This file is indexed.

/usr/share/maxima/5.32.1/src/matrix.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1982 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module matrix)

(declare-top (special *ech* *tri* *inv*
		      mdl $detout vlist mul* top* *det* genvar $ratfac
		      varlist header $scalarmatrixp $sparse
		      $algebraic *rank* *mat*))

(defmvar $detout nil)
(defmvar top* nil)
(defmvar $ratmx nil)
(defmvar $matrix_element_mult "*")  ;;; Else, most useful when "."
(defmvar $matrix_element_add "+")
(defmvar $matrix_element_transpose nil)

(defvar *mat*)

;;I believe that all the code now stores arrays in the value cell 
(defun get-array-pointer (symbol)
  "There may be nesting of functions and we may well need to apply
   this twice in a row"
  (if (arrayp symbol) symbol (symbol-value symbol)))

(defun mxc (x)
  (mapcar #'(lambda (y) (cons '(mlist) y)) x)) ; Matrix to MACSYMA conversion
	
(defun mcx (x)
  (mapcar #'cdr x))			; MACSYMA to Matrix conversion

;; Transpose a list of lists ll. Example: ((1 2) (3 4)) --> ((1 3) (2 4)).

(defun transpose (ll)
  (let ((acc nil))
    (while (car ll)
      (push (mapcar #'car ll) acc)
      (setq ll (mapcar #'cdr ll)))
    (nreverse acc)))

(defun nthcol (x nn)
  (if (or (null x) (> nn (length (car x))))
      nil
      (nthcol1 x nn)))

(defun nthcol1 (x nn)
  (if (or (null x) (= nn 0))
      nil
      (cons (ith (car x) nn) (nthcol1 (cdr x) nn))))

;; MAYBE THIS FUNCTION SHOULD HAVE AN ARGUMENT TO INDICATE WHO CALLED IT (TO SMASH INTO ERROR MESSAGES)
(defun check (x)
  (cond ((atom x) (merror (intl:gettext "not a matrix: ~M") x))
	((eq (caar x) '$matrix) x)
	((eq (caar x) 'mlist) (list '($matrix) x))
	(t (merror (intl:gettext "not a matrix: ~M") x)))) 

(defun check1 (x)
  (cond ((atom x) nil)
	((eq (caar x) '$matrix) x)
	((eq (caar x) 'mlist) (list '($matrix) x)))) 

(defmfun $matrixp (x)
  (and (not (atom x)) (eq (caar x) '$matrix)))

(defmfun $charpoly (mat var) 
  (setq mat (check mat))
  (unless (= (length mat) (length (cadr mat)))
    (merror (intl:gettext "charpoly: matrix must be square; found ~M rows, ~M columns.") (length mat) (length (cadr mat))))
  (cond ((not $ratmx)
	 (det1 (addmatrix1
		(setq mat (mcx (cdr mat))) 
		(diagmatrix (length mat) (list '(mtimes) -1 var) '$charpoly))))
	(t (newvar var) (newvarmat1 mat)
	   (setq mat (mcx (cdr mat)))
	   (determinant1 (addmatrix mat (diagmatrix (length mat) 
						    (list '(mtimes) -1 var)
						    '$charpoly))))))

(defun disreplist1 (a)
  (setq header (list 'mrat 'simp varlist genvar))
  (mapcar #'disreplist a))

(defun disreplist (a)
  (mapcar #'(lambda (e) (cons header e)) a))
 
(defun replist1 (a)
  (mapcar #'replist a)) 

(defun replist (a)
  (mapcar #'(lambda (e) (cdr (ratrep* e))) a))

(defun timex (mat1 mat2)
  (cond ((equal mat1 1) mat2)
	((and ($matrixp mat1) ($matrixp mat2) (null (cdr mat1)))
	 (ncons '($matrix simp)))
	(t (newvarmat mat1 mat2)
	   (let (($scalarmatrixp
		  (if (and ($listp mat1) ($listp mat2)) t $scalarmatrixp)))
	     (simplifya (timex0 mat1 mat2) nil)))))

(defun lnewvar (a)
  (let ((vlist nil))
    (lnewvar1 a)
    (setq varlist (nconc (sortgreat vlist) varlist))))

(defun lnewvar1 (a)
  (cond ((atom a) (newvar1 a))
	((member (caar a) '(mlist mequal $matrix) :test #'eq) (mapc #'lnewvar1 (cdr a)))
	(t (newvar1 a))))

