/usr/share/maxima/5.32.1/src/nset.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 | ;; Copyright 2002-2003 by
;; Stavros Macrakis (macrakis@alum.mit.edu) and
;; Barton Willis (willisb@unk.edu)
;; Maxima nset is free software; you can redistribute it and/or
;; modify it under the terms of the GNU General Public License,
;; http://www.gnu.org/copyleft/gpl.html.
;; Maxima nset has NO WARRANTY, not even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
;; A Maxima set package
(in-package :maxima)
(macsyma-module nset)
($put '$nset 1.21 '$version)
;; Display sets as { .. }.
(defprop $set msize-matchfix grind)
(setf (get '$set 'dissym) '((#\{ ) #\} ))
(setf (get '$set 'dimension) 'dimension-match)
;; Parse {a, b, c} into set(a, b, c).
(putopr "{" '$set)
(def-nud-equiv |$}| delim-err)
(def-led-equiv |$}| erb-err)
(def-lbp |$}| 5.)
(def-nud-equiv |${| parse-matchfix)
(def-match |${| |$}|)
(def-lbp |${| 200.)
;No RBP
(def-mheader |${| ($set))
(def-pos |${| $any)
;No LPOS
;No RPOS
(def-operator "{" '$any nil '$any nil nil nil nil '(nud . parse-matchfix) 'msize-matchfix 'dimension-match "}")
;; Support for TeXing sets. If your mactex doesn't TeX the empty set
;; correctly, get the latest mactex.lisp.
(defprop $set tex-matchfix tex)
(defprop $set (("\\left \\{" ) " \\right \\}") texsym)
(defun require-set (x context-string)
(if ($setp x) (cdr x) (merror (intl:gettext "~:M: argument must be a set; found: ~:M") context-string x)))
;; If x is a Maxima list, return a Lisp list of its members; otherwise,
;; signal an error. Unlike require-set, the function require-list does not
;; coerce the result to a set.
(defun require-list (x context-string)
(if ($listp x) (cdr x)
(merror (intl:gettext "~:M: argument must be a list; found: ~:M") context-string x)))
;; If x is a Maxima list or set, return a Lisp list of its members; otherwise,
;; signal an error. Unlike require-set, the function require-list-or-set
;; does not coerce the result to a set.
(defun require-list-or-set (x context-string)
(if (or ($listp x) ($setp x)) (cdr x)
(merror (intl:gettext "~:M: argument must be a list or a set; found: ~:M") context-string x)))
;; When a is a list, return a list of the unique elements of a.
;; Otherwise just return a.
(defun $unique (x)
(if ($listp x)
`((mlist) ,@(sorted-remove-duplicates (sort (copy-list (cdr x)) '$orderlessp)))
x))
;; When a is a list, setify(a) is equivalent to apply(set, a). When a
;; isn't a list, signal an error.
(defun $setify (a)
(simplifya `(($set) ,@(require-list a "$setify")) nil))
;; When a is a list, convert a and all of its elements that are lists
;; into sets. When a isn't a list, return a.
(defun $fullsetify (a)
(cond (($listp a)
`(($set) ,@(mapcar '$fullsetify (cdr a))))
(t a)))
;; If a is a set, convert the top-level set to a list; when a isn't a
;; list, return a.
(defun $listify (a)
(if ($setp a) `((mlist simp) ,@(cdr a)) a))
;; full_listify(a) converts all sets in a into lists.
(defun $full_listify (a)
(setq a ($ratdisrep a))
(cond (($mapatom a) a)
(($setp a) (simplify (cons (list 'mlist) (mapcar #'$full_listify (cdr a)))))
(t (simplify (cons (car a) (mapcar #'$full_listify (cdr a)))))))
(defprop $set simp-set operators)
;; Simplify a set.
(defun simp-set (a yy z)
(declare (ignore yy))
(setq a (mapcar #'(lambda (x) (simplifya x z)) (cdr a)))
(setq a (sorted-remove-duplicates (sort a '$orderlessp)))
`(($set simp) ,@a))
;; Return true iff a is an empty set or list
(defun $emptyp (a)
(or (like a `(($set))) (like a `((mlist))) (and ($matrixp a) (every '$emptyp (margs a)))))
;; Return true iff the operator of a is set.
(defun $setp (a)
(and (consp a) (consp (car a)) (eq (caar a) '$set)))
;; Return the cardinality of a set. This function works even when $simp is false.
(defun $cardinality (a)
(if $simp (length (require-set a "$cardinality"))
(let (($simp t)) ($cardinality (simplify a)))))
;; Return true iff a is a subset of b. If either argument is a list, first
;; convert it to a set. Signal an error if a or b aren't lists or sets.
(defun $subsetp (a b)
(setq a (require-set a "$subsetp"))
(setq b (require-set b "$subsetp"))
(and (<= (length a) (length b)) (set-subsetp a b)))
;; Return true iff sets a and b are equal; If either argument is a list, first
;; convert convert it to a set. Signal an error if either a or b aren't lists
;; or sets.
(defun $setequalp (a b)
(setq a (require-set a "$setequalp"))
(setq b (require-set b "$setequalp"))
(and (= (length a) (length b)) (every #'like a b)))
;; Adjoin x to the list or set a and return a set.
(defun $adjoin (x a)
(setq a (require-set a "$adjoin"))
(multiple-value-bind (f i b) (b-search-expr x a 0 (length a))
(if (not f) (setq a (prefixconc a i (cons x b))))
`(($set simp) ,@a)))
;; If x is a member of the set or list a, delete x from setify(a); otherwise, return
;; setify(a). For a set a, disjoin(x,a) == delete(x,a) == setdifference(a,set(x));
;; however, disjoin should be the fastest way to delete a member from a set.
(defun $disjoin (x a)
(setq a (require-set a "$disjoin"))
(multiple-value-bind (f i b) (b-search-expr x a 0 (length a))
`(($set simp) ,@(if f (prefixconc a i b) a))))
;; (previxconc l len rest) is equivalent to (nconc (subseq l len) rest)
(defun prefixconc (l len rest)
(do ((res nil (cons (car l) res))
(i len (decf i))
(l l (cdr l)))
((= i 0) (nreconc res rest))
(declare (fixnum i))))
;; union(a1,a2,...an) returns the union of the sets a1,a2,...,an.
;; If any argument is a list, convert it to a set. Signal an error
;; if one of the arguments isn't a list or a set. When union receives
;; no arguments, it returns the empty set.
(defun $union (&rest a)
(let ((acc nil))
(dolist (ai a `(($set simp) ,@acc))
(setq acc (set-union acc (require-set ai "$union"))))))
;; Remove elements of b from a. Works on lists or sets.
