/usr/share/maxima/5.32.1/src/linnew.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module linnew)
;; This is a matrix package which uses minors, basically.
;; TMLINSOLVE(LIST-OF-EQUAIONS,LIST-OF-VARIABLES,LIST-OF-VARIABLES-TO-BE-OBTAINED)
;; solves the linear equation. LIST-OF-VARIABLES-TO-BE-OBTAINED can be omitted,
;; in which case all variables are obtained. TMNEWDET(MATRIX,DIMENSION)
;; computes the determinant. DIMENSION can be omitted. The default is
;; DIMENSION=(declared dimension of MATRIX). TMINVERSE(MATRIX) computes the
;; inverse of matrix.
;; The program uses hash arrays to remember the minors if N > threshold. If
;; $WISE is set to T, the program knocks out unnecessary elements. But also it
;; kills necessary ones in the case of zero elements! The $WISE flag should
;; not be set to T for inverse. The default of $WISE is NIL.
;; There seem to have been a number of bugs in this code. I changed
;; the array referencing to value cell, and some of the stuff about
;; cre form. It now seems tminverse and tmlinsolve, now seem to work. --wfs.
;;these are arrays
(declare-top (special *tmarrays* *a2* *b* *aa* *row* *col* *rowinv* *colinv* *indx*))
(declare-top (special n nx ix))
(declare-top (special $linenum $dispflag $linechar $wise $fool))
(defvar *tmarrays* nil)
;; If N < threshold declared array is used, otherwise hashed array.
(defparameter *threshold* 10)
(defun tminitialflag nil
(unless (boundp '$wise) (setq $wise nil))
(unless (boundp '$fool) (setq $fool nil)))
;; TMDET returns the determinant of N*N matrix A2 which is in an globally
;; declared array A2.
(defun tmdet (a4 n)
(prog (index ix)
(tminitialflag)
(setq ix 0 nx 0)
(do ((i 1 (1+ i)))
((> i n))
(push i index))
(setq index (nreverse index))
(tminor a4 n 1 index 0)))
;; TMLIN SOLVES M SETS OF LINEAR EQUATIONS WHITH N UNKNOWN VARIABLES. IT SOLVES
;; ONLY FOR THE FIRST NX UNKNOWNS OUT OF N. THE EQUATIONS ARE EXPRESSED IN
;; MATRIX FORM WHICH IS IN N*(N+M) ARRAY A2. AS USUAL , THE LEFT HAND SIDE N*N
;; OF A2 REPRESENTS THE COEFFICIENT MATRIX, AND NEXT N*M OF A2 IS THE RIGHT
;; HAND SIDE OF THE M SETS OF EQUATIONS. SUPPOSE N=3, M=2, AND THE UNKKNOWNS
;; ARE (X1 Y1 Z1) FOR THE FIRST SET AND (X2 Y2 Z2) FOR THE SECOND. THEN THE
;; RESULT OF TMLIN IS ((DET) (U1 U2) (V1 V2) (W1 W2)) WHERE DET IS THE
;; DETERMINANT OF THE COEFFICIENT MATRIX AND X1=U1/DET, X2=U2/DET, Y1=V1/DET,
;; Y2=V2/DET ETC.
(defun tmlin (a4 n m nx)
(prog (index r)
(tmdefarray n)
(tminitialflag)
(do ((i 1 (1+ i)))
((> i n))
(push i index))
(setq index (reverse index))
(setq r
(do ((ix 0 (1+ ix))
(result))
((> ix nx) (reverse result))
(push (do ((i 1 (1+ i)) (res))
((> i (if (= ix 0) 1 m))
(reverse res))
(unless $wise (tmkillarray ix))
(push (tminor a4 n 1 index i) res))
result)
(when (and (= ix 0) (equal (car result) '(0 . 1)))
(merror (intl:gettext "tmlin: coefficient matrix is singular.")))))
