subproblems for LHOSPITAL.
(defun remove-singularities (numer denom)
(cond
((or (null numer) (null denom)
(atom numer) (atom denom)
(not (mtimesp numer)) ;Leave this here for a while.
(not (mtimesp denom)))
(cons 1 (cons numer denom)))
(t
(destructuring-let (((num-consts . num-vars) (var-or-const numer))
((denom-consts . denom-vars) (var-or-const denom))
(const 1))
(if (not (mtimesp num-vars))
(setq num-vars (list num-vars))
(setq num-vars (cdr num-vars)))
(if (not (mtimesp denom-vars))
(setq denom-vars (list denom-vars))
(setq denom-vars (cdr denom-vars)))
(do ((nl num-vars (cdr nl))
(num-list (copy-list num-vars ))
(den-list denom-vars den-list-temp)
(den-list-temp (copy-list denom-vars )))
((null nl) (cons (m* const (m// num-consts denom-consts))
(cons (m*l num-list) (m*l den-list-temp))))
(do ((dl den-list (cdr dl)))
((null dl) t)
(cond ((or (%einvolve (car nl))
(%einvolve (car nl))) t)
(t (let ((lim (catch 'limit
(simpinf
(simpab (limit (m// (car nl) (car dl))
var val 'think))))))
(cond ((or (eq lim t) (eq lim ())
(equal (ridofab lim) 0)
(infinityp lim)
(not (free lim '$inf))
(not (free lim '$minf))
(not (free lim '$infinity))
(not (free lim '$ind))
(not (free lim '$und)))
())
(t (setq const (m* lim const))
(setq num-list (delete (car nl) num-list :count 1 :test #'equal))
(setq den-list-temp
(delete (car dl) den-list-temp :count 1 :test #'equal))
(return t))))))))))))
;; separate terms that contain var from constant terms
;; returns (const-terms . var-terms)
(defun var-or-const (expr)
(setq expr ($factor expr))
(cond ((atom expr)
(cond ((eq expr var) (cons 1 expr))
(t (cons expr 1))))
((free expr var) (cons expr 1))
((mtimesp expr)
(do ((l (cdr expr) (cdr l))
(const 1) (varl 1))
((null l) (cons const varl))
(cond ((free (car l) var)
(setq const (m* (car l) const)))
(t (setq varl (m* (car l) varl))))))
(t (cons 1 expr))))
;; if term goes to non-zero constant, replace with constant
(defun lhsimp (term var val)
(cond ((atom term) term)
(t
(let ((term-value (ridofab (limit term var val 'think))))
(cond ((not (member term-value
'($inf $minf $und $ind $infinity 0)))
term-value)
(t term))))))
(defun bylog (expo bas)
(simplimexpt '$%e
(setq bas
(try-lhospital-quit (simplify `((%log) ,(tansc bas)))
(m^ expo -1)
nil))
'$%e bas))
(defun simplimexpt (bas expo bl el)
(cond
((or (eq bl '$und) (eq el '$und)) '$und)
((zerop2 bl)
(cond ((eq el '$inf) (if (eq bl '$zeroa) bl 0))
((eq el '$minf) (if (eq bl '$zeroa) '$inf '$infinity))
((eq el '$ind) '$ind)
((eq el '$infinity) '$und)
((zerop2 el) (bylog expo bas))
(t (cond ((equal (getsignl el) -1)
(cond ((eq bl '$zeroa) '$inf)
((eq bl '$zerob)
(cond ((even1 el) '$inf)
((eq (ask-integer el '$integer) '$yes)
(cond ((eq (ask-integer el '$even) '$yes)
'$inf)
(t '$minf))))) ;Gotta be ODD.
(t (setq bas (behavior bas var val))
(cond ((equal bas 1) '$inf)
((equal bas -1) '$minf)
(t (throw 'limit t))))))
((and (mnump el)
(member bl '($zeroa $zerob) :test #'eq))
(cond ((even1 el) '$zeroa)
((and (eq bl '$zerob)
(ratnump el)
(evenp (caddr el))) 0)
(t bl)))
((and (equal (getsignl el) 1)
(eq bl '$zeroa)) bl)
((equal (getsignl el) 0)
1)
(t 0)))))
((eq bl '$infinity)
(cond ((zerop2 el) (bylog expo bas))
((eq el '$minf) 0)
((eq el '$inf) '$infinity)
((member el '($infinity $ind) :test #'eq) '$und)
((equal (setq el (getsignl el)) 1) '$infinity)
((null el) '$und)
((equal el -1) 0)))
((eq bl '$inf)
(cond ((eq el '$inf) '$inf)
((equal el '$minf) 0)
((zerop2 el) (bylog expo bas))
((member el '($infinity $ind) :test #'eq) '$und)
(t (cond ((eql 0 (getsignl el)) 1)
((ratgreaterp 0 el) '$zeroa)
(t '$inf)))))
((eq bl '$minf)
(cond ((zerop2 el) (bylog expo bas))
((eq el '$inf) '$und)
((equal el '$minf) 0)
;;;Why not generalize this. We can ask about the number. -Jim 2/23/81
((mnump el) (cond ((mnegp el)
(cond ((even1 el) '$zeroa)
(t (cond
((eq (ask-integer el '$integer) '$yes)
(cond ((eq (ask-integer el '$even)
'$yes) '$zeroa)
(t '$zerob)))
(t 0)))))
(t (cond
((even1 el) '$inf)
((eq (ask-integer el '$integer) '$yes)
(cond ((eq (ask-integer el '$even) '$yes)
'$inf)
(t '$minf)))
(t '$infinity)))))
(loginprod? (throw 'lip? 'lip!))
(t '$und)))
((equal (simplify (ratdisrep (ridofab bl))) 1)
(if (infinityp el) (bylog expo bas) 1))
((and (equal (ridofab bl) -1)
(infinityp el)) '$ind) ;LB
((eq bl '$ind) (cond ((or (zerop2 el) (infinityp el)) '$und)
((not (equal (getsignl el) -1)) '$ind)
(t '$und)))
((eq el '$inf) (cond ((abeq1 bl)
(cond ((equal (getsignl bl) 1) 1)
(t '$ind)))
((abless1 bl)
(cond ((equal (getsignl bl) 1) '$zeroa)
(t 0)))
((equal (getsignl bl) -1) '$infinity)
((equal (getsignl (m1- bl)) 1) '$inf)
(t (throw 'limit t))))
((eq el '$minf) (cond ((abeq1 bl)
(cond ((equal (getsignl bl) 1) 1)
(t '$ind)))
((not (abless1 bl))
(cond ((equal (getsignl bl) 1) '$zeroa)
(t 0)))
((ratgreaterp 0 bl) '$infinity)
(t '$inf)))
((eq el '$infinity)
(if (equal val '$infinity)
'$und ;Not enough info to do anything.
(destructuring-let (((real-el . imag-el) (trisplit expo)))
(setq real-el (limit real-el var origval nil))
(cond ((eq real-el '$minf) 0)
((and (eq real-el '$inf)
(not (equal (ridofab (limit imag-el var origval nil))
0))) '$infinity)
((eq real-el '$infinity)
(throw 'limit t)) ;; don't really know real component
(t '$ind)))))
((eq el '$ind) '$ind)
((zerop2 el) 1)
(t (m^ bl el))))
(defun even1 (x)
(cond ((numberp x) (and (integerp x) (evenp x)))
((and (mnump x) (evenp (cadr x))))))
;; is absolute value less than one?
(defun abless1 (bl)
(setq bl (nmr bl))
(cond ((mnump bl)
(and (ratgreaterp 1. bl) (ratgreaterp bl -1.)))
(t (equal (getsignl (m1- `((mabs) ,bl))) -1.))))
;; is absolute value equal to one?
(defun abeq1 (bl)
(setq bl (nmr bl))
(cond ((mnump bl)
(or (equal 1. bl) (equal bl -1.)))