(defun $setdifference (a b)
`(($set simp) ,@(sset-difference (require-set a "$setdifference")
(require-set b "$setdifference"))))
;; intersection(a1,a2,...an) returns the intersection of the sets
;; a1,a2,...,an. Signal an error if one of the arguments isn't a
;; list or a set. intersection must receive at least one argument.
(defun $intersection (a &rest b)
(let ((acc (require-set a "$intersection")))
(cond ((consp b)
(dolist (bi b)
(setq acc (set-intersect acc (require-set bi "$intersection"))))))
`(($set simp) ,@acc)))
;; intersect is an alias for intersection.
(defun $intersect (a &rest b)
(apply '$intersection (cons a b)))
;; Return true iff x as an element of the set or list a. Use like
;; to test for equality. Signal an error if a isn't a set or list.
(defun $elementp (x a)
(setq a (require-set a "$elementp"))
(b-search-expr x a 0 (length a)))
;; Return true if and only if the lists or sets a and b are disjoint;
;; signal an error if a or b aren't lists or sets.
#|
(defun $disjointp-binary-search-version (a b)
(setq a (require-set a "$disjointp"))
(setq b (require-set b "$disjointp"))
(if (> (length a) (length b)) (rotatef a b))
(let ((n (length b)))
(catch 'disjoint
(dolist (ai a)
(if (b-search-expr ai b 0 n) (throw 'disjoint nil)))
t)))
|#
(defun $disjointp (a b)
(setq a (require-set a "$disjointp"))
(setq b (require-set b "$disjointp"))
(set-disjointp a b))
;; Return the set of elements of the list or set a for which the predicate
;; f evaluates to true; signal an error if a isn't a list or a set. Also,
;; signal an error if the function f doesn't evaluate to true, false, or
;; unknown.
(defun $subset (a f)
(setq a (require-set a "$subset"))
(let ((acc nil) (b))
(dolist (x a `(($set simp) ,@(nreverse acc)))
(setq b (mfuncall f x))
(cond ((eq t b) (push x acc))
((not (or (eq b nil) (eq b '$unknown)))
(merror (intl:gettext "subset: ~:M(~:M) evaluates to a non-boolean.") f x))))))
;; Return a list of three sets. The first set is the subset of a for which
;; the predicate f evaluates to true, the second is the subset of a
;; for which f evaluates to false, and the third is the subset of a
;; for which f evalute to unknown.
(defun $partition_set (a f)
(setq a (require-set a "$partition_set"))
(let ((t-acc) (f-acc) (b))
(dolist (x a `((mlist simp)
(($set simp) ,@(nreverse f-acc))
(($set simp) ,@(nreverse t-acc))))
(setq b (mfuncall f x))
(cond ((eq t b) (push x t-acc))
((or (eq b nil) (eq b '$unknown)) (push x f-acc))
(t
(merror (intl:gettext "partition_set: ~:M(~:M) evaluates to a non-boolean.") f x))))))
;; The symmetric difference of sets, that is (A-B) union (B - A), is associative.
;; Thus the symmetric difference extends unambiguously to n-arguments.
(defun $symmdifference (&rest l)
(let ((acc nil))
(dolist (lk l (cons '($set simp) acc))
(setq acc (set-symmetric-difference acc (require-set lk "$symmdifference"))))))
;; Return {x | x in exactly one set l1, l2, ...}
(defun $in_exactly_one (&rest l)
;; u = union of l1, l2,...
;; r = members that are in two or more l1, l2, ...
(let ((u nil) (r nil))
(dolist (lk l)
(setq lk (require-set lk "$in_exactly_one"))
(setq r (set-union r (set-intersect u lk)))
(setq u (set-union u lk)))
(cons '($set simp) (sset-difference u r))))
;; When k is a positive integer, return the set of all subsets of a
;; that have exactly k elements; when k is nil, return the power set
;; of a. Signal an error if the first argument isn't a list or a set.
(defun $powerset (a &optional k)
(setq a (require-set a "$powerset"))
(cond ((null k)
(cons `($set simp)
(mapcar #'(lambda (s)
(cons '($set simp) s)) (power-set a))))
((and (integerp k) (> k -1))
(powerset-subset a k (length a)))))
(defun power-set (a)
(cond ((null a) `(()))
(t
(let ((x (car a)) (b (power-set (cdr a))))
(append `(()) (mapcar #'(lambda (u) (cons x u)) b) (cdr b))))))
(defun powerset-subset (a k n)
(let ((s) (b) (acc))
(cond ((= k 0)
(setq acc (cons `(($set)) acc)))
((<= k n)
(dotimes (i k)
(setq s (cons i s)))
(setq s (nreverse s))
(while (not (null s))
(setq b nil)
(dotimes (i k)
(setq b (cons (nth (nth i s) a) b)))
(setq acc (cons (cons `($set simp) (nreverse b)) acc))
(setq s (ksubset-lex-successor s k n)))))
(cons `($set simp) (nreverse acc))))
;; This code is based on Algorithm 2.6 "Combinatorial Algorithms Generation,
;; Enumeration, and Search," CRC Press, 1999 by Donald Kreher and Douglas
;; Stinson.
(defun ksubset-lex-successor (s k n)
(let ((u (copy-list s))
(i (- k 1)) (j) (si (- n k)))
(while (and (>= i 0) (= (nth i s) (+ si i)))
(decf i))
(cond ((< i 0)
nil)
(t
(setq j i)
(setq si (+ 1 (- (nth i s) i)))
(while (< j k)
(setf (nth j u) (+ si j))
(incf j))
u))))
;; When the list a is redundant, need-to-simp is set to true; this flag
;; determines if acc needs to be simplified. Initially, p = (0,1,2,..,n);
;; the
(defun $permutations (a)
(cond (($listp a)
(setq a (sort (copy-list (cdr a)) '$orderlessp)))
(t
(setq a (require-set a "$permutations"))))
(let* ((n (length a)) (p (make-array (+ n 1) :element-type 'fixnum))
(r (make-array (+ n 1) :initial-element 0 :element-type 'fixnum))
(b (make-array (+ n 1) :initial-element 0))
(i) (acc) (q)
(need-to-simp (not (= (length a)
(length (sorted-remove-duplicates (copy-list a)))))))
(dotimes (i (+ 1 n))
(setf (aref p i) i))
(dotimes (i n)
(setf (aref b (+ i 1)) (nth i a)))
(cond ((not (null a))
(while (not (null p))
(setq i 1)
(setq q nil)
(while (<= i n)
(setq q (cons (aref b (aref p i)) q))
(incf i))
(setq acc (cons (cons '(mlist simp) (nreverse q)) acc))
(setq p (permutation-lex-successor n p r))))
(t
(setq acc `(((mlist))))))
(setq acc (nreverse acc))
(if need-to-simp `(($set) ,@acc)
`(($set simp) ,@acc))))
;; This code is based on Algorithm 2.14 "Combinatorial Algorithms Generation,
;; Enumeration, and Search," CRC Press, 1999 by Donald Kreher and Douglas
;; Stinson.