(tmrearray n)
(return r)))
;; TMINOR ACTUALLY COMPUTES THE MINOR DETERMINANT OF A SUBMATRIX OF A2, WHICH
;; IS CONSTRUCTED BY EXTRACTING ROWS (K,K+1,K+2,...,N) AND COLUMNS SPECIFIED BY
;; INDEX. N IS THE DIMENSION OF THE ORIGINAL MATRIX A2. WHEN TMINOR IS USED
;; FOR LINEAR EQUATION PROGRAM, JRIGHT SPECIFIES A COLUMN OF THE CONSTANT
;; MATRIX WHICH IS PLUGED INTO AN IX-TH COLUMN OF THE COEFFICIENT MATRIX FOR
;; ABTAINING IX-TH UNKNOWN. IN OTHER WORDS, JRIGHT SPECIFIES JRIGHT-TH
;; EQUATION.
(defun tminor (a4 n k index jright)
(prog (subindx l result name aorb)
(setq a4 (get-array-pointer a4))
(cond ((= k n)
(setq result
(if (= k ix)
(aref a4 (car index) (+ jright n))
(aref a4 (car index) k))))
(t
(do
((j 1 (1+ j))
(sum '(0 . 1)))
((> j (1+ (- n k))) (setq result sum))
(setq l (extract index j))
(setq subindx (cadr l))
(setq l (car l))
(setq aorb (if (= k ix)
(aref a4 l (+ jright n))
(aref a4 l k)))
(unless (equal aorb '(0 . 1))
(setq name (tmaccess subindx))
(setq sum
(funcall (if (oddp j) #'ratplus #'ratdifference)
sum
(rattimes
aorb
(if $fool
(tminor a4 n (1+ k) subindx jright)
(cond ((not (null (tmeval name)))
(tmeval name))
((tmnomoreuse j l k)
(tmstore name nil)
(tminor a4 n (1+ k) subindx jright))
(t
(tmstore name (tminor a4 n (1+ k) subindx jright)))))
t))))
(when $wise
(when (tmnomoreuse j l k)
(tmkill subindx k))))))
(return result)))
(defun extract (index j)
(do ((ind index (cdr ind))
(count 1 (1+ count))
(subindx))
((null ind))
(if (= count j)
(return (list (car ind) (nconc subindx (cdr ind))))
(setq subindx (nconc subindx (list (car ind)))))))
(declare-top (special vlist varlist genvar))
(defun tmratconv (bbb n m)
(prog (ccc)
(declare (special ccc)) ;Tell me this worked in Maclisp. --gsb
;Actually, i suspect it didn't, at least ever since
; (sstatus punt).
(setf (symbol-value 'ccc) bbb)
(do ((k 1 (1+ k)))
((> k n))
(do ((j 1 (1+ j)))
((> j m))
(newvar1 (setf (aref *a2* k j)
(maref ccc k j)
;; (nth j (nth k *a2*))
;; (MEVAL (LIST (LIST 'CCC 'array) K J)) ;;just the
))))
(newvar (cons '(mtimes) vlist))
(do ((k 1 (1+ k)))
((> k n))
(do ((j 1 (1+ j)))
((> j m))
(setf (aref *a2* k j) (cdr (ratrep* (aref *a2* k j))))))))
(defmfun $tmnewdet (mat &optional (dim nil dim?))
(prog (*aa* r vlist n)
(cond (dim?