(t (equal (getsignl (m1- `((mabs) ,bl))) 0))))
(defmfun simplimit (exp var val &aux op)
(cond
((eq var exp) val)
((or (atom exp) (mnump exp)) exp)
((and (not (infinityp val))
(not (amongl '(%sin %cos %atanh %cosh %sinh %tanh mfactorial %log)
exp))
(not (inf-typep exp))
(simplimsubst val exp)))
((eq (caar exp) '%limit) (throw 'limit t))
((mplusp exp) (simplimplus exp))
((mtimesp exp) (simplimtimes (cdr exp)))
((mexptp exp) (simplimexpt (cadr exp) (caddr exp)
(limit (cadr exp) var val 'think)
(limit (caddr exp) var val 'think)))
((mlogp exp) (simplimln exp var val))
((member (caar exp) '(%sin %cos) :test #'eq)
(simplimsc exp (caar exp) (limit (cadr exp) var val 'think)))
((eq (caar exp) '%tan) (simplim%tan (cadr exp)))
((eq (caar exp) '%atan) (simplim%atan (limit (cadr exp) var val 'think)))
((eq (caar exp) '$atan2) (simplim%atan2 exp))
((member (caar exp) '(%sinh %cosh) :test #'eq)
(simplimsch (caar exp) (limit (cadr exp) var val 'think)))
((eq (caar exp) 'mfactorial)
(simplimfact exp var val))
((member (caar exp) '(%erf %tanh) :test #'eq)
(simplim%erf-%tanh (caar exp) (cadr exp)))
((member (caar exp) '(%acos %asin) :test #'eq)
(simplim%asin-%acos (caar exp) (limit (cadr exp) var val 'think)))
((eq (caar exp) '%atanh)
(simplim%atanh (limit (cadr exp) var val 'think) val))
((eq (caar exp) '%acosh)
(simplim%acosh (limit (cadr exp) var val 'think)))
((eq (caar exp) '%asinh)
(simplim%asinh (limit (cadr exp) var val 'think)))
((eq (caar exp) '%inverse_jacobi_ns)
(simplim%inverse_jacobi_ns (limit (cadr exp) var val 'think) (third exp)))
((eq (caar exp) '%inverse_jacobi_nc)
(simplim%inverse_jacobi_nc (limit (cadr exp) var val 'think) (third exp)))
((eq (caar exp) '%inverse_jacobi_sc)
(simplim%inverse_jacobi_sc (limit (cadr exp) var val 'think) (third exp)))
((eq (caar exp) '%inverse_jacobi_cs)
(simplim%inverse_jacobi_cs (limit (cadr exp) var val 'think) (third exp)))
((eq (caar exp) '%inverse_jacobi_dc)
(simplim%inverse_jacobi_dc (limit (cadr exp) var val 'think) (third exp)))
((eq (caar exp) '%inverse_jacobi_ds)
(simplim%inverse_jacobi_ds (limit (cadr exp) var val 'think) (third exp)))
((and (eq (caar exp) 'mqapply)
(eq (subfunname exp) '$li))
(simplim$li (subfunsubs exp) (subfunargs exp) val))
((and (eq (caar exp) 'mqapply)
(eq (subfunname exp) '$psi))
(simplim$psi (subfunsubs exp) (subfunargs exp) val))
((and (eq (caar exp) var)
(member 'array (car exp) :test #'eq)
(every #'(lambda (sub-exp)
(free sub-exp var))
(cdr exp)))
exp) ;LIMIT(B[I],B,INF); -> B[I]
((setq op (safe-get (mop exp) 'simplim%function))
;; Lookup a simplim%function from the property list
(funcall op exp var val))
(t (if $limsubst
(simplify (cons (operator-with-array-flag exp)
(mapcar #'(lambda (a)
(limit a var val 'think))
(cdr exp))))
(throw 'limit t)))))
(defun liminv (e)
(setq e (resimplify (subst (m// 1 var) var e)))
(let ((new-val (cond ((eq val '$zeroa) '$inf)
((eq val '$zerob) '$minf))))
(if new-val (let ((preserve-direction t))
($limit e var new-val)) (throw 'limit t))))
(defun simplimtimes (exp)
;; The following test
;; handles (-1)^x * 2^x => (-2)^x => $infinity
;; wants to avoid (-1)^x * 2^x => $ind * $inf => $und
(let ((try
(and (expfactorp (cons '(mtimes) exp) 1)
(expfactor (cons '(mtimes) exp) 1 var))))
(when try (return-from simplimtimes try)))
(let ((prod 1) (num 1) (denom 1)
(zf nil) (ind-flag nil) (inf-type nil)
(constant-zero nil) (constant-infty nil))
(dolist (term exp)
(let* ((loginprod? (involve term '(%log)))
(y (catch 'lip? (limit term var val 'think))))
(cond
;; limit failed due to log in product
((eq y 'lip!)
(return-from simplimtimes (liminv (cons '(mtimes simp) exp))))
;; If the limit is infinitesimal or zero
((zerop2 y)
(setf num (m* num term)
constant-zero (or constant-zero (not (among var term))))
(case y
($zeroa
(unless zf (setf zf 1)))
($zerob
(setf zf (* -1 (or zf 1))))))
;; If the limit is not some form of infinity or
;; undefined/indeterminate.
((not (member y '($inf $minf $infinity $ind $und) :test #'eq))
(setq prod (m* prod y)))
((eq y '$und) (return-from simplimtimes '$und))
((eq y '$ind) (setq ind-flag t))
;; Some form of infinity
(t
(setf denom (m* denom term)
constant-infty (or constant-infty (not (among var term))))
(unless (eq inf-type 'infinity)
(cond
((eq y '$infinity) (setq inf-type '$infinity))
((null inf-type) (setf inf-type y))
;; minf * minf or inf * inf
((eq y inf-type) (setf inf-type '$inf))
;; minf * inf
(t (setf inf-type '$minf))))))))
(cond
;; If there are zeros and infinities among the terms that are free of
;; VAR, then we have an expression like "inf * zeroa * f(x)" or
;; similar. That gives an undefined result. Note that we don't
;; necessarily have something undefined if only the zeros have a term
;; free of VAR. For example "zeroa * exp(-1/x) * 1/x" as x -> 0. And
;; similarly for the infinities.
((and constant-zero constant-infty) '$und)
;; If num=denom=1, we didn't find any explicit infinities or zeros, so we
;; either return the simplified product or ind
((and (eql num 1) (eql denom 1))
(if ind-flag '$ind prod))
;; If denom=1 (and so num != 1), we have some form of zero
((equal denom 1)
(if (null zf)
0
(let ((sign (getsignl prod)))
(if (or (not sign) (eq sign 'complex))
0
(ecase (* zf sign)
(1 '$zeroa)
(-1 '$zerob))))))
;; If num=1 (and so denom != 1), we have some form of infinity
((equal num 1)
(let ((sign ($csign prod)))
(cond
(ind-flag '$und)
((eq sign '$pos) inf-type)
((eq sign '$neg) (case inf-type
($inf '$minf)
($minf '$inf)
(t '$infinity)))
((member sign '($complex $imaginary)) '$infinity)
; sign is '$zero, $pnz, $pz, etc
(t (throw 'limit t)))))
;; Both zeros and infinities
(t
;; All bets off if there are some infinities or some zeros, but it
;; needn't be undefined (see above)
(when (or constant-zero constant-infty) (throw 'limit t))
(let ((ans (limit2 num (m^ denom -1) var val)))
(if ans
(simplimtimes (list prod ans))
(throw 'limit t)))))))
;;;PUT CODE HERE TO ELIMINATE FAKE SINGULARITIES??
(defun simplimplus (exp)
(cond ((memalike exp simplimplus-problems)
(throw 'limit t))
(t (unwind-protect
(progn (push exp simplimplus-problems)
(let ((ans (catch 'limit (simplimplus1 exp))))
(cond ((or (eq ans ())
(eq ans t)
(among '%limit ans))
(let ((new-exp (sratsimp exp)))
(cond ((not (alike1 exp new-exp))
(setq ans
(limit new-exp var val 'think))))
(cond ((or (eq ans ())
(eq ans t))
(throw 'limit t))
(t ans))))
(t ans))))
(pop simplimplus-problems)))))
(defun simplimplus1 (exp)
(prog (sum y infl infinityl minfl indl)
(setq sum 0.)
(do ((exp (cdr exp) (cdr exp)) (f))
((or y (null exp)) nil)
(setq f (limit (car exp) var val 'think))
(cond ((null f)
(throw 'limit t))
((eq f '$und) (setq y t))
((not (member f '($inf $minf $infinity $ind) :test #'eq))
(setq sum (m+ sum f)))
((eq f '$ind) (push (car exp) indl))
(infinityl (throw 'limit t))
;;;Don't know what to do with an '$infinity and an $inf or $minf
((eq f '$inf) (push (car exp) infl))
((eq f '$minf) (push (car exp) minfl))
((eq f '$infinity)
(cond ((or infl minfl)
(throw 'limit t))
(t (push (car exp) infinityl))))))
(cond (y (return '$und))
((not (or infl minfl indl infinityl))
(return (cond ((atom sum) sum)
((or (not (free sum '$zeroa))
(not (free sum '$zerob)))
(simpab sum))
(t sum))))
(t (cond ((null infinityl)
(cond (infl (cond ((null minfl) (return '$inf))
(t (go oon))))
(minfl (return '$minf))
((> (length indl) 1)
;; At this point we have a sum of '$ind. We factor
;; the sum and try again. This way we get the limit
;; of expressions like (a-b)*ind, where (a-b)--> 0.