;; The array elements p(1) thru p(n) specify the permutation; the array
;; r gets used for swapping elements of p. Initially p = (0,1,2,..,n).
(defun permutation-lex-successor (n p r)
(declare (type (simple-array fixnum *) p r))
(declare (type fixnum n))
(let ((i (- n 1)) (j n) (m) (tm))
(setf (aref p 0) 0)
(while (< (aref p (+ i 1)) (aref p i))
(decf i))
(cond ((= i 0)
nil)
(t
(while (< (aref p j) (aref p i))
(decf j))
(setq tm (aref p j))
(setf (aref p j) (aref p i))
(setf (aref p i) tm)
(setq j (+ i 1))
(while (<= j n)
(setf (aref r j) (aref p j))
(incf j))
(setq j (+ i 1))
(setq m (+ n i 1))
(while (<= j n)
(setf (aref p j) (aref r (- m j)))
(incf j))
p))))
(defun $random_permutation (a)
(if ($listp a)
(setq a (copy-list (cdr a)))
(setq a (copy-list (require-set a "$random_permutation"))))
(let ((n (length a)))
(dotimes (i n)
(let
((j (+ i ($random (- n i))))
(tmp (nth i a)))
(setf (nth i a) (nth j a))
(setf (nth j a) tmp))))
`((mlist) ,@a))
#|
;;; Returns 3 values
;;; FOUND -- is X in L
;;; POSITION -- where is X in L; if not in L, position it is before
;;; REST -- everything after X in L
(defun old-b-search-expr (x l lo len)
(declare (fixnum lo len))
(if (= len 0) (values nil lo l)
(let ((mid) (midl))
(while (> len 1)
(if ($orderlessp x (car (setq midl (nthcdr (setq mid (floor len 2)) l))))
(setq len mid)
(setq l midl
lo (+ lo mid)
len (- len mid))))
(cond (($orderlessp x (nth 0 l)) (values nil lo l))
((like x (nth 0 l)) (values t lo (cdr l)))
(t (values nil (1+ lo) (cdr l)))))))
|#
;;; Returns 3 values
;;; FOUND -- is X in L
;;; POSITION -- where is X in L; if not in L, position it is before
;;; REST -- everything after X in L
(defun b-search-expr (x l lo len)
(declare (fixnum lo len))
(if (= len 0) (values nil lo l)
(progn
;; uses great directly instead of $orderlessp; only specrepcheck x once
(setq x (specrepcheck x))
(let ((mid) (midl) (midel))
(while (> len 1)
(cond
;; Previously, it could hit x and continue searching
;; Since great doesn't guarantee inequality, we need the check for
;; alike1 anyway (hidden inside $orderlessp), so we might as well
;; take advantage of it
((alike1
x
(setq midel
(specrepcheck (car (setq midl (nthcdr (setq mid (floor
len 2)) l))))))
(setq l midl
lo (+ lo mid)
len -1))
((great midel x)
(setq len mid))
(t (setq l midl
lo (+ lo mid)
len (- len mid)))))
(cond ((= len -1) (values t lo (cdr l)))
((alike1 x (specrepcheck (nth 0 l))) (values t lo (cdr l)))
((great (specrepcheck (nth 0 l)) x) (values nil lo l))
(t (values nil (1+ lo) (cdr l))))))))
;; Flatten is somewhat difficult to define -- essentially it evaluates an
;; expression as if its main operator had been declared nary; however, there
;; is a difference. We have
;; (C2) flatten(f(g(f(f(x)))));
;; (D2) f(g(f(f(x))))
;; (C3) declare(f,nary);
;; (D3) DONE
;; (C4) ev(d2);
;; (D4) f(g(f(x)))
;; Unlike declaring the main operator of an expression to be nary, flatten
;; doesn't recurse into other function arguments.
;; To successfully flatten an expression, the main operator must be
;; defined for zero or more arguments; if this isn't the case,
;; Maxima can halt with an error. So be it.
(defun $flatten (e)
(cond ((or (specrepp e) (mapatom e)) e)
(t (mcons-op-args (mop e) (flattenl-op (margs e) (mop e))))))
(defun flattenl-op (e op)
(mapcan #'(lambda (e)
(cond ((or (mapatom e) (not (alike1 (mop e) op)))
(list e))
(t (flattenl-op (margs e) op))))
e))
; doesn't work on f[1](f[1](x)).
;(defun $flatten (e)
; (if (or (specrepp e) (mapatom e)) e
; (cons `(,(mop e)) (total-nary e))))
(defun sorted-remove-duplicates (l)
(prog1 l
(while (cdr l)
(while (and (cdr l) (like (car l) (cadr l))
(rplacd l (cddr l))))
(setq l (cdr l)))))
(defun set-intersect (l1 l2)
;; Only works for lists of sorted by $orderlessp.
(with-collector collect
(do-merge-symm
l1 l2
#'like
#'$orderlessp
#'collect
nil)))
(defun set-union (l1 l2)
;; Only works for lists of sorted by $orderlessp.
(with-collector collect
(do-merge-symm
l1 l2
#'like
#'$orderlessp
#'collect
#'collect)))
(defun sset-difference (l1 l2)
;; Only works for lists of sorted by $orderlessp.
(with-collector collect
(do-merge-asym
l1 l2
#'like
#'$orderlessp
nil
#'collect
nil)))
(defun set-subsetp (l1 l2)
;; Is l1 a subset of l2
(catch 'subset
(do-merge-asym
l1 l2
#'like
#'$orderlessp
nil
#'(lambda (xx) (declare (ignore xx)) (throw 'subset nil))
nil)
t))
(defun set-symmetric-difference (l1 l2) ; i.e. xor
(with-collector collect
(do-merge-symm
l1 l2
#'like
#'$orderlessp
nil
#'collect)))
(defun set-disjointp (l1 l2)
(catch 'disjoint
(do-merge-symm
l1 l2
#'like
#'$orderlessp
#'(lambda (xx) (declare (ignore xx)) (throw 'disjoint nil))
nil)
t))
;; When s = $max, return { x in a | f(x) = maximum of f on a} and
;; when s = $min, return { x in a | f(x) = minimum of f on a}.