(unless (integerp dim)
(merror (intl:gettext "tmnewdet: second argument must be an integer; found: ~M") dim))
(setq n dim))
(($matrixp mat)
(setq n (length (cdr mat))))
(t
(merror (intl:gettext "tmnewdet: first argument must be a matrix; found: ~M") mat)))
(setq *aa* mat)
(setq *a2* (make-array (list (1+ n) (1+ n)) :initial-element nil))
(tmdefarray n)
(tmratconv *aa* n n)
(setq r (cons (list 'mrat 'simp varlist genvar) (tmdet '*a2* n)))
(tmrearray n)
(return r)))
(defun $tmlinsolve (&rest arglist)
(prog (equations vars outvars result *aa*)
(setq equations (cdar arglist)
vars (cdadr arglist)
outvars (cond ((null (cddr arglist)) vars)
(t (cdaddr arglist))))
(setq vars (tmerge vars outvars))
(setq nx (length outvars))
(setq n (length vars))
(unless (= n (length equations))
(return (print 'too-few-or-much-equations)))
(setq *aa*
(cons '($matrix simp)
(mapcar #'(lambda (exp)
(append
'((mlist))
(mapcar #'(lambda (v)
(prog (r)
(setq exp ($bothcoef exp v)
r (cadr exp)
exp (meval (caddr exp)))
(return r)))
vars)
(list (list '(mminus) exp))))
(mapcar #'(lambda (e)
(meval (list '(mplus)
($lhs e)
(list '(mminus) ($rhs e)))))
equations))))
(setq result (cdr ($tmlin *aa* n 1 nx)))
(return
(do ((vars (cons nil outvars) (cdr vars))
(labels)
(dlabel)
(name))
((null vars)
(cons '(mlist) (cdr (reverse labels))))
(setq name (makelabel $linechar))
(incf $linenum)
(setf (symbol-value name)
(cond ((null (car vars))
(setq dlabel name)
(cadar result))
(t (list '(mequal)
(car vars)
(list '(mtimes simp)
(cadar result)
(list '(mexpt simp) dlabel -1))))))
(push name labels)
(setq result (cdr result))
(when $dispflag
(mtell-open "~M" (nconc (ncons '(mlabel))
(ncons name)
(ncons (eval name)))))))))
(defun tmerge (vars outvars)
(append outvars
(prog (l)
(mapcar #'(lambda (v)
(if (member v outvars) nil (push v l)))
vars)
(return (reverse l)))))
(defmfun $tmlin (*aa* n m nx)
(prog (r vlist)
(setq *a2* (make-array (list (1+ n) (+ 1 m n)) :initial-element nil))
(show *a2*)
(tmratconv *aa* n (+ m n))
(setq r
(cons '(mlist)
(mapcar
#'(lambda (res)
(cons '(mlist)
(mapcar #'(lambda (result)
(cons (list 'mrat 'simp varlist genvar) result))
res)))
(tmlin '*a2* n m nx))))
(show *a2*)
(return r)))
(defun tmkill (*indx* k)
(prog (name subindx j l)
(when (null *indx*) (return nil))
(setq name (tmaccess *indx*))
(cond ((not (null (tmeval name)))
(tmstore name nil))
(t
(do ((ind *indx* (cdr ind))
(count 1 (1+ count)))
((null ind))
(setq l (extract *indx* count)
j (car l)
subindx (cadr l))
(when (= j count)
(tmkill subindx (1+ k))))))))
(defun tmnomoreuse (j l k)
(if (and (= j l) (or (> k nx) (< k (1+ ix))))
t
nil))
(defun tmdefarray (n)
(prog (name)
(cond ((setq *tmarrays* (get-array-pointer *tmarrays*))
(tmrearray (1- (cond ((cadr (arraydims *tmarrays*)))
(t 1))))))
(setq *tmarrays* (make-array (1+ n) :initial-element nil))
(do ((i 1 (1+ i)))
((> i n))
(setq name (if (= i 1) (make-symbol "M") (gensym)))
(cond ((< n *threshold*)
(setf (symbol-value name) (make-array (1+ (tmcombi n i)) :initial-element nil))
(setf (aref *tmarrays* i) (get-array-pointer name)))
(t
(setf (aref *tmarrays* i) (list name 'simp 'array)))))
(gensym "G")))
;; TMREARRAY kills the TMARRAYS which holds pointers to minors. If (TMARRAYS I)
;; is an atom, it is declared array. Otherwise it is hashed array.
