/usr/share/maxima/5.32.1/src/nrat4.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module nrat4)
(declare-top (special $ratsimpexpons *exp *exp2 *radsubst *loglist $radsubstflag
$logsimp *v *var radcanp))
(defmvar $radsubstflag nil
"`radsubstflag' `t' makes `ratsubs' call `radcan' when it appears useful")
(defmfun pdis (x) ($ratdisrep (pdis* x)))
(defun pdis* (x) `((mrat simp ,varlist ,genvar) ,x . 1))
(defun rdis (x) ($ratdisrep (rdis* x)))
(defun rdis* (x) `((mrat simp ,varlist ,genvar) . ,x))
(defun rform (x) (cdr (ratf x)))
(setq radcanp nil)
(defmfun $ratcoef (e x &optional (n 1))
(ratcoeff e x n)) ; The spelling "ratcoeff" is nicer.
(defmfun ratcoeff (a b c)
(let* ((formflag ($ratp a))
(taylorform (and formflag (member 'trunc (cdar a) :test #'eq))))
(cond ((zerop1 b) (improper-arg-err b '$ratcoeff))
((mbagp a) (cons (car a)
(mapcar #'(lambda (a) (ratcoeff a b c))
(cdr a))))
((and taylorform (mnump c) (assolike b (cadddr (cdar a))))
(pscoeff1 a b c))
((and taylorform (mexptp b) (mnump c) (mnump (caddr b))
(assolike (cadr b) (cadddr (cdar a))))
(pscoeff1 a (cadr b) (mul2 c (caddr b))))
((and taylorform (equal c 0)) a)
(t (if taylorform (setq a (ratdisrep a)))
(setq a (let ($ratwtlvl)
(if (equal c 0)
(ratcoef (mul2* a b) b)
(ratcoef a (if (equal c 1) b (list '(mexpt) b c))))))
(if (and formflag (not taylorform))
(minimize-varlist a)
(ratdisrep a))))))
(defun minimize-varlist (ratfun)
(if (not ($ratp ratfun)) (setq ratfun (ratf ratfun)))
(minvarlist-mrat (caddr (car ratfun)) (cadddr (car ratfun))
(cdr ratfun)))
(defun minvarlist-mrat (vars gens ratform)
(let ((newgens (union* (listovars (car ratform))
(listovars (cdr ratform)))))
(do ((lv vars (cdr lv))
(lg gens (cdr lg))
(nlv ())
(nlg ()))
((null lg)
(cons (list 'mrat 'simp (nreverse nlv) (nreverse nlg))
ratform))
(cond ((member (car lg) newgens :test #'eq)
(push (car lg) nlg)
(push (car lv) nlv))))))
(defun ratcoef (exp var)
(prog (varlist genvar $ratfac $algebraic $ratwtlvl bas minvar)
(setq var (ratdisrep var))
(setq bas (if (and (mexptp var) (mnump (caddr var))) (cadr var) var))
(newvar var)
(newvar bas)
(setq minvar (car varlist))
(newvar exp)
(setq exp (cdr (ratrep* exp)))
(setq var (cdr (ratrep* var)))
(setq bas (cadr (ratrep* bas)))
(if (and (onep1 (cdr exp)) (onep1 (cdr var)) (pureprod (car var)))
(return (pdis* (prodcoef (car var) (car exp)))))
(setq exp (ratquotient exp var))
(if (null minvar) (return (pdis* (prodcoef (cdr exp) (car exp)))))
(setq minvar (caadr (ratrep* minvar)))
loop (if (or (pcoefp (cdr exp)) (pointergp minvar (cadr exp)))
(return (rdis* (cdr (ratdivide exp bas)))))
(setq exp (ratcoef1 (car exp) (cdr exp)))
(go loop)))
(defun ratcoef1 (num den)
(cond ((pcoefp num) (rzero))
((eq (car num) (car den)) (car (pdivide num den)))
((pointergp (car den) (car num)) (rzero))
(t (ratcoef1 (constcoef (cdr num)) den))))
(defun constcoef (p)
(cond ((null p) 0)
((zerop (car p)) (cadr p))
(t (constcoef (cddr p)))))
(setq *radsubst nil)
(defmfun $ratsubst (a b c) ; NEEDS CODE FOR FAC. FORM
(prog (varlist newvarlist dontdisrepit $ratfac genvar $keepfloat)
;; hard to maintain user ordering info.