;; Signal an error when s isn't $max or $min.
(defun $extremal_subset (a f s)
(setq a (require-set a "$extremal_subset"))
(cond ((null a)
`(($set simp)))
(t
(cond ((eq s '$min)
(setq s -1))
((eq s '$max)
(setq s 1))
(t
(merror (intl:gettext "extremal_subset: third argument must be 'max or 'min; found: ~:M") s)))
(let* ((max-subset (nth 0 a))
(mx (mul s (mfuncall f max-subset)))
(x))
(setq max-subset `(,max-subset))
(setq a (cdr a))
(dolist (ai a)
(setq x (mul s (mfuncall f ai)))
(cond ((is-boole-check (mgrp x mx))
(setq mx x
max-subset `(,ai)))
((like x mx)
(setq max-subset (cons ai max-subset)))))
`(($set simp) ,@(nreverse max-subset))))))
(defun bool-checked-mfuncall (f x y)
; (let ((bool (is-boole-check (mfuncall f x y))))
; (if (not (or (eq bool 't) (eq bool nil)))
; (merror "~:M(~:M,~:M) doesn't evaluate to a boolean" f x y)
; bool)))
(let (($prederror nil) (b))
(setq b (mevalp (mfuncall f x y)))
(if (or (eq b t) (eq b nil)) b
(merror (intl:gettext "equiv_classes: ~:M(~:M, ~:M) evaluates to a non-boolean.") f x y))))
;; Return the set of equivalence classes of f on the set l. The
;; function f must be an boolean-valued function defined on the
;; cartesian product of l with l; additionally, f should be an
;; equivalence relation.
;; The lists acc and tail share structure.
(defun $equiv_classes (l f)
(setq l (require-set l "$equiv_classes"))
(do ((l l (cdr l))
(acc)
(tail)
(x))
((null l) (simplify (cons '($set) (mapcar #'(lambda (x) (cons '($set) x)) acc))))
(setq x (car l))
(setq tail (member-if #'(lambda (z) (bool-checked-mfuncall f x (car z))) acc))
(cond ((null tail)
(setq acc (cons `(,x) acc)))
(t
(setf (car tail) (cons x (car tail)))))))
;; cartesian_product(a,b1,b2,...,bn) returns the set with members
;; of the form [x0,x1, ..., xn], where x0 in a, x1 in b1, ... , and
;; xn in bn. With just one argument cartesian_product(a) returns the
;; set with members [a1],[a2], ... [an], where a1, ..., an are the members of a.
;; Signal an error when a or any b isn't a list or a set.
;; After completing the dolist (bi b), the list a doesn't have duplicate
;; members -- thus we can get by with only sorting a.
(defun $cartesian_product (&rest b)
(cond ((null b)
`(($set) ((mlist simp))))
(t
(let ((a)
(acc (mapcar #'list (require-set (car b) "$cartesian_product"))))
(setq b (cdr b))
(dolist (bi b)
(setq a nil)
(setq bi (require-set bi "$cartesian_product"))
(dolist (bij bi (setq acc a))
(setq a (append a (mapcar #'(lambda (x) (cons bij x)) acc)))))
(cons '($set simp)
(sort (mapcar #'(lambda (x) (cons '(mlist simp) (reverse x))) acc)
'$orderlessp))))))
;; When n is defined, return a set of partitions of the set or list a
;; into n disjoint subsets. When n isn't defined, return the set of
;; all partitions.
;; Let S be a set. We say a set P is a partition of S provided
;; (1) p in P implies p is a set,
;; (2) p1, p2 in P and p1 # p2 implies p1 and p2 are disjoint,
;; (3) union(x | x in P) = S.
;; Thus set() is a partition of set().
(defun $set_partitions (a &optional n-sub)
(setq a (require-set a "$set_partitions"))
(cond ((and (integerp n-sub) (> n-sub -1))
`(($set) ,@(set-partitions a n-sub)))
((null n-sub)
(setq n-sub (length a))
(let ((acc (set-partitions a 0)) (k 1))
(while (<= k n-sub)
(setq acc (append acc (set-partitions a k)))
(incf k))
`(($set) ,@acc)))
(t
(merror (intl:gettext "set_partitions: second argument must be a positive integer; found: ~:M") n-sub))))
(defun set-partitions (a n)
(cond ((= n 0)
(cond ((null a)
(list `(($set))))
(t
nil)))
((null a)
nil)
(t
(let ((p) (x) (acc) (w) (s) (z))
(setq x (car a))
(setq p (set-partitions (cdr a) n))
(dolist (pj p)
(setq w nil)
(setq s (cdr pj))
(while (not (null s))
(setq z (pop s))
(setq acc (cons (simplifya `(($set) ,@w ,($adjoin x z) ,@s) t) acc))
(setq w (cons z w))))
(setq x `(($set) ,x))
(setq p (set-partitions (cdr a) (- n 1)))
(dolist (pj p acc)
(setq acc (cons ($adjoin x pj) acc)))))))
;; Generate the integer partitions in dictionary order. When the optional
;; argument len is defined, only generate the partitions with exactly len
;; members, including 0.
(defun $integer_partitions (n &optional len)
(let ((acc))
(cond ((and (integerp n) (>= n 0))
(setq acc (cond ((= n 0) nil)
((integerp len) (fixed-length-partitions n n len))
(t (integer-partitions n))))
(if (not acc)
(setq acc `(((mlist simp))))
(setq acc (mapcar #'(lambda (x) (simplify (cons '(mlist) x))) acc)))
`(($set simp) ,@acc))
(t
(if len `(($integer_partitions simp) ,n ,len) `(($integer_partitions simp) ,n))))))
(defun integer-partitions (n)
(let ((p `(,n)) (acc nil) (d) (k) (j) (r))
(while (> (car (last p)) 1)
(setq acc (cons (copy-list (reverse p)) acc))
(setq p (member t p :key #'(lambda (x) (> x 1))))
(setq k (- (nth 0 p) 1))
(setf (nth 0 p) k)
(setq d (- n (reduce #'+ p)))
(setq j k)
(while (and (> k 0) (> d 0))
(multiple-value-setq (d r) (floor d k))
(setq p (append (make-list d :initial-element k) p))
(setq d r)
(decf k)))
(setq acc (cons (copy-list (reverse p)) acc))
acc))
(defun fixed-length-partitions (n b len)
(let ((p t) (acc) (i))
(cond ((> n (* b len)) nil)
((= len 1) (if (<= n b) (setq acc `((,n))) nil))
(t
(setq len (- len 1))
(setq i (- n (min n b)))
(setq n (min n b))
(while (not (null p))
(setq p (mapcar #'(lambda (x) (cons n x)) (fixed-length-partitions i (min i n) len)))
(setq acc (append p acc))
(decf n)
(incf i))))
acc))
;; When n is a nonnegative integer, return the number of partitions of n.