(defun tmrearray (n)
(prog nil
(do ((i 1 (1+ i)))
((> i n))
(unless (atom (aref *tmarrays* i))
(tm$kill (car (aref *tmarrays* i)))))))
(defun tmaccess (index)
(prog (l)
(cond ($fool (return nil)))
(setq l (length index))
(return
(cond ((< n *threshold*)
(list 'aref (aref *tmarrays* l)
(do ((i 1 (1+ i))
(x 0 (car y))
(y index (cdr y))
(sum 0))
((> i l) (1+ sum))
(do ((j (1+ x) (1+ j)))
((= j (car y)))
(incf sum (tmcombi (- n j) (- l i)))))))
(t (cons 'aref (cons (aref *tmarrays* l) index)))))) )
(defun tmcombi (n i)
(if (> (- n i) i)
(/ (tmfactorial n (- n i)) (tmfactorial i 0))
(/ (tmfactorial n i) (tmfactorial (- n i) 0))))
(defun tmfactorial (i j)
(if (= i j)
1
(* i (tmfactorial (1- i) j))))
(defun tmstore (name x)
(cond ((< n *threshold*)
(eval `(setf ,name ',x)))
(t
(mset name (list '(mquote simp) x))
x)))
;; TMKILLARRAY kills all (N-IX+1)*(N-IX+1) minors which are not necessary for
;; the computation of IX-TH variable in the linear equation. Otherwise, they
;; will do harm.
(defun tmkillarray (ix)
(do ((i (1+ (- n ix)) (1+ i)))
((> i n))
(if (< n *threshold*)
(fillarray (aref *tmarrays* i) '(nil))
(tm$kill (car (aref *tmarrays* i))))))
(defun tmeval (e)
(prog (result)
(return (cond ((< n *threshold*)
(eval e))
(t
(setq result (meval e))
(if (equal result e) nil (cadr result)))))))
(defun tm$kill (e)
(kill1 e))
(defmfun $tminverse (*aa*)
(prog (r vlist n m nx)
(setq n (length (cdr *aa*)) m n nx n)
(setq *a2* (make-array (list (1+ n) (+ 1 m n)) :initial-element nil))
(tmratconv *aa* n n)
(do ((i 1 (1+ i)))
((> i n))
(do ((j 1 (1+ j)))
((> j m))
(setf (aref *a2* i (+ n j))
(if (= i j) '(1 . 1) '(0 . 1)))))
(setq r (mapcar #'(lambda (res)
(cons '(mlist)
(mapcar #'(lambda (result)
($ratdisrep (cons (list 'mrat 'simp varlist genvar) result)))
res)))
(tmlin '*a2* n m nx)))
(setq r (list '(mtimes simp)
(list '(mexpt simp) (cadar r) -1)
(cons '($matrix simp) (cdr r))))
(return r)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;THIS IS A UTILITY PACKAGE FOR SPARSE
;;MATRIX INVERSION. A3 IS A N*N MATRIX.
;;IT RETURNS A LIST OF LISTS, SUCH AS
;;((I1 I2 ...) (J1 J2...) ...) WHERE (I1
;;I2 ..) SHOWS THE ROWS WHICH BELONGS TO
;;THE FIRST BLOCK, AND SO ON. THE ROWS
;;SHOUD BE REORDERED IN THIS ORDER. THE
;;COLUMNS ARE NOT CHANGED. IT RETURNS NIL
;;IF A3 IS "OBVIOUSLY" SINGULAR.