(if ($ratp c) (setq dontdisrepit t))
(when (and $radsubstflag
(prog2 (newvar b) (some #'mexptp varlist)))
(let (($factorflag t) *exp *exp2 *radsubst)
(setq b (fullratsimp b))
(setq c (fullratsimp c))
(setq varlist nil)
(fnewvar b)
(fnewvar c)
(setq *exp (cdr (ratrep* b)))
(setq *exp2 (cdr (ratrep* c)))
;; since *radsubst is t, both *exp and *exp2 will be radcan simplified
(setq *radsubst t)
(spc0)
(setq b (rdis *exp) c (rdis *exp2))
(setq varlist nil)))
(setq a ($ratdisrep a) b ($ratdisrep b) c ($ratdisrep c))
(cond ((integerp b) (setq c (ratf (maxima-substitute a b c)))
(return (cond (dontdisrepit c) (t ($ratdisrep c))))))
(newvar c)
(setq
newvarlist
(mapcar
#'(lambda (z)
(cond ((atom z) z)
(t (resimplify
(cons (car z)
(mapcar #'(lambda (zz)
(cond ((alike1 zz b) a)
((atom zz) zz)
(t ($ratdisrep
($ratsubst a b zz)))))
(cdr z)))))))
varlist))
(newvar a) (newvar b)
(setq newvarlist (reverse (pairoff (reverse varlist)
(reverse newvarlist))))
(setq a (cdr (ratrep* a)))
(setq b (cdr (ratrep* b)))
(setq c (cdr (ratrep* c)))
(when (pminusp (car b))
(setq b (ratminus b))
(setq a (ratminus a)))
(when (and (equal 1 (car b))
(not (equal 1 (cdr b)))
(not (equal 0 (car a))))
(setq a (ratinvert a))
(setq b (ratinvert b)))
(cond ((not (equal 1 (cdr b)))
(setq a (rattimes a (cons (cdr b) 1) t))
(setq b (cons (car b) 1))))
(setq c
(cond ((member (car b) '(0 1) :test #'equal)
(ratf (maxima-substitute (rdis a) b (rdis c))))
(t (cons (list 'mrat 'simp varlist genvar)
(if (equal (cdr a) 1)
(ratreduce (everysubst0 (car a) (car b) (car c))
(everysubst0 (car a) (car b) (cdr c)))
(allsubst00 a b c))))))
(unless (alike newvarlist varlist)
(setq varlist newvarlist
c (rdis (cdr c))
varlist nil
c (ratf c)))
(return (cond (dontdisrepit c) (t ($ratdisrep c))))))
(defun xptimes (x y) (if $ratwtlvl (wtptimes x y 0) (ptimes x y)))
(defun allsubst00 (a b c)
(cond ((equal a b) c)
(t (ratquotient (everysubst00 a (car b) (car c))
(everysubst00 a (car b) (cdr c))))))
(defun everysubst00 (x i z)
(loop with ans = (rzero)
for (exp coef) on (everysubst i z *alpha) by #'cddr
do (setq ans (ratplus ans (rattimes (cons coef 1) (ratexpt x exp) t)))
finally (return ans)))
(defun everysubst0 (x i z)
(loop with ans = (pzero)
for (exp coef) on (everysubst i z *alpha) by #'cddr
do (setq ans (pplus ans (xptimes coef (pexpt x exp))))
finally (return ans)))
(defun everysubst1 (a b maxpow)
(loop for (exp coef) on (p-terms b) by #'cddr
for part = (everysubst a coef maxpow)
nconc (if (= 0 exp) part
(everysubst2 part (make-poly (p-var b) exp 1)))))
(defun everysubst2 (l h)
(do ((ptr l (cddr ptr)))
((null ptr) l)
(setf (cadr ptr) (ptimes h (cadr ptr)))))
(defun pairoff (l m)
(cond ((null m) l) (t (cons (car m) (pairoff (cdr l) (cdr m))))))
;;(DEFUN PAIROFF (L M)
;; ;(COND ((NULL M) L) (T (CONS (CAR M) (PAIROFF (CDR L) (CDR M)))))
;; (let ((ans nil))
;; (dolist (x m (nreconc ans l))