(cond ((not (alike1 (setq y ($factorsum exp)) exp))
(return (limit y var val 'think)))
(t
(return '$ind))))
(t (return '$ind))))
(t (setq infl (append infl infinityl))))))
oon (setq y (m+l (append minfl infl)))
(cond ((alike1 exp (setq y (sratsimp (log-reduce (hyperex y)))))
(cond ((not (infinityp val))
(setq infl (cnv infl val)) ;THIS IS HORRIBLE!!!!
(setq minfl (cnv minfl val))))
(let ((val '$inf))
(cond ((every #'(lambda (j) (radicalp j var))
(append infl minfl))
(setq y (rheur infl minfl)))
(t (setq y (sheur infl minfl))))))
(t (setq y (limit y var val 'think))))
(cond ((or (eq y ())
(eq y t)) (return ()))
((infinityp y) (return y))
(t (return (m+ sum y))))))
;; Limit n/d, using heuristics on the order of growth.
(defun sheur0 (n d)
(let ((orig-n n))
(cond ((and (free n var)
(free d var))
(m// n d))
(t (setq n (cpa n d nil))
(cond ((equal n 1)
(cond ((oscip orig-n) '$und)
(t '$inf)))
((equal n -1) '$zeroa)
((equal n 0) (m// orig-n d)))))))
;;;L1 is a list of INF's and L2 is a list of MINF's. Added together
;;;it is indeterminate.
(defun sheur (l1 l2)
(let ((term (sheur1 l1 l2)))
(cond ((equal term '$inf) '$inf)
((equal term '$minf) '$minf)
(t (let ((new-num (m+l (mapcar #'(lambda (num-term)
(m// num-term (car l1)))
(append l1 l2)))))
(cond ((limit2 new-num (m// 1 (car l1)) var val))))))))
(defun frac (exp)
(cond ((atom exp) nil)
(t (setq exp (nformat exp))
(cond ((and (eq (caar exp) 'mquotient)
(among var (caddr exp)))
t)))))
(defun zerop2 (z) (=0 (ridofab z)))
(defun raise (a) (m+ a '$zeroa))
(defun lower (a) (m+ a '$zerob))
(defun sincoshk (exp1 l sc)
(cond ((equal l 1) (lower l))
((equal l -1) (raise l))
((among sc l) l)
((member val '($zeroa $zerob) :test #'eq) (spangside exp1 l))
(t l)))
(defun spangside (e l)
(setq e (behavior e var val))
(cond ((equal e 1) (raise l))
((equal e -1) (lower l))
(t l)))
;; get rid of zeroa and zerob
(defmfun ridofab (e)
(if (among '$zeroa e) (setq e (maxima-substitute 0 '$zeroa e)))
(if (among '$zerob e) (setq e (maxima-substitute 0 '$zerob e)))
e)
;; simple radical
;; returns true if exp is a polynomial raised to a numeric power
(defun simplerd (exp)
(and (mexptp exp)
(mnump (caddr exp)) ;; exponent must be a number - no variables
(polyp (cadr exp))))
(defun branch1 (exp val)
(cond ((polyp exp) nil)
((simplerd exp) (zerop2 (subin val (cadr exp))))
(t
(loop for v on (cdr exp)
when (branch1 (car v) val)
do (return v)))))
(defun branch (exp val)
(cond ((polyp exp) nil)
((or (simplerd exp) (mtimesp exp))
(branch1 exp val))
((mplusp exp)
(every #'(lambda (j) (branch j val)) (the list (cdr exp))))))
(defun ser0 (e n d val)
(cond ((and (branch n val) (branch d val))
(setq nn* nil)
(setq n (ser1 n))
(setq d (ser1 d))
;;;NN* gets set by POFX, called by SER1, to get a list of exponents.
(setq nn* (ratmin nn*))
(setq n (sratsimp (m^ n (m^ var nn*))))
(setq d (sratsimp (m^ d (m^ var nn*))))
(cond ((member val '($zeroa $zerob) :test #'eq) nil)
(t (setq val 0.)))
(radlim e n d))
(t (try-lhospital-quit n d nil))))
(defun rheur (l1 l2)
(prog (ans m1 m2)
(setq m1 (mapcar (function asymredu) l1))
(setq m2 (mapcar (function asymredu) l2))
(setq ans (m+l (append m1 m2)))
(cond ((rptrouble (m+l (append l1 l2)))
(return (limit (simplify (rdsget (m+l (append l1 l2))))
var
val
nil)))
((mplusp ans) (return (sheur m1 m2)))
(t (return (limit ans var val t))))))
(defun rptrouble (rp)
(not (equal (rddeg rp nil) (rddeg (asymredu rp) nil))))
(defun radicalp (exp var)
(cond ((polyinx exp var ()))
((mexptp exp) (cond ((equal (caddr exp) -1.)
(radicalp (cadr exp) var))
((simplerd exp))))
((member (caar exp) '(mplus mtimes) :test #'eq)
(every #'(lambda (j) (radicalp j var))
(cdr exp)))))
(defun involve (e nn*)
(declare (special var))
(cond ((atom e) nil)
((mnump e) nil)
((and (member (caar e) nn* :test #'eq) (among var (cdr e))) (cadr e))
(t (some #'(lambda (j) (involve j nn*)) (cdr e)))))
(defun notinvolve (exp nn*)
(cond ((atom exp) t)
((mnump exp) t)
((member (caar exp) nn* :test #'eq) (not (among var (cdr exp))))
((every #'(lambda (j) (notinvolve j nn*))
(cdr exp)))))
(defun sheur1 (l1 l2)
(prog (ans)
(setq l1 (m+l (maxi l1)))
(setq l2 (m+l (maxi l2)))
(setq ans (cpa l1 l2 t))
(return (cond ((=0 ans) (m+ l1 l2))
((equal ans 1.) '$inf)
(t '$minf)))))
(defun zero-lim (cpa-list)
(do ((l cpa-list (cdr l)))
((null l) ())
(and (eq (caar l) 'gen)
(zerop2 (limit (cadar l) var val 'think))
(return t))))
;; Compare order of growth for R1 and R2. The result is 0, -1, +1
;; depending on the relative order of growth. 0 is returned if R1 and
;; R2 have the same growth; -1 if R1 grows much more slowly than R2;
;; +1 if R1 grows much more quickly than R2.
(defun cpa (r1 r2 flag)
(let ((t1 r1)
(t2 r2))
(cond ((alike1 t1 t2) 0.)
((free t1 var)
(cond ((free t2 var) 0.)
(t (let ((lim-ans (limit1 t2 var val)))
(cond ((not (member lim-ans '($inf $minf $und $ind) :test #'eq)) 0.)
(t -1.))))))
((free t2 var)
(let ((lim-ans (limit1 t1 var val)))
(cond ((not (member lim-ans '($inf $minf $und $ind) :test #'eq)) 0.)
(t 1.))))
(t
;; Make T1 and T2 be a list of terms that are multipled
;; together.
(cond ((mtimesp t1) (setq t1 (cdr t1)))
(t (setq t1 (list t1))))
(cond ((mtimesp t2) (setq t2 (cdr t2)))
(t (setq t2 (list t2))))
;; Find the strengths of each term of T1 and T2
(setq t1 (mapcar (function istrength) t1))
(setq t2 (mapcar (function istrength) t2))
;; Compute the max of the strengths of the terms.
(let ((ans (ismax t1))
(d (ismax t2)))
(cond ((or (null ans) (null d)
(eq (car ans) 'gen) (eq (car d) 'gen)) 0.))
(if (eq (car ans) 'var) (setq ans (add-up-deg t1)))
(if (eq (car d) 'var) (setq d (add-up-deg t2)))
;; Cant just just compare dominating terms if there are
;; indeterm-inates present; e.g. X-X^2*LOG(1+1/X). So
;; check for this.
(cond ((or (zero-lim t1)
(zero-lim t2))
(cpa-indeterm ans d t1 t2 flag))
((isgreaterp ans d) 1.)
((isgreaterp d ans) -1.)