;; (DEFUN TMISOLATE (A3 N)
;; (PROG (NODELIST)
;; (SETQ A3 (GET A3 'ARRAY))
;; (setq B (*ARRAY nil 'T (1+ N) (1+ N)))
;; (setq ROW (*ARRAY nil 'T (1+ N)))
;; (setq COL (*ARRAY nil 'T (1+ N)))
;; (DO ((I 1 (1+ I)))
;; ((> I N))
;; (STORE (ROW I) I)
;; (STORE (COL I) I))
;; (DO ((I 1 (1+ I)))
;; ((> I N))
;; (DO ((J 1 (1+ J)))
;; ((> J N))
;; (STORE (B I J)
;; (NOT (EQUAL (AREF A3 I J)
;; '(0 . 1))))))
;; (COND ((NULL (TMPIVOT-ISOLATE 1))
;; (SETQ NODELIST NIL)
;; (GO EXIT)))
;; (DO ((I 1 (1+ I)))
;; ((> I N))
;; (DO ((J 1 (1+ J)))
;; ((> J I))
;; (STORE (B (ROW J) (COL I))
;; (OR (B (ROW I) (COL J))
;; (B (ROW J) (COL I))))
;; (STORE (B (ROW I) (COL J)) (B (ROW J) (COL I))))
;; (STORE (B (ROW I) (COL I)) T))
;; (DO ((I 1 (1+ I)))
;; ((> I N))
;; (COND ((EQ (B (ROW I) (COL I)) T)
;; (SETQ NODELIST
;; (CONS (TMPULL-OVER I N) NODELIST)))))
;; EXIT
;; (*TMREARRAY 'B)
;; (*TMREARRAY 'ROW)
;; (*TMREARRAY 'COL)
;; (RETURN (REVERSE NODELIST)))))
;; (DEFUN TMPULL-OVER (P N)
;; (PROG (Q)
;; (STORE (B (ROW P) (COL P)) NIL)
;; (DO ((J 1 (1+ J)))
;; ((> J N) (SETQ Q NIL))
;; (COND ((EQ (B (ROW P) (COL J)) T)
;; (RETURN (SETQ Q J)))))
;; (COND ((NULL Q) (RETURN (LIST (ROW P))))
;; (T (DO ((J 1 (1+ J)))
;; ((> J N))
;; (STORE (B (ROW Q) (COL J))
;; (OR (B (ROW Q) (COL J))
;; (B (ROW P) (COL J))))
;; (STORE (B (ROW J) (COL Q))
;; (B (ROW Q) (COL J))))
;; (TMCRIP P)
;; (RETURN (CONS (ROW P) (TMPULL-OVER Q N)))))))
;; (DEFUN TMCRIP (P)
;; (DO ((I 1 (1+ I)))
;; ((> I N))
;; (STORE (B (ROW P) (COL I)) NIL)
;; (STORE (B (ROW I) (COL P)) NIL)))
;;TMPIVOT-ISOLATE CARRIES OUT PIVOTTING
;;SO THAT THE ALL DIAGONAL ELEMENTS ARE
;;NONZERO. THIS GARANTIES WE HAVE MAXIMUM
;;NUMBER OF BLOCKS ISOLATED.
(defun tmpivot-isolate (k)
(cond ((> k n) t)
(t (do ((i k (1+ i)))
((> i n) nil)
(when (aref *b* (aref *row* i) (aref *col* k))
(tmexchange '*row* k i)
(if (tmpivot-isolate (1+ k))
(return t)
(tmexchange '*row* k i)))))))
(defun tmexchange (rowcol i j)
(prog (dummy)
(setq rowcol (get-array-pointer rowcol))
(setq dummy (aref rowcol i))
(setf (aref rowcol i) (aref rowcol j))
(setf (aref rowcol j) dummy)))
;; PROGRAM TO PREDICT ZERO ELEMENTS IN
;; THE SOLUTION OF INVERSE OR LINEAR
;; EQUATION. A IS THE COEFFICIENT MATRIX.
;; B IS THE RIGHT HAND SIDE MATRIX FOR
;; LINEAR EQUATIONS. A3 IS N*N AND B IS
;; M*M. X IS AN N*M MATRIX WHERE T -NIL
;; PATTERN SHOWING THE ZERO ELEMENTS IN
;; THE RESULT IS RETURND. T CORRESPONDS TO
;; NON-ZERO ELEMENT. IN THE CASE OF
;; INVERSE, YOU CAN PUT ANYTHING (SAY,NIL)
;; FOR B AND 0 FOR M. NORMALLY IT RETURNS
;; T, BUT IN CASE OF SINGULAR MATRIX, IT
;; RETURNS NIL.