;; (push x ans) (setq l (cdr l)))))
(defun everysubst (a b maxpow)
(cond ((pcoefp a)
(cond ((equal a 1) (list maxpow b))
((pcoefp b)
(list (setq maxpow
(do ((b b (quotient b a))
(ans 0 (1+ ans)))
((or (> (abs a) (abs b))
(equal maxpow ans))
ans)))
(quotient b (setq maxpow (expt a maxpow)))
0
(rem b maxpow)))
(t (everysubst1 a b maxpow))))
((or (pcoefp b) (pointergp (car a) (car b))) (list 0 b))
((eq (car a) (car b))
(cond ((null (cdddr a)) (everypterms b (caddr a) (cadr a) maxpow))
(t (substforsum a b maxpow))))
(t (everysubst1 a b maxpow))))
(defun everypterms (x p n maxpow)
(if (< (cadr x) n)
(list 0 x)
(prog (k ans q part)
(setq k (car x))
(setq x (cdr x))
l (setq q (min maxpow (quotient (car x) n)))
m (when (equal q 0)
(return (if (null x)
ans
(cons 0 (cons (psimp k x) ans)))))
(setq part (everysubst p (cadr x) q))
(setq ans (nconc (everypterms1 part k n (car x)) ans))
(setq x (cddr x))
(when (null x)
(setq q 0)
(go m))
(go l))))
(defun everypterms1 (l k n j)
(do ((ptr l (cddr ptr)))
((null ptr) l)
(setf (cadr ptr)
(ptimes (psimp k (list (- j (* n (car ptr))) 1))
(cadr ptr)))))
(defun substforsum (a b maxpow)
(do ((pow 0 (1+ pow))
(quot) (zl-rem) (ans))
((not (< pow maxpow)) (list* maxpow b ans))
(desetq (quot zl-rem) (pdivide b a))
(unless (and (equal (cdr quot) 1)
(not (pzerop (car quot)))
(equal (cdr zl-rem) 1))
(return (cons pow (cons b ans))))
(unless (pzerop (car zl-rem))
(setq ans (cons pow (cons (car zl-rem) ans))))
(setq b (car quot))))
(defun prodcoef (a b)
(cond ((pcoefp a)
(cond ((pcoefp b) (quotient b a)) (t (prodcoef1 a b))))
((pcoefp b) (pzero))
((pointergp (car a) (car b)) (pzero))
((eq (car a) (car b))
(cond ((null (cdddr a))
(prodcoef (caddr a) (ptterm (cdr b) (cadr a))))
(t (sumcoef a b))))
(t (prodcoef1 a b))))
(defun sumcoef (a b)
(desetq (a b) (pdivide b a))
(if (and (equal (cdr a) 1) (equal (cdr b) 1))
(car a)
(pzero)))
(defun prodcoef1 (a b)
(loop with ans = (pzero)
for (bexp bcoef) on (p-terms b) by #'cddr
for part = (prodcoef a bcoef)
unless (pzerop part)
do (setq ans (pplus ans (psimp (p-var b) (list bexp part))))
finally (return ans)))
(defun pureprod (x)
(or (atom x)
(and (not (atom (cdr x)))
(null (cdddr x))
(pureprod (caddr x)))))
(defmfun $bothcoef (r var)
(prog (*var h varlist genvar $ratfac)
(unless ($ratp r)
(return `((mlist)
,(setq h (coeff r var 1.))
((mplus) ,r ((mtimes) -1 ,h ,var)))))
(newvar var)
(setq h (and varlist (car varlist)))
(newvar r)
(setq var (cdr (ratrep* var)))
(setq r (cdr (ratrep* r)))
(and h (setq h (caadr (ratrep* h))))
(cond ((and h (or (pcoefp (cdr r)) (pointergp h (cadr r)))
(equal 1 (cdr var)))
(setq var (bothprodcoef (car var) (car r)))
(return (list '(mlist)
(rdis* (ratreduce (car var) (cdr r)))
(rdis* (ratreduce (cdr var) (cdr r))))))
(t
;; CAN'T TELL WHAT BROUGHT US TO THIS POINT, SORRY
(merror (intl:gettext "bothcoef: invalid arguments."))))))