;; If the optional parameter lst has the value "list", return a list of
;; the number of partitions of 1,2,3, ... , n. If n isn't a nonnegative
;; integer, return a noun form.
(defun $num_partitions (n &optional lst)
(cond ((equal n 0) 1)
((and (integerp n) (> n -1))
(let ((p (make-array (+ n 1)))
(s (make-array (+ n 1)))
(sum) (i) (j))
(setf (aref p 0) 1)
(setf (aref p 1) 1)
(setq i 0)
(while (<= i n)
(setf (aref s i) (mfuncall '$divsum i 1))
(incf i))
(setq i 2)
(while (<= i n)
(setq sum 0)
(setq j 1)
(while (<= j i)
(setq sum (+ sum (* (aref s j) (aref p (- i j)))))
(incf j))
(setf (aref p i) (/ sum i))
(incf i))
(cond ((eq lst '$list)
(let ((acc))
(incf n)
(dotimes (i n)
(push (aref p i) acc))
(setq acc (nreverse acc))
(push '(mlist simp) acc)))
(t
(aref p n)))))
(t (if lst `(($num_partitions simp) ,n ,lst)
`(($num_partitions simp) ,n)))))
(defun $num_distinct_partitions (n &optional lst)
(cond ((eq n 0) 1)
((and (integerp n) (> n -1))
(let ((p (make-array (+ n 1)))
(s (make-array (+ n 1)))
(u (make-array (+ n 1)))
(sum) (i) (j))
(setf (aref p 0) 1)
(setf (aref p 1) 1)
(setq i 0)
(while (<= i n)
(setf (aref s i) (mfuncall '$divsum i 1))
(incf i))
(setq i 0)
(while (<= i n)
(if (oddp i)
(setf (aref u i) (aref s i))
(setf (aref u i) (- (aref s i) (* 2 (aref s (/ i 2))))))
(incf i))
(setq i 2)
(while (<= i n)
(setq sum 0)
(setq j 1)
(while (<= j i)
(setq sum (+ sum (* (aref u j) (aref p (- i j)))))
(incf j))
(setf (aref p i) (/ sum i))
(incf i))
(cond ((eq lst '$list)
(let ((acc))
(incf n)
(dotimes (i n)
(push (aref p i) acc))
(setq acc (nreverse acc))
(push '(mlist simp) acc)))
(t
(aref p n)))))
(t (if lst `(($num_distinct_partitions simp) ,n ,lst)
`(($num_distinct_partitions simp) ,n)))))
;; A n-ary Kronecker delta function: kron_delta(n0,n1, ..., nk) simplifies to 1 if
;; (meqp ni nj) is true for *all* pairs ni, nj in (n0,n1, ..., nk); it simplifies to 0 if
;; (mnqp ni nj) is true for *some* pair ni, nj in (n0,n1, ..., nk). Further kron_delta() --> 1
;; and kron_delta(xxx) --> wrong number of arguments error. Thus
;;
;; kron_delta(x0,...,xn) * kron_delta(y0,..., ym) = kron_delta(x0, ..., xn, y0, ..., ym)
;;
;; is an identity.
(defprop %kron_delta simp-kron-delta operators)
(setf (get '$kron_delta 'noun) '%kron_delta)
(setf (get '%kron_delta 'verb) '$kron_delta)
(setf (get '$kron_delta 'alias) '%kron_delta)
(setf (get '%kron_delta 'reversealias) '$kron_delta)
(defun $kron_delta (&rest x) (simplifya `((%kron_delta) ,@x) t))
(setf (get '%kron_delta 'real-valued) t) ;; conjugate(kron_delta(xxx)) --> kron_delta(xxx)
(setf (get '%kron_delta 'integer-valued) t) ;; featurep(kron_delta(xxx), integer) --> true
(putprop '%kron_delta #'(lambda (s) (setq sign '$pz)) 'sign-function)
(defun simp-kron-delta (l y z)
(declare (ignore y))
(setq l (cdr l)) ;; remove (($kron_delta simp)
(if (and l (null (cdr l))) (wna-err '$kron_delta)) ;; wrong number of arguments error for exactly one argument
;; Checking both mnqp and meqp is convenient, but unnecessary. This code misses simplifications that
;; involve three or more arguments. Example: kron_delta(a,b,a+b+1,a-b+5) could (but doesn't) simplify
;; to 0 (the solution set (a = b, a = a+b+1, a=a-b+5) is empty.
(let ((acc nil) (return-zero nil))
(setq return-zero (catch 'done
(dolist (lk l)
(setq lk (simpcheck lk z))
(cond ((some #'(lambda (s) (eq t (mnqp s lk))) acc) ;; lk # some member of acc, return zero.
(throw 'done t))
((some #'(lambda (s) (eq t (meqp s lk))) acc)) ;; lk = some member of acc, do nothing
(t (push lk acc))));; push lk onto acc
nil)) ;; set return-zero to nil
(cond (return-zero 0)
((or (null acc) (null (cdr acc))) 1)
(t ;; reflection: kron_delta(-a,-b,...) == kron_delta(a,b,...).
(let ((neg-acc (sort (mapcar #'neg acc) '$orderlessp)))
(setq acc (sort acc '$orderlessp))
`((%kron_delta simp) ,@(if (great (cons '(mlist) neg-acc) (cons '(mlist) acc)) neg-acc acc)))))))
(defprop %kron_delta tex-kron-delta tex)
(defun tex-kron-delta (x l r)
(append l `("\\delta_{" ,@(tex-list (cdr x) nil (list "} ") ", ")) r))
;; Stirling numbers of the first kind.
(defprop $stirling1 simp-stirling1 operators)
;; Apply the simplifications (See Knuth Third Edition, Volume 1,
;; Section 1.2.6, Equations 48, 49, and 50. For a nonnegative
;; integer n, we have
;; (1) stirling1 (0, n) = kron_delta(0,n),
;; (2) stirling1 (n, n) = 1,
;; (3) stirling1 (n, n - 1) = binomial(n,2),
;; (4) stirling1 (n + 1, 0) = 0,
;; (5) stirling1 (n + 1, 1) = n!,
;; (6) stirling1 (n + 1, 2) = 2^n - 1.