;; (DEFUN TMPREDICT (A3 B X N M)
;; (PROG (FLAGINV FLAG-NONSINGULAR)
;; (SETQ A3 (GET A3 'ARRAY) B (GET B 'ARRAY) X (GET X 'ARRAY))
;; (setq AA (*ARRAY nil 'T (1+ N) (1+ N)))
;; (setq ROW (*ARRAY nil 'T (1+ N)))
;; (SETQ FLAGINV (= M 0))
;; (COND (FLAGINV (SETQ M N)))
;; (DO ((I 1 (1+ I)))
;; ((> I N))
;; (DO ((J 1 (1+ J)))
;; ((> J N))
;; (STORE (AA I J)
;; (NOT (EQUAL (AREF A3 I J) '(0 . 1))))))
;; (DO ((I 1 (1+ I)))
;; ((> I N))
;; (DO ((J 1 (1+ J)))
;; ((> J M))
;; (STORE (AREF X I J)
;; (COND (FLAGINV (EQ I J))
;; (T (EQUAL (AREF B I J)
;; '(0 . 1)))))))
;; (DO ((I 1 (1+ I))) ((> I N)) (STORE (ROW I) I))
;; ;FORWARD ELIMINATION.
;; (DO ((I 1 (1+ I)))
;; ((> I N))
;; (SETQ FLAG-NONSINGULAR
;; (DO ((II I (1+ II)))
;; ((> II N) NIL)
;; (COND ((AA (ROW II) I)
;; (TMEXCHANGE 'ROW II I)
;; (RETURN T)))))
;; (COND ((NULL FLAG-NONSINGULAR) (RETURN NIL)))
;; (DO ((II (1+ I) (1+ II)))
;; ((> II N))
;; (COND ((AA (ROW II) I)
;; (DO ((JJ (1+ I) (1+ JJ)))
;; ((> JJ N))
;; (STORE (AA (ROW II) JJ)
;; (OR (AA (ROW I) JJ)
;; (AA (ROW II) JJ))))
;; (DO ((JJ 1 (1+ JJ)))
;; ((> JJ M))
;; (STORE (AREF X (ROW II) JJ)
;; (OR (AREF X (ROW I) JJ)
;; (AREF X (ROW II) JJ))))))))
;; (COND ((NULL FLAG-NONSINGULAR) (GO EXIT))) ;GET OUT BACKWARD SUBSTITUTION
;; (DO ((I (1- N) (1- I)))
;; ((< I 1))
;; (DO ((L 1 (1+ L)))
;; ((> L M))
;; (STORE (AREF X (ROW I) L)
;; (OR (AREF X (ROW I) L)
;; (DO ((J (1+ I) (1+ J)) (SUM))
;; ((> J N) SUM)
;; (SETQ SUM
;; (OR SUM
;; (AND (AA (ROW I) J)
;; (AREF
;; X
;; (ROW J)
;; L)))))))))
;; ;RECOVER THE ORDER.
;; (TMPERMUTE 'X N M 0 0 'ROW N 'ROW)
;; EXIT (*TMREARRAY 'ROW) (*TMREARRAY 'AA) (RETURN FLAG-NONSINGULAR)))
;;TMPERMUTE PERMUTES THE ROWS OR COLUMNS
;;OF THE N*M MATRIX AX ACCORDING TO THE
;;SPECIFICATION OF INDEXLIST. THE FLAG
;;MUST BE SET 'ROW IF ROW PERMUTATION IS
;;DESIRED , OR 'COL OTHERWISE. THE RESULT
;;IS IN AX. NM IS THE DIMENSION OF
;;INDEXLIST.
(defun tmpermute (ax n m rbias cbias indexlist nm flag)
(prog (k l)
;; (SETQ AX (GET AX 'array)
;; INDEXLIST (GET INDEXLIST 'array))
(setq ax (get-array-pointer ax))
(setq indexlist (get-array-pointer indexlist))
(setf (symbol-array *indx*) (make-array (1+ nm) :initial-element nil))
(do ((i 1 (1+ i)))
((> i nm))
(setf (aref *indx* i) (aref indexlist i)))
(do ((i 1 (1+ i)))
((> i nm))
(cond ((not (= (aref *indx* i) i))
(prog nil
(tmmove ax n m rbias cbias i 0 flag)
(setq l i)
loop (setq k (aref *indx* l))
(setf (aref *indx* l) l)
(cond ((= k i)
(tmmove ax n m rbias cbias 0 l flag))
(t (tmmove ax n m rbias cbias k l flag)
(setq l k)
(go loop)))))))))
(defun tmmove (ax n m rbias cbias i j flag)
(prog (ll)
(setq ax (get-array-pointer ax))
(setq ll (if (eq flag '*row*)
(- m cbias)
(- n rbias)))
(do ((k 1 (1+ k)))
((> k ll))
(cond ((eq flag '*row*)
(setf (aref ax (+ rbias j) (+ cbias k))
(aref ax (+ rbias i) (+ cbias k))))
(t (setf (aref ax (+ rbias k) (+ cbias j))
(aref ax (+ rbias k) (+ cbias i))))))))
;;TMSYMETRICP CHECKS THE SYMETRY OF THE MATRIX.