(defun newvarmat (mat1 mat2)
  (when $ratmx
    (let ((vlist nil))
      (lnewvar1 mat1) (lnewvar1 mat2)
      (setq varlist (nconc (sortgreat vlist) varlist)))))

(defun newvarmat1 (a)
  (cond ($ratmx (lnewvar a))))

(defun addmatrix (x y)
  (setq x (replist1 x) y (replist1 y))
  (disreplist1 (addmatrix1 x y)))
 
(defun addmatrix1 (b c)
  (unless (and (= (length b) (length c))
	       (= (length (car b)) (length (car c))))
    (merror (intl:gettext "ADDMATRIX1: attempt to add nonconformable matrices.")))
  (mapcar #'addrows b c))
 
(defun addrows (a b)
  (if (not $ratmx)
      (mapcar #'(lambda (i j) (simplus (list '(mplus) i j) 1 nil)) a b)
      (mapcar #'ratplus a b))) 

(defmfun $determinant (mat)
  (cond ((not (or (mbagp mat) ($matrixp mat))) 
         (if ($scalarp mat) mat (list '(%determinant) mat)))
	(t (setq mat (check mat))
	   (unless  (= (length mat) (length (cadr mat)))
             (merror 
               (intl:gettext
                 "determinant: matrix must be square; found ~M rows, ~M columns.")
               (length (cdr mat))
               (length (cdadr mat))))
           (cond ((not $ratmx) (det1 (mcx (cdr mat))))
	         (t (newvarmat1 mat) (determinant1 (mcx (cdr mat))))))))

(defun det (m)
  (if (= (length m) 1)
      (caar m)
      (let (*det* mul*)
	(mtoa '*mat* (setq *det* (length m)) *det* m)
	(setq *det* (tfgeli0 '*mat* *det* *det*))
	(ratreduce *det* mul*)))) 
 
(defun determinant1 (x)
  (catch 'dz (rdis (det (replist1 x))))) 

(defun treedet (mat)
  (prog (row mdl lindex tuplel n id md lt)
     (setq mat (reverse mat))
     (setq n (length mat) md (car mat))
     (setq mat (cdr mat)) (setq lindex (nreverse (index* n)) tuplel (mapcar #'list lindex))
     loop1 (when (null mat) (return (car md)))
     (setq mdl nil)
     (mapcar #'(lambda(a b) (setq mdl (nconc mdl (list a b)))) tuplel md)
     (setq md nil)
     (setq row (car mat)
	   mat (cdr mat))
     (setq lt (setq tuplel (nextlevel tuplel lindex)))
     loop2 (when (null lt)
	     (setq md (nreverse md))
	     (go loop1))
     (setq id (car lt) lt (cdr lt))
     (setq md (cons (compumd id row) md))
     (go loop2)))

(defun assoo (e l)
  (prog ()
   loop (cond ((null l) (return nil))
	      ((equal e (car l)) (return (cadr l))))
   (setq l (cddr l))
   (go loop)))

(defun compumd (id row)
  (prog (e minor i d sign ans)
     (setq ans 0 sign -1 i id)
     loop (when (null i) (return ans)) 
     (setq d (car i) i (cdr i) sign (* -1 sign))
     (cond ((equal (setq e (ith row d)) 0)
	    (go loop))
	   ((equal (setq minor (assoo (delete d (copy-tree id) :test #'equal) mdl)) 0)
	    (go loop)))
     (setq ans
	   (if (and (equal $matrix_element_mult "*")
		    (equal $matrix_element_add "+"))
	       (add ans (mul sign e minor)) ;fast common case
	     (mapply $matrix_element_add
		     (list ans
			   (mapply $matrix_element_mult
				   (list sign e minor)
				   $matrix_element_mult))
		     $matrix_element_add)))
     (go loop)))

(defun apdl (l1 l2)
  (mapcar #'(lambda (j) (append l1 (list j))) l2))

(defun nextlevel (tuplel lindex)
  (prog (ans l li)
   loop (when (null tuplel) (return ans))
   (setq l (car tuplel)
	 tuplel (cdr tuplel)
	 li (cdr (nthcdr (1- (car (last l))) lindex)))
   (when (null li) (go loop))
   (setq ans (nconc ans (apdl l li)))
   (go loop)))

