/usr/share/maxima/5.32.1/src/nummod.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | ;; Maxima functions for floor, ceiling, and friends
;; Copyright (C) 2004, 2005, 2007 Barton Willis
;; Barton Willis
;; Department of Mathematics
;; University of Nebraska at Kearney
;; Kearney NE 68847
;; willisb@unk.edu
;; This source code is licensed under the terms of the Lisp Lesser
;; GNU Public License (LLGPL). The LLGPL consists of a preamble, published
;; by Franz Inc. (http://opensource.franz.com/preamble.html), and the GNU
;; Library General Public License (LGPL), version 2, or (at your option)
;; any later version. When the preamble conflicts with the LGPL,
;; the preamble takes precedence.
;; This library is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; Library General Public License for details.
;; You should have received a copy of the GNU Library General Public
;; License along with this library; if not, write to the
;; Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
;; Boston, MA 02110-1301, USA.
(in-package :maxima)
(macsyma-module nummod)
;; Let's have version numbers 1,2,3,...
(eval-when (:load-toplevel :execute)
(mfuncall '$declare '$integervalued '$feature)
($put '$nummod 3 '$version))
(defmacro opcons (op &rest args)
`(simplify (list (list ,op) ,@args)))
;; charfun(pred) evaluates to 1 when the predicate 'pred' evaluates
;; to true; it evaluates to 0 when 'pred' evaluates to false; otherwise,
;; it evaluates to a noun form.
(defprop $charfun simp-charfun operators)
(defprop %charfun simp-charfun operators)
(defun simp-charfun (e yy z)
(declare (ignore yy))
(oneargcheck e)
(setq e (take '($is) (simplifya (specrepcheck (second e)) z)))
(let ((bool (mevalp e)))
(cond ((eq t bool) 1)
((eq nil bool) 0)
((op-equalp e '$is) `(($charfun simp) ,(second e)))
(t `(($charfun simp) ,e)))))
(defun integer-part-of-sum (e)
(let ((i-sum 0) (n-sum 0) (o-sum 0) (n))
(setq e (margs e))
(dolist (ei e)
(cond ((maxima-integerp ei)
(setq i-sum (add ei i-sum)))
((or (ratnump ei) (floatp ei) ($bfloatp ei))
(setq n-sum (add ei n-sum)))
(t
(setq o-sum (add ei o-sum)))))
(setq n (opcons '$floor n-sum))
(setq i-sum (add i-sum n))
(setq o-sum (add o-sum (sub n-sum n)))
(values i-sum o-sum)))
(defprop $floor simp-floor operators)
(defprop $floor tex-matchfix tex)
(defprop $floor (("\\left \\lfloor " ) " \\right \\rfloor") texsym)
;; $floor distributes over lists, matrices, and equations
(setf (get '$floor 'distribute_over) '(mlist $matrix mequal))
; These defprops for $entier are copied from orthopoly/orthopoly-init.lisp.
(defprop $entier tex-matchfix tex)
(defprop $entier (("\\lfloor ") " \\rfloor") texsym)
;; $entier and $fix distributes over lists, matrices, and equations
(setf (get '$entier 'distribute_over) '(mlist $matrix mequal))
(setf (get '$fix 'distribute_over) '(mlist $matrix mequal))
;; For an example, see pretty-good-floor-or-ceiling. Code courtesy of Stavros Macrakis.
(defmacro bind-fpprec (val &rest exprs)
`(let (fpprec bigfloatzero bigfloatone bfhalf bfmhalf)
(let (($fpprec (fpprec1 nil ,val)))
,@exprs)))
;; Return true if the expression can be formed using rational numbers, logs, mplus, mexpt, or mtimes.
(defun use-radcan-p (e)
(or ($ratnump e) (and (op-equalp e '%log 'mexpt 'mplus 'mtimes) (every 'use-radcan-p (cdr e)))))
;; When constantp(x) is true, we use bfloat evaluation to try to determine
;; the ceiling or floor. If numerical evaluation of e is ill-conditioned, this function
;; can misbehave. I'm somewhat uncomfortable with this, but it is no worse
;; than some other stuff. One safeguard -- the evaluation is done with three
;; values for fpprec. When the floating point evaluations are
;; inconsistent, bailout and return nil. I hope that this function is
;; much more likely to return nil than it is to return a bogus value.
(defun pretty-good-floor-or-ceiling (x fn &optional digits)
(let (($float2bf t) ($algebraic t) (f1) (f2) (f3) (eps) (lb) (ub) (n))
(setq digits (if (and (integerp digits) (> 0 digits)) digits 25))
(catch 'done
;; To handle ceiling(%i^%i), we need to apply rectform. If bfloat
;; is improved, it might be possible to remove this call to rectform.
(setq x ($rectform x))
(if (not ($freeof '$%i '$minf '$inf '$und '$infinity x)) (throw 'done nil))
;; When x doesn't evaluate to a bigfloat, bailout and return nil.
;; This happens when, for example, x = asin(2). For now, bfloatp
;; evaluates to nil for a complex big float. If this ever changes,
;; this code might need to be repaired.