(t 0)))))))
(defun cpa-indeterm (ans d t1 t2 flag)
(cond ((not (eq (car ans) 'var))
(setq ans (gather ans t1) d (gather d t2))))
(let ((*indicator (and (eq (car ans) 'exp)
flag))
(test ()))
(setq test (cpa1 ans d))
(cond ((and (zerop1 test)
(or (equal ($radcan (m// (cadr ans) (cadr d))) 1.)
(and (polyp (cadr ans))
(polyp (cadr d))
(equal (limit (m// (cadr ans) (cadr d)) var val 'think)
1.))))
(let ((new-term1 (m// t1 (cadr ans)))
(new-term2 (m// t2 (cadr d))))
(cpa new-term1 new-term2 flag)))
(t 0))))
(defun add-up-deg (strengthl)
(do ((stl strengthl (cdr stl))
(poxl)
(degl))
((null stl) (list 'var (m*l poxl) (m+l degl)))
(cond ((eq (caar stl) 'var)
(push (cadar stl) poxl)
(push (caddar stl) degl)))))
(defun cpa1 (p1 p2)
(prog (flag s1 s2)
(cond ((eq (car p1) 'gen) (return 0.)))
(setq flag (car p1))
(setq p1 (cadr p1))
(setq p2 (cadr p2))
(cond
((eq flag 'var)
(setq s1 (istrength p1))
(setq s2 (istrength p2))
(return
(cond
((isgreaterp s1 s2) 1.)
((isgreaterp s2 s1) -1.)
(*indicator
(setq *indicator nil)
(cond
((and (poly? p1 var) (poly? p2 var))
(setq p1 (m- p1 p2))
(cond ((zerop1 p1) 0.)
(t (getsignl (hot-coef p1)))))
(t
(setq s1
(rheur (list p1)
(list (m*t -1 p2))))
(cond ((zerop2 s1) 0.)
((ratgreaterp s1 0.) 1.)
(t -1.)))))
(t 0.))))
((eq flag 'exp)
(setq p1 (caddr p1))
(setq p2 (caddr p2))
(cond ((and (poly? p1 var) (poly? p2 var))
(setq p1 (m- p1 p2))
(return (cond ((or (zerop1 p1)
(not (among var p1)))
0.)
(t (getsignl (hot-coef p1))))))
((and (radicalp p1 var) (radicalp p2 var))
(setq s1
(rheur (list p1)
(list (m*t -1 p2))))
(return (cond ((eq s1 '$inf) 1.)
((eq s1 '$minf) -1.)
((mnump s1)
(cond ((ratgreaterp s1 0.) 1.)
((ratgreaterp 0. s1) -1.)
(t 0.)))
(t 0.))))
(t (return (cpa p1 p2 t)))))
((eq flag 'log)
(setq p1 (try-lhospital (asymredu p1) (asymredu p2) nil))
(return (cond ((zerop2 p1) -1.)
((real-infinityp p1) 1.)
(t 0.)))))))
;;;EXPRESSIONS TO ISGREATERP ARE OF THE FOLLOWING FORMS
;;; ("VAR" POLY DEG)
;;; ("EXP" %E^EXP)
;;; ("LOG" LOG(EXP))
;;; ("FACT" <A FACTORIAL EXPRESSION>)
;;; ("GEN" <ANY OTHER TYPE OF EXPRESSION>)
(defun isgreaterp (a b)
(let ((ta (car a))
(tb (car b)))
(cond ((or (eq ta 'gen)
(eq tb 'gen)) ())
((and (eq ta tb) (eq ta 'var))
(ratgreaterp (caddr a) (caddr b)))
((and (eq ta tb) (eq ta 'exp))
;; Both are exponential order of infinity. Check the
;; exponents to determine which exponent is bigger.
(eq (limit (m- `((%log) ,(second a)) `((%log) ,(second b)))
var val 'think)
'$inf))
((member ta (cdr (member tb '(num log var exp fact gen) :test #'eq)) :test #'eq)))))
(defun ismax (l)
;; Preprocess the list of products. Separate the terms that
;; exponentials and those that don't. Actually multiply the
;; exponential terms together to form a single term. Pass this and
;; the rest to ismax-core to find the max.
(let (exp-terms non-exp-terms)
(dolist (term l)
(if (eq 'exp (car term))
(push term exp-terms)
(push term non-exp-terms)))
;; Multiply the exp-terms together
(if exp-terms
(let ((product 1))
;;(format t "exp-terms = ~A~%" exp-terms)
(dolist (term exp-terms)
(setf product (simplify (mul product (second term)))))
;;(format t "product = ~A~%" product)
(setf product `(exp ,($logcontract product)))
;;(format t "product = ~A~%" product)
(ismax-core (cons product non-exp-terms)))
(ismax-core l))))
(defun ismax-core (l)
(cond ((null l) ())
((atom l) ())
((= (length l) 1) (car l)) ;If there is only 1 thing give it back.
((every #'(lambda (x)
(not (eq (car x) 'gen))) l)
(do ((l1 (cdr l) (cdr l1))
(temp-ans (car l))
(ans ()))
((null l1) ans)
(cond ((isgreaterp temp-ans (car l1))
(setq ans temp-ans))
((isgreaterp (car l1) temp-ans)
(setq temp-ans (car l1))
(setq ans temp-ans))
(t (setq ans ())))))
(t ())))
;RETURNS LIST OF HIGH TERMS
(defun maxi (all)
(cond ((atom all) nil)
(t (do ((l (cdr all) (cdr l))
(hi-term (car all))
(total 1) ; running total constant factor of hi-term
(hi-terms (ncons (car all)))
(compare nil))
((null l) (if (zerop2 total) ; if high-order terms cancel each other
all ; keep everything
hi-terms)) ; otherwise return list of high terms
(setq compare (limit (m// (car l) hi-term) var val 'think))
(cond
((or (infinityp compare)
(and (eq compare '$und)
(zerop2 (limit (m// hi-term (car l)) var val 'think))))
(setq total 1) ; have found new high term
(setq hi-terms (ncons (setq hi-term (car l)))))
((zerop2 compare) nil)
;; COMPARE IS IND, FINITE-VALUED, or und in both directions
(t ; add to list of high terms
(setq total (m+ total compare))
(setq hi-terms (append hi-terms (ncons (car l))))))))))
(defun ratmax (l)
(prog (ans)
(cond ((atom l) (return nil)))
l1 (setq ans (car l))
l2 (setq l (cdr l))
(cond ((null l) (return ans))
((ratgreaterp ans (car l)) (go l2))
(t (go l1)))))
(defun ratmin (l)
(prog (ans)
(cond ((atom l) (return nil)))
l1 (setq ans (car l))
l2 (setq l (cdr l))
(cond ((null l) (return ans))
((ratgreaterp (car l) ans) (go l2))
(t (go l1)))))
(defun pofx (e)
(cond ((atom e)
(cond ((eq e var)
(push 1 nn*))
(t ())))
((or (mnump e) (not (among var e))) nil)
((and (mexptp e) (eq (cadr e) var))
(push (caddr e) nn*))
((simplerd e) nil)
(t (mapc #'pofx (cdr e)))))
(defun ser1 (e)
(cond ((member val '($zeroa $zerob) :test #'eq) nil)
(t (setq e (subin (m+ var val) e))))
(setq e (rdfact e))
(cond ((pofx e) e)))
(defun gather (ind l)
(prog (ans)
(setq ind (car ind))
loop (cond ((null l)
(return (list ind (m*l ans))))
((equal (caar l) ind)
(push (cadar l) ans)))
(setq l (cdr l))
(go loop)))
; returns rough class-of-growth of term
(defun istrength (term)
(cond ((mnump term) (list 'num term))
((atom term) (cond ((eq term var)
(list 'var var 1.))