(defun det1 (x)
  (cond ($sparse (mtoa '*mat* (length x) (length x) 
		       (mapcar #'(lambda (x) (mapcar #'(lambda (y) (ncons y)) x))x))
		 (sprdet '*mat* (length x)))
	(t (treedet x))))

(defmfun $ident (n)
  (cons '($matrix) (mxc (diagmatrix n 1 '$ident))))
 
(defmfun $diagmatrix (n var)
  (cons '($matrix) (mxc (diagmatrix n var '$diagmatrix))))

(defun diagmatrix (n var fn)
  (prog (i ans)
     (if (or (not (eq (ml-typep n) 'fixnum)) (minusp n))
	 (improper-arg-err n fn))
     (setq i n)
     loop (if (zerop i) (return ans))
     (setq ans (cons (onen i n var 0) ans) i (1- i))
     (go loop)))

;; ATOMAT GENERATES A MATRIX FROM A MXN ARRAY BY TAKING COLUMNS S TO N

(defun atomat (name m n s)
  (setq name (get-array-pointer name))
  (prog (j d row mat)
     (incf m)
     (incf n)
     loop1 (when (= m 1) (return mat))
     (decf m)
     (setq j n)
     loop2 (when (= j s)
	     (push row mat)
	     (setq row nil)
	     (go loop1))
     (decf j)
     (setq d (if top*
		 (meval (list (list name 'array) m j))
		 (aref name m j)))
     (push (or d '(0 . 1)) row)
     (go loop2)))

(defun diaginv (ax m)
  (setq ax (get-array-pointer ax))
  (cond ($detout (setq *det* 1)
		 (do ((i 1 (1+ i)))
		     ((> i m))
		   (setq *det* (plcm *det* (car (aref ax i i)))))
		 (setq *det* (cons *det* 1))))
  (do ((i 1 (1+ i))
       (elm))
      ((> i m))
    (setq elm (aref ax i i))
    (setf (aref ax i (+ m i))
	   (cond ($detout (cons (ptimes (cdr elm)
					(pquotient (car *det*) (car elm))) 1))
		 (t (ratinvert elm))))))

(defun diagp (ax m)
  (declare (fixnum m))
  (prog ((i 0) (j 0))
     (declare (fixnum i j))
     (setq ax (get-array-pointer ax))
     loop1 (setq i (1+ i) j 0)
     (cond ((> i m) (return t)))
     loop2 (incf j)
     (cond ((> j m) (go loop1))
	   ((and (not (= i j)) (equal (aref ax i j) '(0 . 1))) nil)
	   ((and (= i j) (not (equal (aref ax i j) '(0 . 1)))) nil)
	   (t (return nil)))
     (go loop2)))

(defun tfgeli0 (x m n)
  (cond ((or $sparse *det*) (tfgeli x m n))
	(t (tfgeli x m n) (diaglize1 x m n))))

;;  TWO-STEP FRACTION-FREE GAUSSIAN ELIMINATION ROUTINE

(defun ritediv (x m n a)
  (declare (fixnum m n))
  (setq x (get-array-pointer x))
  (prog ((j 0) (i 0) d)
     (declare (fixnum i j))
     (setq i m)
     loop1 (when (zerop i) (return nil))
     (setf (aref x i i) nil)
     (setq j m)
     loop (cond ((= j n) (decf i) (go loop1)))
     (incf j)
     (cond ((equal a 1)
	    (setf (aref x i j) (cons (aref x i j) 1))
	    (go loop)))
     (setq d (ignore-rat-err (pquotient (aref x i j) a)))
     (setq d (cond (d (cons d 1))
		   (t (ratreduce (aref x i j) a))))
     (setf (aref x i j) d)
     (go loop)))

(defun diaglize1 (x m n)
  (setq x (get-array-pointer x))
  (prog nil
     (cond (*det* (return (ptimes *det* (aref x m m)))))
     (setq *det* (cons (aref x m m) 1))
     (cond ((not $detout) (return (ritediv x m n (aref x m m))))
	   (t (return (ritediv x m n 1))))))

;; Takes an M by N matrix and creates an array containing the elements
;; of the matrix.  The array is associated "functionally" with the
;; symbol NAME.
;; For CL we have put it in the value cell-WFS.  Things still work.