;;COEFF OF A IN B
(defun bothprodcoef (a b)
(let ((c (prodcoef a b)))
(if (pzerop c) (cons (pzero) b) (cons c (pdifference b (ptimes c a))))))
(defvar argsfreeofp nil)
(defmfun argsfreeof (var e)
(let ((argsfreeofp t)) (freeof var e)))
;;; This is a version of freeof for a list first argument
(defmfun $lfreeof (l e) "`freeof' for a list first argument"
(unless ($listp l)
(merror (intl:gettext "lfreeof: first argument must be a list; found: ~M") l))
(let ((exp ($totaldisrep e)))
(dolist (var (margs l) t)
(unless (freeof ($totaldisrep var) exp) (return nil)))))
(defmfun $freeof (&rest args)
(prog (l e)
(setq l (mapcar #'$totaldisrep (nreverse args))
e (car l))
loop (or (setq l (cdr l)) (return t))
(if (freeof (getopr (car l)) e) (go loop))
(return nil)))
(defun freeof (var e)
(cond ((alike1 var e) nil)
((atom e) t)
((and (not argsfreeofp)
(or (alike1 var ($verbify (caar e)))
(alike1 var ($nounify (caar e)))))
nil)
((and (or (member (caar e) '(%product %sum %laplace) :test #'eq)
(and (eq (caar e) '%integrate) (cdddr e))
(and (eq (caar e) '%limit) (cddr e)))
(alike1 var (caddr e)))
(freeofl var (cdddr e)))
((eq (caar e) '%at)
(cond ((not (freeofl var (hand-side (caddr e) 'r))) nil)
((not (freeofl var (hand-side (caddr e) 'l))) t)
(t (freeof var (cadr e)))))
((and (eq (caar e) 'lambda) (member var (cdadr e) :test #'eq)) t)
;; Check for a local variable in a block.
((and (eq (caar e) 'mprog) (member var (cdadr e) :test #'eq)) t)
;; Check for a loop variable.
((and (eq (caar e) 'mdo) (alike1 var (cadr e))) t)
(argsfreeofp (freeofl var (margs e)))
(t (freeofl var (cdr e)))))
(defun freeofl (var l) (loop for x in l always (freeof var x)))
(defmfun hand-side (e flag)
(setq e (if (eq (caar e) 'mequal) (ncons e) (cdr e)))
(mapcar #'(lambda (u) (if (eq flag 'l) (cadr u) (caddr u))) e))
;; subtitle radcan
(defmfun $radcan (exp)
(cond ((mbagp exp) (cons (car exp) (mapcar '$radcan (cdr exp))))
(t (let (($ratsimpexpons t))
(simplify (let (($expop 0) ($expon 0))
(radcan1 (fr1 exp nil))))))))
(defun radcan1 (*exp)
(cond ((atom *exp) *exp)
(t (let (($factorflag t) varlist genvar $ratfac $norepeat
($gcd (or $gcd (car *gcdl*)))
(radcanp t))
(newvar *exp)
(setq *exp (cdr (ratrep* *exp)))
(setq varlist
(mapcar
#'(lambda (x) (cond
((atom x) x)
(t (cons (car x)
(mapcar 'radcan1 (cdr x))))))
varlist))
(spc0)
(fr1 (rdis *exp) nil)))))
(defun spc0 ()
(prog (*v *loglist)
(if (allatoms varlist) (return nil))
(setq varlist (mapcar #'spc1 varlist)) ;make list of logs
(setq *loglist (factorlogs *loglist))
(mapc #'spc2 *loglist) ;subst log factorizations
(mapc #'spc3 varlist genvar) ;expand exponents
(mapc #'spc4 varlist) ;make exponent list
(desetq (varlist . genvar) (spc5 *v varlist genvar))