(t (list 'num term))))
((not (among var term)) (list 'num term))
((radicalp term var) (list 'var term (rddeg term nil)))
((mplusp term)
(let ((temp (ismax (mapcar #'istrength (cdr term)))))
(cond ((not (null temp)) temp)
(t `(gen ,term)))))
((mtimesp term)
(let ((temp (mapcar #'istrength (cdr term)))
(temp1 ()))
(setq temp1 (ismax temp))
(cond ((null temp1) `(gen ,term))
((eq (car temp1) 'log) `(log ,temp))
((eq (car temp1) 'var) (add-up-deg temp))
(t `(gen ,temp)))))
((and (mexptp term)
(real-infinityp (limit term var val t)))
(let ((logterm (logred term)))
(cond ((and (among var (caddr term))
(member (car (istrength logterm))
'(var exp fact) :test #'eq)
(real-infinityp (limit logterm var val t)))
(list 'exp (m^ '$%e logterm)))
((not (among var (caddr term)))
(let ((temp (istrength (cadr term))))
(cond ((not (alike1 temp term))
(rplaca (cdr temp) term)
(and (eq (car temp) 'var)
(rplaca (cddr temp)
(m* (caddr temp) (caddr term))))
temp)
(t `(gen ,term)))))
(t `(gen ,term)))))
((and (eq (caar term) '%log)
(real-infinityp (limit term var val t)))
(let ((stren (istrength (cadr term))))
(cond ((member (car stren) '(log var) :test #'eq)
`(log ,term))
((and (eq (car stren) 'exp)
(eq (caar (second stren)) 'mexpt))
(istrength (logred (second stren))))
(t `(gen ,term)))))
((eq (caar term) 'mfactorial)
(list 'fact term))
((let ((temp (hyperex term)))
(and (not (alike1 term temp))
(istrength temp))))
(t (list 'gen term))))
;; log reduce - returns log of s1
(defun logred (s1)
(or (and (eq (cadr s1) '$%e) (caddr s1))
(m* (caddr s1) `((%log) ,(cadr s1)))))
(defun asymredu (rd)
(cond ((atom rd) rd)
((mnump rd) rd)
((not (among var rd)) rd)
((polyinx rd var t))
((simplerd rd)
(cond ((eq (cadr rd) var) rd)
(t (mabs-subst
(factor ($expand (m^ (polyinx (cadr rd) var t)
(caddr rd))))
var
val))))
(t (simplify (cons (list (caar rd))
(mapcar #'asymredu (cdr rd)))))))
(defun rdfact (rd)
(let ((dn** ()) (nn** ()))
(cond ((atom rd) rd)
((mnump rd) rd)
((not (among var rd)) rd)
((polyp rd)
(factor rd))
((simplerd rd)
(cond ((eq (cadr rd) var) rd)
(t (setq dn** (caddr rd))
(setq nn** (factor (cadr rd)))
(cond ((mtimesp nn**)
(m*l (mapcar #'(lambda (j) (m^ j dn**))
(cdr nn**))))
(t rd)))))
(t (simplify (cons (ncons (caar rd))
(mapcar #'rdfact (cdr rd))))))))
(defun cnv (expl val)
(mapcar #'(lambda (e)
(maxima-substitute (cond ((eq val '$zerob)
(m* -1 (m^ var -1)))
((eq val '$zeroa)
(m^ var -1))
((eq val '$minf)
(m* -1 var))
(t (m^ (m+ var (m* -1 val)) -1.)))
var
e))
expl))
(defun pwtaylor (exp var l terms)
(prog (coef ans c mc)
(cond ((=0 terms) (return nil)) ((=0 l) (setq mc t)))
(setq c 0.)
(go tag1)
loop (setq c (1+ c))
(cond ((or (> c 10.) (equal c terms))
(return (m+l ans)))
(t (setq exp (sdiff exp var))))
tag1 (setq coef ($radcan (subin l exp)))
(cond ((=0 coef) (setq terms (1+ terms)) (go loop)))
(setq
ans
(append
ans
(list
(m* coef
(m^ `((mfactorial) ,c) -1)
(m^ (if mc var (m+t (m*t -1 l) var)) c)))))
(go loop)))
(defun rdsget (e)
(cond ((polyp e) e)
((simplerd e) (rdtay e))
(t (cons (list (caar e))
(mapcar #'rdsget (cdr e))))))
(defun rdtay (rd)
(cond (limit-using-taylor ($ratdisrep ($taylor rd var val 1.)))
(t (lrdtay rd))))
(defun lrdtay (rd)
(prog (varlist p c e d $ratfac)
(setq varlist (ncons var))
(setq p (ratnumerator (cdr (ratrep* (cadr rd)))))
(cond ((< (length p) 3.) (return rd)))
(setq e (caddr rd))
(setq d (pdegr p))
(setq c (m^ var (m* d e)))
(setq d ($ratsimp (varinvert (m* (pdis p) (m^ var (m- d)))
var)))
(setq d (pwtaylor (m^ d e) var 0. 3.))
(return (m* c (varinvert d var)))))
(defun varinvert (e var) (subin (m^t var -1.) e))
(defun deg (p)
(prog ((varlist (list var)))
(return (let (($ratfac nil))
(newvar p)
(pdegr (cadr (ratrep* p)))))))
(defun rat-no-ratfac (e)
(let (($ratfac nil))
(newvar e)
(ratrep* e)))
(setq low* nil)
(defun rddeg (rd low*)
(cond ((or (mnump rd)
(not (among var rd)))
0)
((polyp rd)
(deg rd))
((simplerd rd)
(m* (deg (cadr rd)) (caddr rd)))
((mtimesp rd)
(addn (mapcar #'(lambda (j)
(rddeg j low*))
(cdr rd)) nil))
((and (mplusp rd)
(setq rd (andmapcar #'(lambda (j) (rddeg j low*))
(cdr rd))))
(cond (low* (ratmin rd))
(t (ratmax rd))))))
(defun pdegr (pf)
(cond ((or (atom pf) (not (eq (caadr (ratf var)) (car pf))))
0)
(low* (cadr (reverse pf)))
(t (cadr pf))))
;;There is some confusion here. We need to be aware of Branch cuts etc....
;;when doing this section of code. It is not very carefully done so there
;;are bugs still lurking. Another misfortune is that LIMIT or its inferiors
;;somtimes decides to change the limit VAL in midstream. This must be corrected
;;since LIMIT's interaction with the data base environment must be maintained.
;;I'm not sure that this code can ever be called with VAL other than $INF but
;;there is a hook in the first important cond clause to cathc them anyway.
(defun asy (n d)
(let ((num-power (rddeg n nil))
(den-power (rddeg d nil))
(coef ()) (coef-sign ()) (power ()))
(setq coef (m// ($ratcoef ($expand n) var num-power)
($ratcoef ($expand d) var den-power)))
(setq coef-sign (getsignl coef))
(setq power (m// num-power den-power))
(cond ((eq (ask-integer power '$integer) '$integer)
(cond ((eq (ask-integer power '$even) '$even) '$even)
(t '$odd)))) ;Can be extended from here.
(cond ((or (eq val '$minf)
(eq val '$zerob)
(eq val '$zeroa)
(equal val 0)) ()) ;Can be extended to cover some these.
((ratgreaterp den-power num-power)
(cond ((equal coef-sign 1.) '$zeroa)
((equal coef-sign -1) '$zerob)
((equal coef-sign 0) 0)
(t 0)))
((ratgreaterp num-power den-power)
(cond ((equal coef-sign 1.) '$inf)
((equal coef-sign -1) '$minf)
((equal coef-sign 0) nil) ; should never be zero
((null coef-sign) '$infinity)))
(t coef))))
(defun radlim (e n d)
(prog (nl dl)
(cond ((eq val '$infinity) (throw 'limit nil))
((eq val '$minf)
(setq nl (m* var -1))
(setq n (subin nl n))
(setq d (subin nl d))
(setq val '$inf))) ;This is the Culprit. Doesn't tell the DATABASE.
(cond ((eq val '$inf)
(setq nl (asymredu n))
(setq dl (asymredu d))
(cond
((or (rptrouble n) (rptrouble d))
(return (limit (m* (rdsget n) (m^ (rdsget d) -1.)) var val t)))
(t (return (asy nl dl))))))
(setq nl (limit n var val t))
(setq dl (limit d var val t))
(cond ((and (zerop2 nl) (zerop2 dl))
(cond ((or (polyp n) (polyp d))
(return (try-lhospital-quit n d t)))
(t (return (ser0 e n d val)))))
(t (return ($radcan (ratrad (m// n d) n d nl dl)))))))
(defun ratrad (e n d nl dl)
(prog (n1 d1)
(cond ((equal nl 0) (return 0))
((zerop2 dl)
(setq n1 nl)
(cond ((equal dl 0) (setq d1 '$infinity)) ;No direction Info.
((eq dl '$zeroa)
(setq d1 '$inf))
((equal (setq d (behavior d var val)) 1)
(setq d1 '$inf))
((equal d -1) (setq d1 '$minf))
(t (throw 'limit nil))))
((zerop2 nl)
(setq d1 dl)
(cond ((equal (setq n (behavior n var val)) 1)
(setq n1 '$zeroa))
((equal n -1) (setq n1 '$zerob))
(t (setq n1 0))))
(t (return ($radcan (ridofab (subin val e))))))
(return (simplimtimes (list n1 d1)))))
;;; Limit of the Logarithm function
(defun simplimln (expr var val)
;; We need to be careful with log because of the branch cut on the
;; negative real axis. So we look at the imagpart of the argument. If
;; it's not identically zero, we compute the limit of the real and
;; imaginary parts and combine them. Otherwise, we can use the
;; original method for real limits.
