This file is indexed.

/usr/share/maxima/5.32.1/src/matrun.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1982 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module matrun)

;;; TRANSLATION properties for the FSUBRs in this file
;;; can be found in MAXSRC;TRANS5 >.  Be sure to check on those
;;; if any semantic changes are made.

(declare-top (special $rules $maxapplyheight $maxapplydepth))

;;  $MAXAPPLYDEPTH is the maximum depth within an expression to which
;;  APPLYi will delve.  If $MAXAPPLYDEPTH is 0, it is applied only to 
;;  top level.
(defmvar $maxapplydepth 10000.)

;;  If $MAXAPPLYHEIGHT is 0, only atoms are affected by $APPLYB1 and 
;;  $APPLYB2.
(defmvar $maxapplyheight 10000.)

(defmvar matchreverse nil)

(defmspec $disprule (l) (setq l (cdr l))
    (if (and (eq (car l) '$all) (null (cdr l)))
      (disprule1 (cdr $rules))
      (disprule1 l)))

(defun disprule1 (l)
  `((mlist simp) ,@(loop for r in l collect (cadr ($ldisp (consrule r))))))

(defun consrule (x)
  (let ((rule (mget x '$rule)))
    (if rule (list '(msetq simp) x (cons '(marrow simp) (cdr rule)))
	(merror (intl:gettext "disprule: ~:M is not a user rule.") x))))

(defmfun $remrule (op rule) 
  (prog (rules) 
     (setq op (getopr op))
     (cond ((not (eq rule '$all))
	    (removerule op rule) (return (getop op)))
	   ((null (setq rules (mget op 'oldrules)))
	    (merror (intl:gettext "remrule: no rules known for operator ~:@M") op)))
     next (cond ((or (null rules) (null (cdr rules)))
		 (mputprop op 1 'rulenum) (return (getop op)))
		(t (removerule op (car rules))
		   (setq rules (cdr rules)) (go next)))))

(defun removerule (op rule) 
  (cond ((member rule *builtin-$rules* :test #'eq)
	 (mget op 'oldrules))
	(t
	 (prog
	     (oldrules old othrulename othrule)
	    (setq oldrules (mget op 'oldrules))
	    (cond ((or (null rule) (null (setq oldrules (member rule oldrules :test #'equal))))
		   (merror (intl:gettext "remrule: no such rule: ~:M") rule))
		  ((null (car (setq oldrules (cdr oldrules))))
		   (setq oldrules (cdr oldrules))
		   (setq othrulename 'simpargs1)
		   (setq othrule #'(lambda (a b c) (simpargs a c))))
		  (t (setq othrulename (car oldrules))
		     (setq othrule (cadr (getl (car oldrules) '(expr subr))))))
	    (putprop rule othrule 'expr)
	    (setq old (cdr (member rule (reverse (mget op 'oldrules)) :test #'equal)))
	    (if old (putprop (car old)
			     (subst othrulename rule (get (car old) 'expr))
			     'expr))
	    (if (boundp rule) (makunbound rule))
	    (mremprop rule '$rule)
	    (mremprop rule '$ruletype)
	    (mremprop rule 'ruleof)
	    (remprop rule 'expr)
	    (setq $rules (delete rule $rules :count 1 :test #'eq))
	    (putprop rule othrulename 'expr)
	    (if (eq (get op 'operators) rule)
		(putprop op othrulename 'operators))
	    (return (mputprop op (delete rule (mget op 'oldrules) :test #'eq) 'oldrules))))))

(defmfun findbe (e)
  (cond ((equal e 1) '(1 . 0))
	((equal e 0) '(0 . 1))
	((atom e) (cons e 1))
	((eq (caar e) 'mexpt) (cons (cadr e) (caddr e)))
	(t (cons e 1))))

(defmfun findfun (e p c)
  (prog ()
     (cond ((and (null (atom e)) (eq (caar e) p)) (return e))
	   ((or (atom e) (not (eq (caar e) c))) (matcherr))
	   ((and (null matchreverse) (member c '(mplus mtimes) :test #'eq))
	    (setq e (reverse (cdr e))) (go b)))
     a    (setq e (cdr e))
     b    (cond ((null e) (matcherr))
		((and (not (atom (car e))) (eq (caaar e) p)) (return (car e))))
     (go a)))