;find expon dependencies
(setq varlist (mapcar #'rjfsimp varlist)) ;restore radicals
(mapc #'spc7 varlist))) ;simplify radicals
(defun allatoms (l)
(loop for x in l always (atom x)))
(defun rjfsimp (x &aux expon)
(cond ((and *radsubst $radsubstflag) x)
((not (m$exp? (setq x (let ($logsimp) (resimplify x))))) x)
((mlogp (setq expon (caddr x))) (cadr expon))
((not (and (mtimesp expon) (or $logsimp *var))) x)
(t (do ((rischflag (and *var (not $logsimp) (not (freeof *var x))))
(power (cdr expon) (cdr power))) ;POWER IS A PRODUCT
((null power) x)
(cond ((numberp (car power)))
((mlogp (car power))
(and rischflag (cdr power) (return x))
(return
`((mexpt) ,(cadar power)
,(muln (remove (car power) (cdr expon) :count 1 :test #'equal)
nil))))
(rischflag (return x)))))))
(defun dsubsta (x y zl)
(cond ((null zl) zl)
(t (cond ((alike1 y (car zl)) (rplaca zl x))
((not (atom (car zl))) (dsubsta x y (cdar zl))))
(dsubsta x y (cdr zl))
zl)))
(defun radsubst (a b)
(setq *exp (allsubst00 a b *exp))
(if *radsubst (setq *exp2 (allsubst00 a b *exp2))))
(setq *var nil)
(defun spc1 (x)
(cond ((mlogp x) (putonloglist x))
((and (mexptp x) (not (eq (cadr x) '$%e)))
($exp-form (list '(mtimes)
(caddr x)
(putonloglist (list '(%log simp ratsimp)
(cadr x))))))
(t x)))
(defun putonloglist (l)
(unless (memalike l *loglist) (push l *loglist))
l)
(defun spc2 (p)
(radsubst (rform (cdr p)) (rform (car p)))
(dsubsta (cdr p) (car p) varlist))
(defun spc2a (x) ;CONVERTS FACTORED
(let ((sum (mapcar #'spc2b x))) ;RFORM LOGAND TO SUM
(if (cdr sum) ;OF LOGS
(cons '(mplus) sum)
(car sum))))
(defun spc2b (x)
(let ((log `((%log simp ratsimp irreducible) ,(pdis (car x)))))
(if (equal 1 (cdr x)) log
(list '(mtimes) (cdr x) log))))
(defun spc3 (x v &aux y)
(when (and (m$exp? x)
(not (atom (setq y (caddr x))))
(mplusp (setq y (expand1 (if *var ($partfrac y *var) y) 10 10))))
(setq y (cons '(mtimes)
(mapcar #'(lambda (z) ($ratsimp ($exp-form z))) (cdr y))))
(radsubst (rform y) (rget v))
(dsubsta y x varlist)))
(defun spc4 (x)
(if (and (m$exp? x)
(not (memalike (caddr x) *v)))
(push (caddr x) *v)))
(defun rzcontent (r)
(destructuring-let (((c1 p) (pcontent (car r)))
((c2 q) (pcontent (cdr r))))
(if (pminusp p) (setq p (pminus p) c1 (cminus c1)))
(cons (cons c1 c2) (cons p q))))
;;The GCDLIST looks like (( GCM1pair occurrencepair11 occurrencepair12 ...) ...
;;(GCMnpair occurrencepairn1 occurrencepairn2 ...))
;;where GCMpairs are lists of ratforms and prefix forms for the greatest common
;;multiple of the occurrencepairs. Each of these pairs is a list of a ratform
;;and a prefix form. The prefix form is a pointer into the varlist.
;;The occurrences are exponents of the base %E.