(defun mtoa (name m n mat)
  (declare (fixnum m n))
  (proclaim (list 'special name))
  (setf (symbol-value name) (make-array (list (1+ m) (1+ n))))
  (setq name (get-array-pointer name))
  (do ((i 1 (1+ i))
       (mat mat (cdr mat)))
      ((> i m) nil)
    (declare (fixnum i))
    (do ((j 1 (1+ j))
	 (row (car mat) (cdr row)))
	((> j n))
      (declare (fixnum j))
      (setf (aref name i j) (car row)))))


(defmfun $echelon (x)
  (let (($ratmx t))
    (newvarmat1 (setq x (check x))))
  (let ((*ech* t) ($algebraic $algebraic))
    (and (not $algebraic) (some #'algp varlist) (setq $algebraic t))
    (setq x (cons '($matrix) (mxc (disreplist1 (echelon1 (replist1 (mcx (cdr x)))))))))
  (if $ratmx x ($totaldisrep x)))

(defun echelon1 (x)
  (let ((m (length x))
	(n (length (car x))))
    (mtoa '*mat* m n x)
    (setq x (catch 'rank (tfgeli '*mat* m n)))
    (cond ((and *rank* x)
	   (throw 'rnk x))
	  (t (echelon2 '*mat* m n)))))

(defun echelon2 (name m n)
  (declare (fixnum m n))
  (setq name (symbol-value name))
  (prog ((j 0) row mat a)
     (declare (fixnum j))
     (incf m)
     loop1 (when (= m 1) (return mat))
     (setq m (1- m) j 0 a nil)
     loop2 (when (= j n)
	     (setq mat (cons row mat) row nil)
	     (go loop1))
     (incf j)
     (setq row (nconc row (ncons (cond ((or (> m j) (equal (aref name m j) 0))
					'(0 . 1))
				       (a (ratreduce (aref name m j)a))
				       (t (setq a (aref name m j)) '(1 . 1))))))
     (go loop2)))

(defun triang (x)
  (let ((m (length x))
	(n (length (car x)))
	(*tri* t))
    (mtoa '*mat* m n x) 
    (tfgeli '*mat* m n)
    (triang2 '*mat* m n)))

(defun triang2 (nam m n)
  (declare (fixnum m n))
  (setq nam (get-array-pointer nam))
  (prog ((j 0) row mat)
     (declare (fixnum j))
     (setf (aref nam 0 0) 1)
     (incf m)
     loop1 (when (= m 1) (return mat))
     (decf m)
     (setq j 0)
     loop2 (when (= j n)
	     (setq mat (cons row mat) row nil)
	     (go loop1))
     (incf j)
     (setq row (nconc row (ncons (if (> m j) '(0 . 1) (cons (aref nam m j) 1)))))
     (go loop2)))

(defmfun onen (n i var fill)
  (prog (g)
   loop (cond ((= i n) (setq g (cons var g)))
	      ((zerop i) (return g)) 
	      (t (setq g (cons fill g))))
   (decf i)
   (go loop)))

(defun timex0 (x y)
  (let ((u (check1 x))
	(v (check1 y)))
    (cond ((and (null u) (null v)) (list '(mtimes) x y))
	  ((null u) (timex1 x (cons '($matrix) (mcx (cdr v)))))
	  ((null v) (timex1 y (cons '($matrix) (mcx (cdr u)))))
	  (t (cons '($matrix mult) (mxc (multiplymatrices (mcx (cdr u)) (mcx (cdr v)))))))))

(defun timex1 (x y)
  (setq y (check y))
  (cond ((not $ratmx) (setq y (cdr y)))
	(t (setq x (cdr (ratf x)) y (replist1 (cdr y)))))
  (ctimesx x y))

(defun ctimesx (x y)
  (prog (c)
   loop (cond ((null y) 
	       (return (cons '($matrix mult)
			     (mxc (cond ((not $ratmx) c) (t (disreplist1 c)))))))) 
   (setq c (nconc c (list (timesrow x (car y)))) y (cdr y))
   (go loop)))
 
(defun multiplymatrices (x y) 
  (cond ((and (null (cdr y)) (null (cdr x)))
	 (and (cdar x) (setq y (transpose y))))
	((and (null (cdar x)) (null (cdar y)))
	 (and (cdr y) (setq x (transpose x)))))
  (cond ((not (= (length (car x)) (length y)))
	 (cond ((and (null (cdr y)) (= (length (car x)) (length (car y))))
		(setq y (transpose y)))
	       (t (merror (intl:gettext "MULTIPLYMATRICES: attempt to multiply nonconformable matrices."))))))
  (cond ((not $ratmx) (multmat x y))
	(t (setq x (replist1 x) y (replist1 y)) 
	   (disreplist1 (multmat x y))))) 