(defmfun findexpon (e1 base* c)
  (prog (e)
     (setq e e1)
     (cond ((and (mexptp e) (alike1 base* (cadr e)))
	    (return (caddr e)))
	   ((or (atom e) (not (eq (caar e) c))) (go c))
	   ((and (null matchreverse) (member c '(mplus mtimes) :test #'eq))
	    (setq e (reverse (cdr e))) (go b)))
     a    (setq e (cdr e))
     b    (cond ((null e) (go c))
		((and (mexptp (car e)) (alike1 base* (cadar e)))
		 (return (caddar e))))
     (go a)
     c    (cond ((or (and (not (atom e1)) (member c '(mplus mtimes) :test #'eq)
			  (eq c (caar e1)) (memalike base* e1))
		     (alike1 e1 base*)
		     (and (not (atom base*)) (eq c (caar base*))))
		 (return 1))
		((eq c 'mexpt) (matcherr))
		(t (return 0)))))

(defmfun findbase (e expon c)
  (prog ()
     (cond ((equal expon 0)
	    (if (and (eq c 'mexpt) (not (equal 1 e))) (matcherr))
	    (return 1))
	   ((equal expon 1) (return e))
	   ((and (numberp expon) (> expon 0) (equal e 0))
	    (return 0))
	   ((and (mexptp e) (alike1 expon (caddr e)))
	    (return (cadr e)))
	   ((or (atom e) (not (eq (caar e) c))) (matcherr))
	   ((and (null matchreverse) (member c '(mplus mtimes) :test #'eq))
	    (setq e (reverse (cdr e))) (go b)))
     a    (setq e (cdr e))
     b    (cond ((null e)
		 (return (if (and (realp expon) (minusp expon)) 1 0)))
		((and (mexptp (car e)) (alike1 expon (caddar e)))
		 (return (cadar e))))
     (go a)))

(defmfun part+ (e p preds) 
  (prog (flag saved val) 
     (if (not (mplusp e)) (matcherr))
     (cond ((> (length p) (length preds))
	    (setq p (reverse p))
	    (setq p (nthkdr p (- (length p) (length preds))))
	    (setq p (nreverse p))))
     (setq e (copy-tree e)) ; PREVIOUSLY: (setq e ($ratexpand e))
     (setq e (cdr e))
     a    (cond ((null p) (cond ((null e) (return t)) (t (matcherr))))
		((and (cdr preds) (member (car (caddar preds)) '(msetq setq) :test #'eq))
		 (cond (flag (merror (intl:gettext "PART+: two or more pattern variables match anything.")))
		       (t (setq flag t p (reverse p) preds (reverse preds))
			  (go a))))
		((not (atom (car p)))
		 (prog (mye) 
		    (setq mye e)
		    loop (cond ((null mye) (matcherr)))
		    (setq val (catch 'match (mcall (car preds) (car mye))))
		    (cond ((null val)
			   (setq mye (cdr mye)) (go loop))
			  (t (return (setq e (delete (car mye) e :count 1 :test #'equal))))))
		 (go b))
		(t (mset (car p) 0)))
     (setq saved 0)
     (mapc 
      #'(lambda (z) 
	  (cond ((null (setq val (catch 'match (mcall (car preds) z)))) nil)
		(t (setq saved (add2* saved val))
		   (setq e (delete z e :count 1 :test #'equal)))))
      e)
     (cond ((and (equal saved 0)
		 (null (setq val (catch 'match (mcall (car preds) 0)))))
	    (matcherr)))
     (mset (car p) saved)
     b (setq preds (cdr preds) p (cdr p))
     (go a)))

(defmfun part* (e p preds) 
  (prog (flag saved val) 
     (if (not (mtimesp e)) (matcherr))
     (cond ((> (length p) (length preds))
	    (setq p (reverse p))
	    (setq p (nthkdr p (- (length p) (length preds))))
	    (setq p (nreverse p))))
     (setq e (copy-tree e)) ; PREVIOUSLY: (setq e ($factor e))
     (setq e (cdr e))
     a    (cond ((null p) (cond ((null e) (return t)) (t (matcherr))))
		((and (cdr preds) (member (car (caddar preds)) '(msetq setq) :test #'eq))
		 (cond (flag (merror (intl:gettext "PART*: two or more pattern variables match anything.")))
		       (t (setq flag t p (reverse p) preds (reverse preds))
			  (go a))))
		((not (atom (car p)))
		 (prog (mye) 
		    (setq mye e)
		    loop (cond ((null mye) (matcherr)))
		    (setq val (catch 'match (mcall (car preds) (car mye))))
		    (cond ((null val)
			   (setq mye (cdr mye)) (go loop))
			  (t (return (setq e (delete (car mye) e :count 1 :test #'equal))))))
		 (go b))
		(t (mset (car p) 1)))
     (setq saved 1)
     (mapc 
      #'(lambda (z) (setq val (catch 'match (mcall (car preds) z)))
		(cond ((null val) nil)
		      (t (setq saved (mul2* saved val))
			 (setq e (delete z e :count 1 :test #'equal)))))
      e)
     (cond ((and (equal saved 1)
		 (null (setq val (catch 'match (mcall (car preds) 1)))))
	    (matcherr)))
     (mset (car p) saved)
     b    (setq preds (cdr preds) p (cdr p))
     (go a)))