(defun spc5 (vl oldvarlist oldgenvar &aux gcdlist varlist genvar)
(dolist (v vl)
(destructuring-let* ((((c1 . c) . r) (rzcontent (rform v)))
(g (assoc r gcdlist :test #'equal)))
(cond (g (setf (cadr g) (plcm c (cadr g)))
(push (list ($exp-form (div* v c1)) c) (cddr g)))
(t (push (list r c (list ($exp-form (div* v c1)) c)) gcdlist)))))
(dolist (g gcdlist)
(let ((rd (rdis (car g))))
(when (and (mlogp rd) (memalike (cadr rd) oldvarlist))
(push (list (cadr rd) 1) (cddr g)))
(rplaca g ($exp-form (div rd (cadr g))))))
(spc5b gcdlist oldvarlist oldgenvar))
;;(DEFUN SPC5B (V VARLIST GENVAR)
;; (DOLIST (L V)
;; (DOLIST (X (CDDR L))
;; (UNLESS (EQUAL (CADR L) (CADR X))
;; (RADSUBST (RATEXPT (RFORM (CAR L))
;; (CAR (QUOTIENT (CADR X) (CADR L))))
;; (RFORM (CAR X))))))
;; (CONS VARLIST GENVAR))
(defun spc5b (v varlist genvar)
(dolist (l v)
(dolist (x (cddr l))
(unless (equal (cadr l) (cadr x))
(radsubst (ratexpt (rform (car l))
(quotient (cadr l) (cadr x)))
(rform (car x))))))
(cons varlist genvar))
(defun spc7 (x)
(if (eq x '$%i) (setq x '((mexpt) -1 ((rat) 1 2))))
(when (and (mexptp x)
(ratnump (caddr x)))
(let ((rad (rform x))
(rbase (rform (cadr x)))
(expon (caddr x)))
(radsubst (ratexpt rbase (cadr expon))
(ratexpt rad (caddr expon))))))
(defun goodform (l) ;;bad -> good
(loop for (exp coef) on l by #'cddr
collect (cons exp coef)))
(defun factorlogs (l)
(prog (negl posl maxpl maxnl maxn)
(dolist (log l)
(setq log
(cons log (goodform
(ratfact (rform (radcan1 (cadr log)))
#'pfactor))))
(cond ((equal (caadr log) -1) (push log negl))
(t (push log posl))))
(setq negl (flsort negl) posl (flsort posl) l (append negl posl))
(setq negl (mapcar #'cdr negl)
posl (mapcar #'cdr posl))
a (setq negl (delete '((-1 . 1)) negl :test #'equal))
(or negl
(return (mapc #'(lambda (x) (rplacd x (spc2a (cdr x)))) l)))
(setq maxnl (flmaxl negl)
maxn (caaar maxnl))
b (setq maxpl (flmaxl posl))
(cond ((and maxpl (flgreat (caaar maxpl) maxn))
(setq posl (flred posl (caaar maxpl)))
(go b))
((and maxpl
(not (equal (caaar maxpl) maxn)))
(setq maxpl nil)))
(cond ((and (flevenp maxpl) (not (flevenp maxnl)))
(mapc #'(lambda (fp) (rplaca (car fp) (pminus (caar fp)))
(cond ((oddp (cdar fp))
(setq fp (delete '(-1 . 1) fp :test #'equal))
(setq negl (delete fp negl :test #'equal))
(and (cdr fp) (push (cdr fp) posl)))))
maxnl)
(go a))
(t (setq posl (flred posl maxn)
negl (flred negl maxn))
(go a)))))
(defun flevenp (pl)
(loop for l in pl never (oddp (cdar l))))
(defun flred (pl p)
(mapl #'(lambda (x) (if (equal p (caaar x))
(rplaca x (cdar x))))
pl)
(delete nil pl :test #'equal))
(defun flmaxl (fpl) ;lists of fac. polys
(cond ((null fpl) nil)
(t (do ((maxl (list (car fpl))
(cond ((equal (caaar maxl) (caaar ll))
(cons (car ll) maxl))
((flgreat (caaar maxl) (caaar ll)) maxl)
(t (list (car ll)))))
(ll (cdr fpl) (cdr ll)))
((null ll) maxl)))))
(defun flsort (fpl)
(mapc #'(lambda (x) (rplacd x (sort (cdr x) #'flgreat :key #'car)))
fpl))
(defun nmt (p any)
(cond ((pcoefp p)
(if (or any (cminusp p)) 1 0))
(t (loop for lp on (p-terms p) by #'cddr
sum (nmt (cadr lp) any)))))
(defun nmterms (p)
(cond ((equal p -1) (cons 0 0))
(t (cons (nmt p nil) (nmt p t)))))
(defun flgreat (p q)
(let ((pn (nmterms p)) (qn (nmterms q)))
(cond ((> (car pn) (car qn)) t)
((< (car pn) (car qn)) nil)
((> (cdr pn) (cdr qn)) t)
((< (cdr pn) (cdr qn)) nil)
(t (flgreat1 p q)))))
(defun flgreat1 (p q)
(cond ((numberp p)
(cond ((numberp q) (> p q))
(t nil)))
((numberp q) t)
((pointergp (car p) (car q)) t)
((pointergp (car q) (car p)) nil)
((> (cadr p) (cadr q)) t)
((< (cadr p) (cadr q)) nil)
(t (flgreat1 (caddr p) (caddr q)))))
|