(defun tmsymetricp (a3 n)
(setq a3 (get-array-pointer a3))
(do ((i 1 (1+ i)))
((> i n) t)
(cond ((null (do ((j (1+ i) (1+ j)))
((> j n) t)
(unless (equal (aref a3 i j) (aref a3 j i))
(return nil))))
(return nil)))))
;;TMLATTICE CHECKS THE "LATTICE"
;;STRUCTURE OF THE MATRIX A. IT RETURNS
;;NIL IF THE MATRIX IS "OBVIOUSLY"
;;SINGULAR. OTHERWISE IT RETURNS A LIST
;;(L1 L2 ... LM) WHERE M IS THE NUMBER OF
;;BLOCKS (STRONGLY CONNECTED SUBGRAPHS),
;;AND L1 L2 ... ARE LIST OF ROW AND
;;COLUMN NUBERS WHICH BELONG TO EACH
;;BLOCKS. THE LIST LOOKS LIKE ((R1 C1)
;;(R2 C2) ...) WHERE R R'S ARE ROWS AND
;;C'S ARE COLUMMS.
(defun tmlattice (a3 xrow xcol n)
(setq a3 (get-array-pointer a3))
(setq xrow (get-array-pointer xrow))
(setq xcol (get-array-pointer xcol))
(setq *b* (make-array (list (1+ n) (1+ n)) :initial-element nil))
(setq *row* (make-array (1+ n) :initial-element nil))
(setq *col* (make-array (1+ n) :initial-element nil))
(do ((i 1 (1+ i)))
((> i n))
(do ((j 1 (1+ j)))
((> j n))
(setf (aref *b* i j)
(not (equal (aref a3 i j) '(0 . 1))))))
(do ((i 0 (1+ i)))
((> i n))
(setf (aref *row* i) i)
(setf (aref *col* i) i))
(when (null (tmpivot-isolate 1))
(return-from tmlattice nil))
(do ((i 1 (1+ i)))
((> i n))
(setf (aref *b* (aref *row* i) (aref *col* i)) i)
(setf (aref *b* (aref *row* i) (aref *col* 0)) t))
(tmlattice1 1)
(tmsort-lattice xrow xcol))
(defun tmlattice1 (k)
(cond ((= k n)
nil)
(t
(tmlattice1 (1+ k))
(do ((looppath))
(nil)
(if (setq looppath (tmpathp k k))
(tmunify-loop k (cdr looppath))
(return nil))))))
(defun tmpathp (j k)
(cond ((equal (aref *b* (aref *row* j) (aref *col* k)) t)
(list j k))
(t
(do ((jj k (1+ jj)) (path))
((> jj n))
(when (and (equal (aref *b* (aref *row* j) (aref *col* jj)) t)
(setq path (tmpathp jj k)))
(return (cons j path)))))))
(defun tmunify-loop (k chain)
(prog (l dummyk dummyl)
(setq l (car chain))
(cond ((= l k) (return nil)))
(setq dummyk (aref *b* (aref *row* k) (aref *col* k)))
(setq dummyl (aref *b* (aref *row* l) (aref *col* l)))
(setf (aref *b* (aref *row* k) (aref *col* k)) nil)
(setf (aref *b* (aref *row* l) (aref *col* l)) nil)
(do ((i 1 (1+ i)))
((> i n))
(setf (aref *b* (aref *row* k) (aref *col* i))
(or (aref *b* (aref *row* k) (aref *col* i)) (aref *b* (aref *row* l) (aref *col* i))))
(setf (aref *b* (aref *row* i) (aref *col* k))
(or (aref *b* (aref *row* i) (aref *col* k)) (aref *b* (aref *row* i) (aref *col* l))))