;;; TRANSLATE property in MAXSRC;TRANS5 >

(defmspec $apply1 (l) (setq l (cdr l))
	  (let ((expr (meval (car l))))
	    (mapc #'(lambda (z) (setq expr (apply1 expr z 0))) (cdr l))
	    expr))

(defmfun apply1 (expr *rule depth) 
  (cond
    ((> depth $maxapplydepth) expr)
    (t
     (prog nil 
	(*rulechk *rule)
	(setq expr (rule-apply *rule expr))
	b    (cond
	       ((or (atom expr) (mnump expr)) (return expr))
	       ((eq (caar expr) 'mrat)
		(setq expr (ratdisrep expr)) (go b))
	       (t
		(return
		  (simplifya
		   (cons
		    (delsimp (car expr))
		    (mapcar #'(lambda (z) (apply1 z *rule (1+ depth)))
			    (cdr expr)))
		   t))))))))

(defmspec $applyb1 (l)  (setq l (cdr l))
	  (let ((expr (meval (car l))))
	    (mapc #'(lambda (z) (setq expr (car (apply1hack expr z)))) (cdr l))
	    expr))

(defmfun apply1hack (expr *rule) 
  (prog (pairs max) 
     (*rulechk *rule)
     (setq max 0)
     b    (cond
	    ((atom expr) (return (cons (multiple-value-bind (ans rule-hit) (mcall *rule expr) (if rule-hit ans expr)) 0)))
	    ((specrepp expr) (setq expr (specdisrep expr)) (go b)))
     (setq pairs (mapcar #'(lambda (z) (apply1hack z *rule))
			 (cdr expr)))
     (setq max 0)
     (mapc #'(lambda (l) (setq max (max max (cdr l)))) pairs)
     (setq expr (simplifya (cons (delsimp (car expr))
				 (mapcar #'car pairs))
			   t))
     (cond ((= max $maxapplyheight) (return (cons expr max))))
     (setq expr (rule-apply *rule expr))
     (return (cons expr (1+ max)))))

(defun *rulechk (*rule)
  (if (and (symbolp *rule) (not (fboundp *rule)) (not (mfboundp *rule)))
      (merror (intl:gettext "apply1: no such rule: ~:M") *rule)))

(defun rule-apply (*rule expr)
  (prog (ans rule-hit)
   loop (multiple-value-setq (ans rule-hit) (mcall *rule expr))
   (cond ((and rule-hit (not (alike1 ans expr)))
	  (setq expr ans) (go loop)))
   (return expr)))

(defmspec $apply2 (l) (setq l (cdr l))
	  (let ((rulelist (cdr l))) (apply2 rulelist (meval (car l)) 0)))

(defmfun apply2 (rulelist expr depth) 
  (cond
    ((> depth $maxapplydepth) expr)
    (t
     (prog (ans ruleptr rule-hit) 
      a    (setq ruleptr rulelist)
      b    (cond
	     ((null ruleptr)
	      (cond
		((atom expr) (return expr))
		((eq (caar expr) 'mrat)
		 (setq expr (ratdisrep expr)) (go b))
		(t
		 (return
		   (simplifya
		    (cons
		     (delsimp (car expr))
		     (mapcar #'(lambda (z) (apply2 rulelist z (1+ depth)))
			     (cdr expr)))
		    t))))))
      (cond ((progn (multiple-value-setq (ans rule-hit) (mcall (car ruleptr) expr)) rule-hit)
	     (setq expr ans)
	     (go a))
	    (t (setq ruleptr (cdr ruleptr)) (go b)))))))

(defmspec $applyb2 (l) (setq l (cdr l))
	  (let ((rulelist (cdr l))) (car (apply2hack rulelist (meval (car l))))))

(defmfun apply2hack (rulelist e) 
  (prog (pairs max) 
     (setq max 0)
     (cond ((atom e) (return (cons (apply2 rulelist e -1) 0)))
	   ((specrepp e) (return (apply2hack rulelist (specdisrep e)))))
     (setq pairs (mapcar #'(lambda (x) (apply2hack rulelist x)) (cdr e)))
     (setq max 0)
     (mapc #'(lambda (l) (setq max (max max (cdr l)))) pairs)
     (setq e (simplifya (cons (delsimp (car e)) (mapcar #'car pairs)) t))
     (cond ((= max $maxapplyheight) (return (cons e max)))
	   (t (return (cons (apply2 rulelist e -1) (1+ max)))))))