(let ((arglim (limit (cadr expr) var val 'think)))
(cond ((eq arglim '$inf) '$inf)
((member arglim '($minf $infinity) :test #'eq)
'$infinity)
((member arglim '($ind $und) :test #'eq) '$und)
((equal ($imagpart (cadr expr)) 0)
;; argument is real.
(let* ((real-lim (ridofab arglim)))
(if (=0 real-lim)
(cond ((eq arglim '$zeroa) '$minf)
((eq arglim '$zerob) '$infinity)
(t (let ((dir (behavior (cadr expr) var val)))
(cond ((equal dir 1) '$minf)
((equal dir -1) '$infinity)
(t (throw 'limit t))))))
(cond ((equal arglim 1)
(let ((dir (behavior (cadr expr) var val)))
(if (equal dir 1) '$zeroa 0)))
(t
;; Call simplifier to get value at the limit
;; of the argument.
(simplify `((%log) ,real-lim)))))))
(t
;; argument is complex.
(destructuring-let* (((rp . ip) (trisplit expr)))
(if (eq (setq rp (limit rp var val 'think)) '$minf)
;; Realpart is minf, do not return minf+%i*ip but infinity.
'$infinity
;; Return a complex limit value.
(add rp (mul '$%i (limit ip var val 'think)))))))))
;;; Limit of the Factorial function
(defun simplimfact (expr var val)
(let* ((arglim (limit (cadr expr) var val 'think)) ; Limit of the argument.
(arg2 arglim))
(cond ((eq arglim '$inf) '$inf)
((member arglim '($minf $infinity $und $ind) :test #'eq) '$und)
((and (or (maxima-integerp arglim)
(setq arg2 (integer-representation-p arglim)))
(eq ($sign arg2) '$neg))
;; A negative integer or float or bigfloat representation.
(let ((dir (limit (add (cadr expr) (mul -1 arg2)) var val 'think))
(even (mevenp arg2)))
(cond ((or (and even
(eq dir '$zeroa))
(and (not even)
(eq dir '$zerob)))
'$minf)
((or (and even
(eq dir '$zerob))
(and (not even)
(eq dir '$zeroa)))
'$inf)
(t (throw 'limit nil)))))
(t
;; Call simplifier to get value at the limit of the argument.
(simplify (list '(mfactorial) arglim))))))
(defun simplim%erf-%tanh (fn arg)
(let ((arglim (limit arg var val 'think)))
(cond ((eq arglim '$inf) 1)
((eq arglim '$minf) -1)
((eq arglim '$infinity)
(destructuring-let (((rpart . ipart) (trisplit arg))
(ans ()) (rlim ()))
(setq rlim (limit rpart var origval 'think))
(cond ((eq fn '%tanh)
(cond ((equal rlim '$inf) 1)
((equal rlim '$minf) -1)))
((eq fn '%erf)
(setq ans
(limit (m* rpart (m^t ipart -1)) var origval 'think))
(setq ans ($asksign (m+ `((mabs) ,ans) -1)))
(cond ((or (eq ans '$pos) (eq ans '$zero))
(cond ((eq rlim '$inf) 1)
((eq rlim '$minf) -1)
(t '$und)))
(t '$und))))))
((eq arglim '$und) '$und)
((member arglim '($zeroa $zerob $ind) :test #'eq) arglim)
;;;Ignore tanh(%pi/2*%I) and multiples of the argument.
(t
;; erf (or tanh) of a known value is just erf(arglim).
(simplify (list (ncons fn) arglim))))))
(defun simplim%atan (exp1)
(cond ((zerop2 exp1) exp1)
((member exp1 '($und $infinity) :test #'eq)
(throw 'limit ()))
((eq exp1 '$inf) half%pi)
((eq exp1 '$minf)
(m*t -1. half%pi))
(t `((%atan) ,exp1))))
;; Most instances of atan2 are simplified to expressions in atan
;; by simpatan2 before we get to this point. This routine handles
;; tricky cases such as limit(atan2((x^2-2), x^3-2*x), x, sqrt(2), minus).
;; Taylor and Gruntz cannot handle the discontinuity at atan(0, -1)
(defun simplim%atan2 (exp)
(let* ((exp1 (cadr exp))
(exp2 (caddr exp))
(lim1 (limit (cadr exp) var val 'think))
(lim2 (limit (caddr exp) var val 'think))
(sign2 ($csign lim2)))
(cond ((and (zerop2 lim1) ;; atan2( 0+, + )
(eq sign2 '$pos))
lim1) ;; result is zeroa or zerob
((and (eq lim1 '$zeroa)
(eq sign2 '$neg))
'$%pi)
((and (eq lim1 '$zerob) ;; atan2( 0-, - )
(eq sign2 '$neg))
(m- '$%pi))
((and (eq lim1 '$zeroa) ;; atan2( 0+, 0 )
(zerop2 lim2))
(simplim%atan (limit (m// exp1 exp2) var val 'think)))
((and (eq lim1 '$zerob) ;; atan2( 0-, 0 )
(zerop2 lim2))
(m+ (porm (eq lim2 '$zeroa) '$%pi)
(simplim%atan (limit (m// exp1 exp2) var val 'think))))
((member lim1 '($und $infinity) :test #'eq)
(throw 'limit ()))
((eq lim1 '$inf) half%pi)
((eq lim1 '$minf)
(m*t -1. half%pi))
(t (take '($atan2) lim1 lim2)))))
(defun simplimsch (sch arg)
(cond ((real-infinityp arg)
(cond ((eq sch '%sinh) arg) (t '$inf)))
((eq arg '$infinity) '$infinity)
((eq arg '$ind) '$ind)
((eq arg '$und) '$und)
(t (let (($exponentialize t))
(resimplify (list (ncons sch) (ridofab arg)))))))
;; simple limit of sin and cos
(defun simplimsc (exp fn arg)
(cond ((member arg '($inf $minf $ind) :test #'eq) '$ind)
((member arg '($und $infinity) :test #'eq)
(throw 'limit ()))
((member arg '($zeroa $zerob) :test #'eq)
(cond ((eq fn '%sin) arg)
(t (m+ 1 '$zerob))))
((sincoshk exp
(simplify (list (ncons fn) (ridofab arg)))
fn))))
(defun simplim%tan (arg)
(let ((arg1 (ridofab (limit arg var val 'think))))
(cond
((member arg1 '($inf $minf $infinity $ind $und) :test #'eq) '$und)
((pip arg1)
(let ((c (trigred (pip arg1))))
(cond ((not (equal ($imagpart arg1) 0)) '$infinity)
((and (eq (caar c) 'rat)
(equal (caddr c) 2)
(> (cadr c) 0))
(setq arg1 (behavior arg var val))
(cond ((= arg1 1) '$inf)
((= arg1 -1) '$minf)
(t '$und)))
((and (eq (caar c) 'rat)
(equal (caddr c) 2)
(< (cadr c) 0))
(setq arg1 (behavior arg var val))
(cond ((= arg1 1) '$minf)
((= arg1 -1) '$inf)
(t '$und)))
(t (throw 'limit ())))))
((equal arg1 0)
(setq arg1 (behavior arg var val))
(cond ((equal arg1 1) '$zeroa)
((equal arg1 -1) '$zerob)
(t 0)))
(t (simp-%tan (list '(%tan) arg1) 1 nil)))))
(defun simplim%asinh (arg)
(cond ((member arg '($inf $minf $zeroa $zerob $ind $und) :test #'eq)
arg)
((eq arg '$infinity) '$und)
(t (simplify (list '(%asinh) (ridofab arg))))))
(defun simplim%acosh (arg)
(cond ((equal (ridofab arg) 1) '$zeroa)
((eq arg '$inf) arg)
((eq arg '$minf) '$infinity)
((member arg '($und $ind $infinity) :test #'eq) '$und)
(t (simplify (list '(%acosh) (ridofab arg))))))
(defun simplim%atanh (arg dir)
;; Compute limit(atanh(x),x,arg). If ARG is +/-1, we need to take
;; into account which direction we're approaching ARG.
(cond ((zerop2 arg) arg)
((member arg '($ind $und $infinity $minf $inf) :test #'eq)
'$und)
((equal (setq arg (ridofab arg)) 1.)
;; The limit at 1 should be complex infinity because atanh(x)
;; is complex for x > 1, but inf if we're approaching 1 from
;; below.