(defun simp-stirling1 (n yy z)
(declare (ignore yy))
(twoargcheck n)
(setq n (mapcar #'(lambda (x) (simplifya x z)) (cdr n)))
(let ((m (nth 1 n)))
(setq n (nth 0 n))
(cond ((and (integerp n) (integerp m) (> n -1) (> m -1))
(integer-stirling1 n m))
((and (nonnegative-integerp n) ($featurep m '$integer))
(cond ((like n 0) (simplify `(($kron_delta) ,m 0)))
((like n m) 1)
((like (sub n m) 1) (simplify `((%binomial) ,n 2)))
((and (like m 0) (nonnegative-integerp (sub n 1))) 0)
((and (like m 1) (nonnegative-integerp (sub n 1)))
(simplify `((mfactorial) ,(sub n 1))))
((and (like m 2) (nonnegative-integerp (sub n 1)))
(sub (power 2 (sub n 1)) 1))
(t `(($stirling1 simp) ,n ,m))))
(t `(($stirling1 simp) ,n ,m)))))
;; This code is based on Algorithm 3.17 "Combinatorial Algorithms Generation,
;; Enumeration, and Search," CRC Press, 1999 by Donald Kreher and Douglas
;; Stinson. There is a typographical error in Algorithm 3.17; replace i - j
;; with i - 1. See Theorem 3.14.
(defun integer-stirling1 (m n)
(cond ((>= m n)
(let ((s (make-array `(,(+ m 1) ,(+ m 1)) :initial-element 0))
(i) (j) (k) (im1))
(setf (aref s 0 0) 1)
(setq i 1)
(while (<= i m)
(setq k (min i n))
(setq j 1)
(setq im1 (- i 1))
(while (<= j k)
(setf (aref s i j) (- (aref s im1 (- j 1))
(* im1 (aref s im1 j))))
(incf j))
(incf i))
(aref s m n)))
(t 0)))
;; Apply the simplifications (See Knuth Third Edition, Volume 1,
;; Section 1.2.6, Equations 48, 49, and 50. For a nonnegative
;; integer n, we have
;; (1) stirling2 (0, n) = kron_delta(0,n),
;; (2) stirling2 (n, n) = 1,
;; (3) stirling2 (n, n - 1) = binomial(n,2),
;; (4) stirling2 (n + 1, 0) = 0,
;; (5) stirling2 (n + 1, 1) = 1,
;; (6) stirling2 (n + 1, 2) = 2^n - 1.
;; Additionally, we use (See Graham, Knuth, and Patashnik,
;; "Concrete Mathematics," Table 264)
;; (7) stirling2 (n,0) = kron_delta(n,0),
;; (8) stirling2 (n,m) = 0 when m > n.
;; Instead of (4), we use (7). We do not extend Stirling2 off the integers
;; or into the left HP. The recursion relation
;; stirling2(n,m) = stirling2(n-1,m-1) + m * stirling2(n-1,m)
;; does extend Stirling2 into the lower HP.
(defun nonnegative-integerp (e)
(and ($featurep e '$integer)
(member ($sign (specrepcheck e)) `($pos $zero $pz) :test #'eq)))
(defprop $stirling2 simp-stirling2 operators)
(defun simp-stirling2 (n yy z)
(declare (ignore yy))
(twoargcheck n)
(setq n (mapcar #'(lambda (x) (simplifya x z)) (cdr n)))
(let ((m (nth 1 n)))
(setq n (nth 0 n))
(cond ((and (integerp n) (integerp m) (> n -1))
(integer-stirling2 n m))
((and (nonnegative-integerp n) ($featurep m '$integer))
(cond ((like n 0) (simplify `(($kron_delta) ,m 0))) ;; (1)
((like m 0) (simplify `(($kron_delta) ,n 0))) ;; (7)
((like n m) 1) ;; (2)
((like (sub n m) 1) (simplify `((%binomial) ,n 2))) ;; (3)
((and (like m 1) (nonnegative-integerp (sub n 1))) 1) ;; (5)
((and (like m 2) (nonnegative-integerp (sub n 1)))
(sub (power 2 (sub n 1)) 1)) ;; (6)
((or (eq (csign m) '$neg) (eq (csign (sub m n)) '$pos))
0) ;; (8)
(t `(($stirling2 simp) ,n ,m))))
(t `(($stirling2 simp) ,n ,m)))))
;; Stirling2(n,m) = sum((-1)^(m - k) binomial(m k) k^n,i,1,m) / m!.
;; See A & S 24.1.4, page 824.
(defun integer-stirling2 (n m)
(let ((s (if (= n 0) 1 0)) (i 1) (z) (f 1) (b m))
(while (<= i m)
(setq z (* b (expt i n)))
(setq f (* f i))
(setq b (/ (* (- m i) b) (+ i 1)))
(if (oddp i) (setq z (- z)))
(setq s (+ s z))
(incf i))
(setq s (/ s f))
(if (oddp m) (- s) s)))
;; Return the Bell number of n; specifically, belln(n) is the
;; cardinality of the set of partitions of a set with n elements.
(defprop $belln simp-belln operators)
;; Simplify the Bell function. Other than evaluation for nonnegative
;; integer arguments, there isn't much that can be done. I don't know
;; a reasonable extension of the Bell function to non-integers or of
;; any simplifications -- we do thread belln over lists, sets, matrices,
;; and equalities.
(defun simp-belln (n y z)
(oneargcheck n)
(setq y (caar n))
(setq n (simpcheck (cadr n) z))
(cond ((and (integerp n) (> n -1))
(integer-belln n))
((or ($listp n) ($setp n) ($matrixp n) (mequalp n))
(thread y (cdr n) (caar n)))
(t `(($belln simp) ,n))))
(defun integer-belln (n)
(let ((s (if (= n 0) 1 0)) (i 1))
(while (<= i n)
(setq s (+ s (integer-stirling2 n i)))
(incf i))
s))
;; The multinomial coefficient; explicitly multinomial_coeff(a1,a2, ... an) =
;; (a1 + a2 + ... + an)! / (a1! a2! ... an!). The multinomial coefficient
;; gives the number of ways of placing a1 + a2 + ... + an distinct objects
;; into n boxes with ak elements in the k-th box.
;; multinomial_coeff is symmetric; thus when at least one of its arguments
;; is symbolic, we sort them. Additionally any zero element of the
;; argument list can be removed without changing the value of
;; multinomial_coeff; we make this simplification as well. If
;; b is nil following (remove 0 b), something has gone wrong.
(defun $multinomial_coeff (&rest a)
(let ((n 0) (d 1))
(dolist (ai a)
(setq n (add n ai))
(setq d (mult d (simplify `((mfactorial) ,ai)))))
(div (simplify `((mfactorial) ,n)) d)))
;; Extend a function f : S x S -> S to n arguments using right associativity.