(defun multmat (x y)
  (prog (mat row yt rowx)
     (setq yt (transpose y))
     loop1 (when (null x) (return mat))
     (setq rowx (car x) y yt)
     loop2 (when (null y)
	     (setq mat (nconc mat (ncons row)) x (cdr x) row nil)
	     (go loop1))
     (setq row (nconc row (ncons (multl rowx (car y)))) y (cdr y))
     (go loop2)))

;;; This actually takes the inner product of the two vectors.
;;; I check for the most common cases for speed. "*" is a slight
;;; violation of data abstraction here. The parser should turn "*" into
;;; MTIMES, well, it may someday, which will break this code. Don't
;;; hold your breath.

(defun multl (a b)
  (cond ((equal $matrix_element_add "+")
	 (do ((ans (if (not $ratmx) 0 '(0 . 1))
		   (cond ((not $ratmx)
			  (cond ((equal $matrix_element_mult "*")
				 (add ans (mul (car a) (car b))))
				((equal $matrix_element_mult ".")
				 (add ans (ncmul (car a) (car b))))
				(t
				 (add ans
				      (meval `((,(getopr $matrix_element_mult))
					       ((mquote simp) ,(car a))
					       ((mquote simp) ,(car b))))))))
			 (t
			  (ratplus ans (rattimes (car a) (car b) t)))))
	      (a a (cdr a))
	      (b b (cdr b)))
	     ((null a) ans)))
	(t
	 (mapply (getopr $matrix_element_add)
		 (mapcar #'(lambda (u v)
			     (meval `((,(getopr $matrix_element_mult))
				      ((mquote simp) ,u)
				      ((mquote simp) ,v))))
			 a b)
		 (getopr $matrix_element_add)))))

(defmfun bbsort (l fn)
  (nreverse (sort (copy-list l) fn)))

(defmfun powerx (mat x) 
  (prog (n y) 
     (cond ((not (fixnump x))
	    (return (list '(mncexpt simp) mat x)))
	   ((= x 1) (return mat))
	   ((minusp x)
	    (setq x (- x) mat ($invert mat))
	    (cond ($detout
		   (return (let ((*inv* '$detout))
			     (mul2* (power* (cadr mat) x)
				    (fmapl1 #'(lambda (x) x)
					    (powerx (caddr mat) x)))))))))
     (newvarmat1 (setq mat (check mat)))
     (setq n 1 mat (mcx (cdr mat)) y mat) 
     loop (if (= n x)
	      (let (($scalarmatrixp (if (eq $scalarmatrixp '$all) '$all)))
		(return (simplify (cons '($matrix mult) (mxc y))))))
     (setq y (multiplymatrices y mat) n (1+ n)) 
     (go loop))) 

;; The following $ALGEBRAIC code is so that 
;; RANK(MATRIX([1-SQRT(5),2],[-2,1+SQRT(5)])); will give 1.
;; - JPG and BMT
 
(defmfun $rank (x)
  (let ((*rank* t) ($ratmx t) ($algebraic $algebraic))
    (newvarmat1 (setq x (check x)))
    (and (not $algebraic) (some #'algp varlist) (setq $algebraic t))
    (setq x (replist1 (mcx (cdr x))))
    (mtoa '*mat* (length x) (length (car x)) x)
    (tfgeli '*mat* (length x) (length (car x)))))

(defun replacerow (i y x)
  (if (= i 1)
      (cons y (cdr x))
      (cons (car x) (replacerow (1- i) y (cdr x)))))
 
(defun timesrow (y row)
  (prog (ans)
     (when (and $ratmx (atom y) y)
       (setq y (cdr (ratf y))))
     loop (when (null row) (return ans))
     (setq ans (nconc ans (list (if (not $ratmx)
				    (simptimes (list '(mtimes) y (car row)) 1 nil)
				    (rattimes y (car row) t)))))
     (setq row (cdr row))
     (go loop)))
 
(defmfun $triangularize (x) 
  (let (($ratmx t))
    (newvarmat1 (setq x (check x))))
  (setq x (cons '($matrix) (mxc (disreplist1 (triang (replist1 (mcx (cdr x)))))))) 
  (if $ratmx x ($totaldisrep x)))