(if (eq dir '$zerob)
'$inf
'$infinity))
((equal arg -1.)
;; Same as above, except for the limit is at -1.
(if (eq dir '$zeroa)
'$minf
'$infinity))
(t (simplify (list '(%atanh) arg)))))
(defun simplim%asin-%acos (fn arg)
(cond ((member arg '($und $ind $inf $minf $infinity) :test #'eq)
'$und)
((and (eq fn '%asin)
(member arg '($zeroa $zerob) :test #'eq))
arg)
(t (simplify (list (ncons fn) (ridofab arg))))))
(defun simplim$li (order arg val)
(cond ((and (not (equal (length order) 1))
(not (equal (length arg) 1))) (throw 'limit ()))
(t (setq order (car order) arg (car arg))))
(cond ((not (equal order 2)) (throw 'limit ()))
(t (destructuring-let (((rpart . ipart) (trisplit arg)))
(cond ((not (equal ipart 0)) (throw 'limit ()))
(t (setq rpart (limit rpart var val 'think))
(cond ((eq rpart '$zeroa) '$zeroa)
((eq rpart '$zerob) '$zerob)
((eq rpart '$minf) '$minf)
((eq rpart '$inf) '$infinity)
(t (simplify (subfunmake '$li (list order)
(list rpart)))))))))))
(defun simplim$psi (order arg val)
(cond ((and (not (equal (length order) 1))
(not (equal (length arg) 1))) (throw 'limit ()))
(t (setq order (car order) arg (car arg))))
(cond ((equal order 0)
(destructuring-let (((rpart . ipart) (trisplit arg)))
(cond ((not (equal ipart 0)) (throw 'limit ()))
(t (setq rpart (limit rpart var val 'think))
(cond ((eq rpart '$zeroa) '$minf)
((eq rpart '$zerob) '$inf)
((eq rpart '$inf) '$inf)
((eq rpart '$minf) '$und)
((equal (getsignl rpart) -1) (throw 'limit ()))
(t (simplify (subfunmake '$psi (list order)
(list rpart)))))))))
((and (integerp order) (> order 0)
(equal (limit arg var val 'think) '$inf))
(cond ((mevenp order) '$zerob)
((moddp order) '$zeroa)
(t (throw 'limit ()))))
(t (throw 'limit ()))))
(defun simplim%inverse_jacobi_ns (arg m)
(if (or (eq arg '$inf) (eq arg '$minf))
0
`((%inverse_jacobi_ns) ,arg ,m)))
(defun simplim%inverse_jacobi_nc (arg m)
(if (or (eq arg '$inf) (eq arg '$minf))
`((%elliptic_kc) ,m)
`((%inverse_jacobi_nc) ,arg ,m)))
(defun simplim%inverse_jacobi_sc (arg m)
(if (or (eq arg '$inf) (eq arg '$minf))
`((%elliptic_kc) ,m)
`((%inverse_jacobi_sc) ,arg ,m)))
(defun simplim%inverse_jacobi_dc (arg m)
(if (or (eq arg '$inf) (eq arg '$minf))
`((%elliptic_kc) ,m)
`((%inverse_jacobi_dc) ,arg ,m)))
(defun simplim%inverse_jacobi_cs (arg m)
(if (or (eq arg '$inf) (eq arg '$minf))
0
`((%inverse_jacobi_cs) ,arg ,m)))
(defun simplim%inverse_jacobi_ds (arg m)
(if (or (eq arg '$inf) (eq arg '$minf))
0
`((%inverse_jacobi_ds) ,arg ,m)))
(setf (get '%signum 'simplim%function) 'simplim%signum)
(defun simplim%signum (e x pt)
(let* ((e (limit (cadr e) x pt 'think)) (sgn (mnqp e 0)))
(cond ((eq t sgn) (take '(%signum) e)) ;; limit of argument of signum is not zero
((eq nil sgn) '$und) ;; limit of argument of signum is zero (noncontinuous)
(t (throw 'limit nil))))) ;; don't know
;; more functions for limit to handle
(defun lfibtophi (e)
(cond ((not (involve e '($fib))) e)
((eq (caar e) '$fib)
(let ((lnorecurse t))
($fibtophi (list '($fib) (lfibtophi (cadr e))) lnorecurse)))
(t (cons (car e)
(mapcar #'lfibtophi (cdr e))))))
;;; FOLLOWING CODE MAKES $LDEFINT WORK
(defmfun $ldefint (exp var ll ul &aux $logabs ans a1 a2)
(setq $logabs t ans (sinint exp var)
a1 ($limit ans var ul '$minus)
a2 ($limit ans var ll '$plus))
(and (member a1 '($inf $minf $infinity $und $ind) :test #'eq)
(setq a1 (nounlimit ans var ul)))
(and (member a2 '($inf $minf $infinity $und $ind) :test #'eq)
(setq a2 (nounlimit ans var ll)))
($expand (m- a1 a2)))
(defun nounlimit (exp var val)
(setq exp (restorelim exp))
(nconc (list '(%limit) exp var (ridofab val))
(cond ((eq val '$zeroa) '($plus))
((eq val '$zerob) '($minus)))))
;; replace noun form of %derivative and indefinite %integrate with gensym.
;; prevents substitution x -> x+1 for limit('diff(x+2,x), x, 1)
;;
;; however, this doesn't work for limit('diff(x+2,x)/x, x, inf)
;; because the rest of the limit code thinks the gensym is const wrt x.
(defun hide (exp)
(cond ((atom exp) exp)
((or (eq '%derivative (caar exp))
(and (eq '%integrate (caar exp)) ; indefinite integral
(null (cdddr exp))))
(hidelim exp (caar exp)))
(t (cons (car exp) (mapcar 'hide (cdr exp))))))
(defun hidelim (exp func)
(setq func (gensym))
(putprop func
(hidelima exp)
'limitsub)
func)
(defun hidelima (e)
(if (among var e)
(nounlimit e var val)
e))
;;;Used by Defint also.
(defun oscip (e)
(or (involve e '(%sin %cos %tan))
(among '$%i (%einvolve e))))
(defun %einvolve (e)
(when (among '$%e e) (%einvolve01 e)))
(defun %einvolve01 (e)
(cond ((atom e) nil)
((mnump e) nil)
((and (mexptp e)
(eq (cadr e) '$%e)
(among var (caddr e)))
(caddr e))
(t (some #'%einvolve (cdr e)))))
(declare-top (unspecial *indicator nn* dn* exp var val origval taylored
$tlimswitch logcombed lhp? lhcount $ratfac))
;; GRUNTZ ALGORITHM
;; Dominik Gruntz
;; "On Computing Limits in a Symbolic Manipulation System"
;; PhD Dissertation ETH Zurich 1996
;; The algorithm identifies the most rapidly varying (MRV) subexpression,
;; replaces it with a new variable w, rewrites the expression in terms
;; of the new variable, and then repeats.
;; The algorithm doesn't handle oscillating functions, so it can't do things like
;; limit(sin(x)/x, x, inf).
;; To handle limits involving functions like gamma(x) and erf(x), the
;; gruntz algorithm requires them to be written in terms of asymptotic
;; expansions, which maxima cannot currently do.
;; The algorithm assumes that everything is real, so it can't
;; currently handle limit((-2)^x, x, inf).
;; This is one of the methods used by maxima's $limit.
;; It is also directly available to the user as $gruntz.
;; most rapidly varying subexpression of expression exp with respect to limit variable var.
;; returns a list of subexpressions which are in the same MRV equivalence class.
(defun mrv (exp var)
(cond ((freeof var exp)
nil)
((eq var exp)
(list var))
((mtimesp exp)
(mrv-max (mrv (cadr exp) var)
(mrv (m*l (cddr exp)) var)
var))
((mplusp exp)
(mrv-max (mrv (cadr exp) var)
(mrv (m+l (cddr exp)) var)
var))
((mexptp exp)
(cond ((freeof var (caddr exp))
(mrv (cadr exp) var))
((member (limitinf (logred exp) var) '($inf $minf) :test #'eq)
(mrv-max (list exp) (mrv (caddr exp) var) var))
(t (mrv-max (mrv (cadr exp) var) (mrv (caddr exp) var) var))))
((mlogp exp)
(mrv (cadr exp) var))
((equal (length (cdr exp)) 1)
(mrv (cadr exp) var))
((equal (length (cdr exp)) 2)
(mrv-max (mrv (cadr exp) var)
(mrv (caddr exp) var)
var))
(t (tay-error "mrv not implemented" exp))))
;; takes two lists of expresions, f and g, and limit variable var.