;; Thus rreduce(f,[0,1,2]) -> f(0,f(1,2)). The second argument must be a list.
(defun $rreduce (f s &optional (init 'no-init))
(rl-reduce f s t init "$rreduce"))
;; Extend a function f : S x S -> S to n arguments using left associativity.
;; Thus lreduce(f,[0,1,2]) -> f(f(0,1),2). Rhe second argument must be a list.
(defun $lreduce (f s &optional (init 'no-init))
(rl-reduce f s nil init "$lreduce"))
(defun rl-reduce (f s left init fn)
(setq s (require-list s fn))
(cond ((not (equal init 'no-init))
(reduce #'(lambda (x y) (mfuncall f x y)) s :from-end left
:initial-value init))
((null s)
(merror (intl:gettext "~a: either a nonempty set or initial value must be given.") fn))
(t
(reduce #'(lambda (x y) (mfuncall f x y)) s :from-end left))))
;; Define an operator (signature S x S -> S, for some set S) to be nary and
;; define a function for its n-argument reduction. There isn't a user-level
;; interface to this mechanism.
(defmacro def-nary (fn arg f-body id)
`(setf (get ,fn '$nary) (list #'(lambda ,arg ,f-body) ,id)))
(defun xappend (s)
#+(or cmu scl)
(cons '(mlist) (apply 'append (mapcar #'(lambda (x)
(require-list x "$append")) s)))
#-(or cmu scl)
(let ((acc))
(dolist (si (reverse s) (cons '(mlist) acc))
(setq acc (append (require-list si "$append") acc)))))
(def-nary 'mand (s) (mevalp (cons '(mand) s)) t)
(def-nary 'mor (s) (mevalp (cons '(mor) s)) nil)
(def-nary 'mplus (s) (simplify (cons '(mplus) s)) 0)
(def-nary 'mtimes (s) (simplify (cons '(mtimes) s)) 1)
(def-nary '$max (s) (if (null s) '$minf (maximin s '$max)) '$minf)
(def-nary '$min (s) (if (null s) '$inf (maximin s '$min)) '$inf)
(def-nary '$append (s) (xappend s) '((mlist)))
(def-nary '$union (s) ($apply '$union (cons '(mlist) s)) '(($set)))
;; Extend a function f : S x S -> S to n arguments. When we
;; recognize f as a nary function (associative), if possible we call a Maxima
;; function that does the work efficiently -- examples are "+", "min", and "max".
;; When there isn't a Maxima function we can call (actually when (get op '$nary)
;; returns nil) we give up and use rl-reduce with left-associativity.
(defun $xreduce (f s &optional (init 'no-init))
(let* ((op-props (get (if (atom f) ($verbify f) nil) '$nary))
(opfn (if (consp op-props) (car op-props) nil)))
(cond (opfn
(setq s (require-list-or-set s "$xreduce"))
(if (not (equal init 'no-init))
(setq s (cons init s)))
(if (null s)
(cadr op-props) ; is this clause really needed?
(funcall opfn s)))
(op-props
($apply f ($listify s)))
(t
(rl-reduce f ($listify s) nil init "$xreduce")))))
;; Extend a function f : S x S -> S to n arguments using a minimum depth tree.
;; The function f should be nary (associative); otherwise, the result is somewhat
;; difficult to describe -- for an odd number of arguments, we favor the left side of the tree.
(defun $tree_reduce (f a &optional (init 'no-init))
(setq a (require-list-or-set a "$tree_reduce"))
(if (not (equal init 'no-init)) (push init a))
(if (null a)
(merror (intl:gettext "tree_reduce: either a nonempty set or initial value must be given.")))
(let ((acc) (x) (doit nil))
(while (consp a)
(setq x (pop a))
(while (consp a)
(push (mfuncall f x (pop a)) acc)
(if (setq doit (consp a)) (setq x (pop a))))
(if doit (push x acc))
(setq a (nreverse acc))
(setq acc nil))
x))
;; An identity function -- may see some use in things like
;; every(identity, [true, true, false, ..]).
(defun $identity (x) x)
;; Maxima 'some' and 'every' functions. The first argument should be
;; a predicate (a function that evaluates to true, false, or unknown).
;; The functions 'some' and 'every' locally bind $prederror to false.
;; Thus within 'some' or 'every,' is(a < b) evaluates to unknown instead
;; of signaling an error (as it would when $prederror is true).
;;
;; Three cases:
;;
;; (1) some(f, set(a1,...,an)) If any f(ai) evaluates to true,
;; 'some' returns true. 'Some' may or may not evaluate all the
;; f(ai)'s. Since sets are unordered, 'some' is free to evaluate
;; f(ai) in any order. To use 'some' on multiple set arguments,
;; they should first be converted to an ordered sequence so that
;; their relative alignment becomes well-defined.
;; (2) some(f,[a11,...,a1n],[a21,...],...) If any f(ai1,ai2,...)
;; evaluates to true, 'some' returns true. 'Some' may or may not
;; evaluate all the f(ai)'s. Since sequences are ordered, 'some'
;; evaluates in the order of increasing 'i'.
;; (3) some(f, matrix([a111,...],[a121,...],[a1n1...]), matrix(...)).
;; If any f(a1ij, a2ij, ...) evaluates to true, return true. 'Some'
;; may or may not evaluate all the predicates. Since there is no
;; natural order for the entries of a matrix, 'some' is free to
;; evaluate the predicates in any order.
;; Notes:
;; (a) 'some' and 'every' automatically apply 'maybe'; thus the following
;; work correctly
;;
;; (C1) some("<",[a,b,5],[1,2,8]);
;; (D1) TRUE
;; (C2) some("=",[2,3],[2,7]);
;; (D2) TRUE
;;
;; (b) Since 'some' is free to choose the order of evaluation, and
;; possibly stop as soon as any one instance returns true, the
;; predicate f should not normally have side-effects or signal
;; errors. Similarly, 'every' may halt after one instance returns false;
;; however, the function 'maybe' is wrapped inside 'errset' This allows
;; some things to work that would otherwise signal an error:
;; (%i1) some("<",[i,1],[3,12]);
;; (%o1) true
;; (%i2) every("<",[i,1],[3,12]);
;; (%o2) false
;; (%i3) maybe(%i < 3);
;; `sign' called on an imaginary argument:
;;
;; (c) The functions 'some' and 'every' effectively use the functions
;; 'map' and 'matrixmap' to map the predicate over the arguments. The
;; option variable 'maperror' modifies the behavior of 'map' and
;; 'matrixmap;' similarly, the value of 'maperror' modifies the behavior
;; of 'some' and 'every.'