(setf (aref *b* (aref *row* l) (aref *col* i)) nil)
(setf (aref *b* (aref *row* i) (aref *col* l)) nil))
(setf (aref *b* (aref *row* k) (aref *col* k)) dummyl)
(setf (aref *b* (aref *row* l) (aref *col* l)) dummyk)
(setf (aref *b* (aref *row* k) (aref *col* 0)) t)
(setf (aref *b* (aref *row* l) (aref *col* 0)) nil)
(tmunify-loop k (cdr chain))))
(defun tmsort-lattice (xrow xcol)
(prog (nodelist result)
(setq nodelist (tmsort1))
(setq result
(do ((x nodelist (cdr x)) (result))
((null x) result)
(setq result
(cons (do ((next (aref *b* (aref *row* (car x)) (aref *col* (car x)))
(aref *b* (aref *row* next) (aref *col* next)))
(res))
((= next (car x))
(cons (list (aref *row* next) (aref *col* next)) res))
(push (list (aref *row* next) (aref *col* next)) res))
result))))
(do ((list1 result (cdr list1))
(i 1))
((null list1))
(do ((list2 (car list1) (cdr list2)))
((null list2))
(setf (aref xrow i) (caar list2))
(setf (aref xcol i) (cadar list2))
(incf i)))
(return result)))
;; (DEFUN TMLESS (I J) (B (ROW I) (COL J)))
(defun tmsort1 nil
(do ((i 1 (1+ i))
(result))
((> i n) result)
(cond ((and (aref *b* (aref *row* i) (aref *col* 0)) (tmmaxp i))
(do ((j 1 (1+ j)))
((> j n))
(unless (= j i)
(setf (aref *b* (aref *row* i) (aref *col* j)) nil)))
(setf (aref *b* (aref *row* i) (aref *col* 0)) nil)
(push i result)
(setq i 0)))))
(defun tmmaxp (i)
(do ((j 1 (1+ j)))
((> j n) t)
(when (and (not (= i j)) (aref *b* (aref *row* j) (aref *col* i)))
(return nil))))
;;UNPIVOT IS USED IN PAUL WANG'S PROGRAM
;;TO RECOVER THE PIVOTTING. TO GET THE
;;INVERSE OF A, PAUL'S PROGRAM COMPUTES
;;THE INVERSE OF U*A*V BECAUSE OF
;;BLOCKING. LET THE INVERSE Y. THEN
;;A^^-1=V*Y*U. WHERE U AND V ARE
;;FUNDAMENTAL TRANSFORMATION
;;(PERMUTATION). UNPIVOT DOES THIS,
;;NAMELY, GIVEN A MATRIX A3, INDEX ROW
;;AND COL ,WHICH CORRESPONDS TO THE Y , U
;; AND V, RESPECTIVELY, IT COMPUTES V*Y*U
;;AND RETURNS IT TO THE SAME ARGUMENT A.
(defun tmunpivot (a3 *row* *col* n m)
(prog nil
(setq *col* (get-array-pointer *col*))
(setq *row* (get-array-pointer *row*))
(setq *rowinv* (make-array (1+ n) :initial-element nil))
(setq *colinv* (make-array (1+ n) :initial-element nil))
(do ((i 1 (1+ i)))
((> i n))
(setf (aref *rowinv* (aref *row* i)) i))
(do ((i 1 (1+ i)))
((> i n))
(setf (aref *colinv* (aref *col* i)) i))
(tmpermute a3 n m 0 n '*colinv* n '*row*)
(tmpermute a3 n m 0 n '*rowinv* n '*col*)))
(declare-top (unspecial n vlist nx ix))
|