(defmfun $col (mat n)
  (cons '($matrix) (mxc (transpose (list (nthcol (mcx (cdr (check mat))) n)))))) 

(defun deletecol (n x)
  (prog (m g)
     (setq m x)
     loop (when (null m) (return g))
     (setq g (nconc g (ncons (deleterow n (car m)))) m (cdr m))
     (go loop)))
 
(defun deleterow (i m) 
  (cond ((or (null m) (< i 0)) (merror (intl:gettext "DELETEROW: matrix is null, or index is negative.")))
	((= i 1) (cdr m)) 
	(t (cons (car m) (deleterow (1- i) (cdr m)))))) 
 
(defmfun $minor (mat m n)
  (cons '($matrix) (mxc (minor m n (mcx (cdr (check mat)))))))
 
(defun minor (i j m)
  (deletecol j (deleterow i m))) 

(defmfun $row (mat m)
  (cons '($matrix) (mxc (list (ith (mcx (cdr (check mat))) m)))))

(defmfun $setelmx (elm m n mat) 
  (cond
    ((not (and (integerp m) (integerp n)))
	 (merror (intl:gettext "setelmx: indices must be integers; found: ~M, ~M") m n))
    ((not ($matrixp mat))
     (merror (intl:gettext "setelmx: last argument must be a matrix; found: ~M") mat))
	((not (and (> m 0) (> n 0) (> (length mat) m) (> (length (cadr mat)) n)))
	 (merror (intl:gettext "setelmx: no such element [~M, ~M]") m n)))
  (rplaca (nthcdr n (car (nthcdr m mat))) elm) mat) 
 
;;; Here the function transpose can actually do simplification of
;;; its argument. TRANSPOSE(TRANSPOSE(FOO)) => FOO.
;;; If you think this is a hack, well, realize that the hack is
;;; actually the fact that TRANSPOSE can return a noun form.



(defmfun $transpose (mat)
  (cond ((not (mxorlistp mat))
	 (cond ((and (not (atom mat)) (member (mop mat) '($transpose %transpose) :test #'eq))
		(cadr mat))
	       (($scalarp mat) mat)
	       ((mplusp mat)
		`((mplus) .,(mapcar #'$transpose (cdr mat))))
	       ((mtimesp mat)
		`((mtimes) .,(mapcar #'$transpose (cdr mat))))
	       ((mnctimesp mat)
		`((mnctimes) .,(nreverse (mapcar #'$transpose (cdr mat)))))
	       ((mncexptp mat)
		(destructuring-let (((mat pow) (cdr mat)))
		  `((mncexpt) ,($transpose mat) ,pow)))
	       (t ($nounify '$transpose) (list '(%transpose) mat))))
	(t
	 (let ((ans (transpose (mcx (cdr (check mat))))))
	   (cond ($matrix_element_transpose
		  (setq ans (mapcar #'(lambda (u) (mapcar #'transpose-els u))
				    ans))))
	   `(($matrix) . ,(mxc ans))))))

;;; THIS IS FOR TRANSPOSING THE ELEMENTS OF A MATRIX
;;; A hack for Block matricies and tensors.

(defun transpose-els (elem)
  (cond ((eq $matrix_element_transpose '$transpose)
	 ($transpose elem))
	((eq $matrix_element_transpose '$nonscalars)
	 (if ($nonscalarp elem)
	     ($transpose elem)
	     elem))
	(t
	 (meval `((,(getopr $matrix_element_transpose)) ((mquote simp) ,elem))))))


(defmfun $submatrix (&rest x)
  (prog (r c)
     l1   (when (numberp (car x))
	    (push (car x) r)
	    (setq x (cdr x))
	    (go l1))
     (setq c (nreverse (bbsort (cdr x) #'>))
	   r (nreverse (bbsort r #'>)))
     (setq x (mcx (cdar x)))
     l2   (if (null r)
	      (go b)
	      (setq x (deleterow (car r) x)))
     (setq r (cdr r))
     (go l2)
     b    (when (null c) (return (cons '($matrix) (mxc x))))
     (setq x (deletecol (car c) x) c (cdr c))
     (go b)))


(defun $list_matrix_entries (m)
  (unless ($matrixp m)
    (merror (intl:gettext "list_matrix_entries: argument must be a matrix; found: ~M") m))
  (cons (if (null (cdr m)) '(mlist) (caadr m))
	(loop for row in (cdr m) append (cdr row))))