;;
;; (d) 'every' behaves similarly to 'some' except that 'every' returns
;; true iff every f evaluates to true for all its inputs.
;;
;; (e) If emptyp(e) is true, then some(f,e) --> false and every(f,e) --> true.
;; Thus (provided an error doesn't get signaled), we have the identities:
;;
;; some(f,s1) or some(f,s2) == some(f, union(s1,s2)),
;; every(f,s1) and every(f,s2) == every(f, union(s1,s2)).
;; Similarly, some(f) --> false and every(f) --> true.
(defun checked-and (x)
(setq x (mfuncall '$maybe `((mand) ,@x)))
(cond ((or (eq x t) (eq x nil) (not $prederror)) x)
((eq x '$unknown) nil)
(t
;; FOLLOWING MESSAGE IS UNREACHABLE FROM WHAT I CAN TELL
;; SINCE MAYBE RETURNS T, NIL, OR '$UNKNOWN
(merror "Predicate isn't true/false valued; maybe you want to set 'prederror' to false"))))
(defun checked-or (x)
(setq x (mfuncall '$maybe `((mor) ,@x)))
(cond ((or (eq x t) (eq x nil) (not $prederror)) x)
((eq x '$unknown) nil)
(t
;; FOLLOWING MESSAGE IS UNREACHABLE FROM WHAT I CAN TELL
;; SINCE MAYBE RETURNS T, NIL, OR '$UNKNOWN
(merror "Predicate isn't true/false valued; maybe you want to set 'prederror' to false"))))
;; Apply the Maxima function f to x. If an error is signaled, return nil; otherwise
;; return (list (mfuncall f x)).
(defun ignore-errors-mfuncall (f x)
(let ((errcatch t))
(declare (special errcatch))
(errset (mfuncall f x) lisperrprint)))
(defun $every (f &rest x)
(cond ((or (null x) (and (null (cdr x)) ($emptyp (first x)))) t)
((or ($listp (first x)) (and ($setp (first x)) (null (cdr x))))
(setq x (margs (simplify (apply #'map1 (cons f x)))))
(checked-and (mapcar #'car (mapcar #'(lambda (s) (ignore-errors-mfuncall '$maybe s)) x))))
((every '$matrixp x)
(let ((fmaplvl 2))
(setq x (margs (simplify (apply #'fmapl1 (cons f x)))))
(checked-and (mapcar #'(lambda (s) ($every '$identity s)) x))))
(t
;; NOT CLEAR FROM PRECEDING CODE WHAT IS "INVALID" HERE
(merror (intl:gettext "every: invalid arguments.")))))
(defun $some (f &rest x)
(cond ((or (null x) (and (null (cdr x)) ($emptyp (first x)))) nil)
((or ($listp (first x)) (and ($setp (first x)) (null (cdr x))))
(setq x (margs (simplify (apply #'map1 (cons f x)))))
(checked-or (mapcar #'car (mapcar #'(lambda (s) (ignore-errors-mfuncall '$maybe s)) x))))
((every '$matrixp x)
(let ((fmaplvl 2))
(setq x (margs (simplify (apply #'fmapl1 (cons f x)))))
(checked-or (mapcar #'(lambda (s) ($some '$identity s)) x))))
(t
;; NOT CLEAR FROM PRECEDING CODE WHAT IS "INVALID" HERE
(merror (intl:gettext "some: invalid arguments.")))))
(defmspec $makeset (l)
(let* ((fn (car (pop l)))
(f (if l (pop l) (wna-err fn)))
(v (if l (pop l) (wna-err fn)))
(s (if l (pop l) (wna-err fn))))
(if l (wna-err fn))
(if (or (not ($listp v)) (not (every #'(lambda (x) (or ($symbolp x) ($subvarp x))) (cdr v))))
(merror (intl:gettext "makeset: second argument must be a list of symbols; found: ~:M") v))
(setq s (require-list-or-set (meval s) "$makeset"))
(setq f (list (list 'lambda) v f))
(setq v (margs v))
(dolist (sk v) (setq f (subst (gensym) sk f :test #'alike1)))
(simplifya (cons '($set) (mapcar #'(lambda (x) (mfuncall '$apply f x)) s)) t)))
;; Thread fn over l and apply op to the resulting list.
(defun thread (fn l op)
(simplify (cons `(,op) (mapcar #'(lambda (x) (simplify `((,fn) ,x))) l))))
;; Return a set of the divisors of n. If n isn't a positive integer,
;; return a noun form. We consider both 1 and n to be divisors of n.
;; The divisors of a negative number are the divisors of its absolute
;; value; divisors(0) simplifies to itself. We thread divisors over
;; lists, sets, matrices, and equalities.
(defprop $divisors simp-divisors operators)
(defun simp-divisors (n y z)
(oneargcheck n)
(setq y (caar n))
(setq n (simpcheck (cadr n) z))
(cond ((or ($listp n) ($setp n) ($matrixp n) (mequalp n))
(thread y (cdr n) (caar n)))
((and (integerp n) (not (= n 0)))
(let (($intfaclim))
(setq n (abs n))
`(($set simp) ,@(sort (mapcar #'(lambda (x) (car x))
(divisors (cfactorw n))) '$orderlessp))))
(t `(($divisors simp) ,n))))
;; The Moebius function; it threads over lists, sets, matrices, and equalities.
(defprop $moebius simp-moebius operators)
(defun simp-moebius (n y z)
(oneargcheck n)
(setq y (caar n))
(setq n (simpcheck (cadr n) z))
(cond ((and (integerp n) (> n 0))
(cond ((= n 1) 1)
(t
(let (($intfaclim))
(setq n (cfactorw n))
(if (every #'(lambda (x) (= 1 x)) (odds n 0))
(if (evenp (ash (length n) -1)) 1 -1)
0)))))
((or ($listp n) ($setp n) ($matrixp n) (mequalp n))
(thread y (cdr n) (caar n)))
(t `(($moebius simp) ,n))))
; Find indices of elements which satisfy a predicate.
; Thanks to Bill Wood (william.wood3@comcast.net) for his help.
; Released under terms of GNU GPL v2 with Bill's approval.
(defun $sublist_indices (items pred)
(let ((items (require-list items "$sublist_indices")))
(do ((i 0 (1+ i))
(xs items (cdr xs))
(acc '() (if (definitely-so (mfuncall pred (car xs))) (cons (1+ i) acc) acc)))
((endp xs) `((mlist) ,@(nreverse acc))))))
|