;; members in each list are assumed to be in same MRV equivalence
;; class. returns MRV set of the union of the inputs - either f or g
;; or the union of f and g.
(defun mrv-max (f g var)
(prog ()
(cond ((not f)
(return g))
((not g)
(return f))
((intersection f g)
(return (union f g))))
(let ((c (mrv-compare (car f) (car g) var)))
(cond ((eq c '>)
(return f))
((eq c '<)
(return g))
((eq c '=)
(return (union f g)))
(t (merror "MRV-MAX: expected '>' '<' or '='; found: ~M" c))))))
(defun mrv-compare (a b var)
(let ((c (limitinf (m// `((%log) ,a) `((%log) ,b)) var)))
(cond ((equal c 0)
'<)
((member c '($inf $minf) :test #'eq)
'>)
(t '=))))
;; rewrite expression exp by replacing members of MRV set omega with
;; expressions in terms of new variable wsym. return cons pair of new
;; version of exp and the log of the new variable wsym.
(defun mrv-rewrite (exp omega var wsym)
(setq omega (sort omega (lambda (x y) (> (length (mrv x var))
(length (mrv y var))))))
(let* ((g (car (last omega)))
(logg (logred g))
(sig (equal (mrv-sign logg var) 1))
(w (if sig (m// 1 wsym) wsym))
(logw (if sig (m* -1 logg) logg)))
(mapcar (lambda (x y)
;;(mtell "y:~M x:~M exp:~M~%" y x exp)
(setq exp (syntactic-substitute y x exp)))
omega
(mapcar (lambda (f) ;; rewrite each element of omega
(let* ((logf (logred f))
(c (mrv-leadterm (m// logf logg) var nil)))
(cond ((not (equal (cadr c) 0))
(merror "MRV-REWRITE: expected leading term to be constant in ~M" c)))
;;(mtell "logg: ~M logf: ~M~%" logg logf)
(m* (m^ w (car c))
(m^ '$%e (m- logf
(m* (car c) logg))))))
omega))
(cons exp logw)))
;; returns list of two elements: coeff and exponent of leading term of exp,
;; after rewriting exp in term of its MRV set omega.
(defun mrv-leadterm (exp var omega)
(prog ((new-omega ()))
(cond ((freeof var exp)
(return (list exp 0))))
(dolist (term omega)
(cond ((subexp exp term)
(push term new-omega))))
(setq omega new-omega)
(cond ((not omega)
(setq omega (mrv exp var))))
(cond ((member var omega :test #'eq)
(let* ((omega-up (mrv-moveup omega var))
(e-up (car (mrv-moveup (list exp) var)))
(mrv-leadterm-up (mrv-leadterm e-up var omega-up)))
(return (mrv-movedown mrv-leadterm-up var)))))
(destructuring-let* ((wsym (gensym "w"))
lo
coef
((f . logw) (mrv-rewrite exp omega var wsym))
(series (calculate-series f wsym)))
(setq series (maxima-substitute logw `((%log) ,wsym) series))
(setq lo ($lopow series wsym))
(when (or (not ($constantp lo))
(not (free series '%derivative)))
;; (mtell "series: ~M lo: ~M~%" series lo)
(tay-error "error in series expansion" f))
(setq coef ($coeff series wsym lo))
;;(mtell "exp: ~M f: ~M~%" exp f)
;;(mtell "series: ~M~%coeff: ~M~%pow: ~M~%" series coef lo)
(return (list coef lo)))))
(defun mrv-moveup (l var)
(mapcar (lambda (exp)
(simplify-log-of-exp
(syntactic-substitute `((mexpt) $%e ,var) var exp)))
l))
(defun mrv-movedown (l var)
(mapcar (lambda (exp) (syntactic-substitute `((%log simp) ,var) var exp))
l))
;; test whether sub is a subexpression of exp
(defun subexp (exp sub)
(not (equal (maxima-substitute 'dummy
sub
exp)
exp)))
;; Generate $lhospitallim terms of taylor expansion.
;; Ideally we would use a lazy series representation that generates
;; more terms as higher order terms cancel.
(defun calculate-series (exp var)
(assume `((mgreaterp) ,var 0))
(putprop var t 'internal);; keep var from appearing in questions to user
(let ((series ($taylor exp var 0 $lhospitallim)))
(forget `((mgreaterp) ,var 0))
series))
(defun mrv-sign (exp var)
(cond ((freeof var exp)
(cond ((eq ($sign exp) '$zero)
0)
((eq ($sign exp) '$pos)
1)
((eq ($sign exp) '$neg)
-1)
(t (tay-error " cannot determine mrv-sign" exp))))
((eq exp var)
1)
((mtimesp exp)
(* (mrv-sign (cadr exp) var)
(mrv-sign (m*l (cddr exp)) var)))
((and (mexptp exp)
(equal (mrv-sign (cadr exp) var) 1))
1)
((mlogp exp)
(cond ((equal (mrv-sign (cadr exp) var) -1)
(tay-error " complex expression in gruntz limit" exp)))
(mrv-sign (m+ -1 (cadr exp)) var))
((mplusp exp)
(mrv-sign (limitinf exp var) var))
(t (tay-error " cannot determine mrv-sign" exp))))
;; gruntz algorithm for limit of exp as var goes to positive infinity
(defun limitinf (exp var)
(prog (($exptsubst nil))
(cond ((freeof var exp)
(return exp)))
(destructuring-let* ((c0-e0 (mrv-leadterm exp var nil))
(c0 (car c0-e0))
(e0 (cadr c0-e0))
(sig (mrv-sign e0 var)))
(cond ((equal sig 1)
(return 0))
((equal sig -1)
(cond ((equal (mrv-sign c0 var) 1)
(return '$inf))
((equal (mrv-sign c0 var) -1)
(return '$minf))))
((equal sig 0)
(return (limitinf c0 var)))))))
;; user-level function equivalent to $limit.
;; direction must be specified if limit point is not infinite
;; The arguments are checked and a failure of taylor is catched.
(defmfun $gruntz (expr var val &rest rest)
(let (ans dir)
(when (> (length rest) 1)
(merror
(intl:gettext "gruntz: too many arguments; expected just 3 or 4")))
(setq dir (car rest))
(when (and (not (member val '($inf $minf $zeroa $zerob)))
(not (member dir '($plus $minus))))
(merror
(intl:gettext "gruntz: direction must be 'plus' or 'minus'")))
(setq ans
(catch 'taylor-catch
(let ((silent-taylor-flag t))
(declare (special silent-taylor-flag))
(gruntz1 expr var val dir))))
(if (or (null ans) (eq ans t))
(if dir
`(($gruntz simp) ,expr ,var, val ,dir)
`(($gruntz simp) ,expr ,var ,val))
ans)))
;; This function is for internal use in $limit.
(defun gruntz1 (exp var val &rest rest)
(cond ((> (length rest) 1)
(merror (intl:gettext "gruntz: too many arguments; expected just 3 or 4"))))
(let (($logexpand t) ; gruntz needs $logexpand T
(newvar (gensym "w"))
(dir (car rest)))
(cond ((eq val '$inf)
(setq newvar var))
((eq val '$minf)
(setq exp (maxima-substitute (m* -1 newvar) var exp)))
((eq val '$zeroa)
(setq exp (maxima-substitute (m// 1 newvar) var exp)))
((eq val '$zerob)
(setq exp (maxima-substitute (m// -1 newvar) var exp)))
((eq dir '$plus)
(setq exp (maxima-substitute (m+ val (m// 1 newvar)) var exp)))
((eq dir '$minus)
(setq exp (maxima-substitute (m+ val (m// -1 newvar)) var exp)))
(t (merror (intl:gettext "gruntz: direction must be 'plus' or 'minus'; found: ~M") dir)))
(limitinf exp newvar)))
;; substitute y for x in exp
;; similar to maxima-substitute but does not simplify result
(defun syntactic-substitute (y x exp)
(cond ((alike1 x exp) y)
((atom exp) exp)
(t (cons (car exp)
(mapcar (lambda (exp)
(syntactic-substitute y x exp))
(cdr exp))))))
;; log(exp(subexpr)) -> subexpr
;; without simplifying entire exp
(defun simplify-log-of-exp (exp)
(cond ((atom exp) exp)
((and (mlogp exp)
(mexptp (cadr exp))
(eq '$%e (cadadr exp)))
(caddr (cadr exp)))
(t (cons (car exp)
(mapcar #'simplify-log-of-exp
(cdr exp))))))
|