(bind-fpprec digits
(setq f1 ($bfloat x))
(if (not ($bfloatp f1)) (throw 'done nil)))
(incf digits 20)
(setq f2 (bind-fpprec digits ($bfloat x)))
(if (not ($bfloatp f2)) (throw 'done nil))
(incf digits 20)
(bind-fpprec digits
(setq f3 ($bfloat x))
(if (not ($bfloatp f3)) (throw 'done nil))
;; Let's say that the true value of x is in the interval
;; [f3 - |f3| * eps, f3 + |f3| * eps], where eps = 10^(20 - digits).
;; Define n to be the number of integers in this interval; we have
(setq eps (power ($bfloat 10) (- 20 digits)))
(setq lb (sub f3 (mult (take '(mabs) f3) eps)))
(setq ub (add f3 (mult (take '(mabs) f3) eps)))
(setq n (sub (take '($ceiling) ub) (take '($ceiling) lb))))
(setq f1 (take (list fn) f1))
(setq f2 (take (list fn) f2))
(setq f3 (take (list fn) f3))
;; Provided f1 = f2 = f3 and n = 0, return f1; if n = 1 and (use-radcan-p e) and ($radcan e)
;; is a $ratnump, return floor / ceiling of radcan(x),
(cond ((and (= f1 f2 f3) (= n 0)) f1)
((and (= f1 f2 f3) (= n 1) (use-radcan-p x))
(setq x ($radcan x))
(if ($ratnump x) (take (list fn) x) nil))
(t nil)))))
;; (a) The function fpentier rounds a bigfloat towards zero--we need to
;; check for that.
;; (b) Since limit(f(x))=(m)inf implies limit(floor(f(x)))=(m)inf,
;; floor(inf/minf) = inf/minf. Since minf<limit(f(x))<inf implies
;; minf<limit(floor(f(x)))<inf, floor(ind)=ind
;; I think floor(complex number) should be undefined too. Some folks
;; might like floor(a + %i b) --> floor(a) + %i floor(b). But
;; this would violate the integer-valuedness of floor.
;; So floor(infinity) remains unsimplified
(defun simp-floor (e e1 z)
(oneargcheck e)
(setq e (simplifya (specrepcheck (nth 1 e)) z))
(cond ((numberp e) (floor e))
((ratnump e) (floor (cadr e) (caddr e)))
(($bfloatp e)
(setq e1 (fpentier e))
(if (and (minusp (cadr e)) (not (zerop1 (sub e1 e))))
(1- e1)
e1))
((maxima-integerp e) e)
(($orderlessp e (neg e))
(sub 0 (opcons '$ceiling (neg e))))
((and (setq e1 (mget e '$numer)) (floor e1)))
((or (member e infinities) (eq e '$und) (eq e '$ind)) '$und)
;;((member e '($inf $minf $ind $und)) e) ; Proposed code
;; leave floor(infinity) as is
((or (eq e '$zerob)) -1)
((or (eq e '$zeroa)) 0)
((and ($constantp e) (pretty-good-floor-or-ceiling e '$floor)))
((mplusp e)
(let ((i-sum) (o-sum))
(multiple-value-setq (i-sum o-sum) (integer-part-of-sum e))
(setq o-sum (if (equal i-sum 0) `(($floor simp) ,o-sum)
(opcons '$floor o-sum)))
(add i-sum o-sum)))
;; handle 0 < e < 1 implies floor(e) = 0 and
;; -1 < e < 0 implies floor(e) = -1.
((and (equal ($compare 0 e) "<") (equal ($compare e 1) "<")) 0)
((and (equal ($compare -1 e) "<") (equal ($compare e 0) "<")) -1)
(t `(($floor simp) ,e))))
(defun floor-integral (x)
(let ((f (take '($floor) x)))
(mul f (div 1 2) (add (mul 2 x) -1 (neg f)))))
(defun ceiling-integral (x)
(let ((f (take '($ceiling) x)))
(mul f (div 1 2) (add 1 (mul 2 x) (neg f)))))
(putprop '$floor `((x) ,#'floor-integral) 'integral)
(putprop '$ceiling `((x) ,#'ceiling-integral) 'integral)
(defprop $ceiling simp-ceiling operators)
(defprop $ceiling tex-matchfix tex)
(defprop $ceiling (("\\left \\lceil " ) " \\right \\rceil") texsym)
;; $ceiling distributes over lists, matrices, and equations.
(setf (get '$ceiling 'distribute_over) '(mlist $matrix mequal))
(defun simp-ceiling (e e1 z)
(oneargcheck e)
(setq e (simplifya (specrepcheck (nth 1 e)) z))
(cond ((numberp e) (ceiling e))
((ratnump e) (ceiling (cadr e) (caddr e)))
(($bfloatp e)
(sub 0 (opcons '$floor (sub 0 e))))
((maxima-integerp e) e)
(($orderlessp e (neg e))
(sub* 0 (opcons '$floor (neg e))))
((and (setq e1 (mget e '$numer)) (ceiling e1)))
((or (member e infinities) (eq e '$und) (eq e '$ind)) '$und)
((or (eq e '$zerob)) 0)
((or (eq e '$zeroa)) 1)
((and ($constantp e) (pretty-good-floor-or-ceiling e '$ceiling)))
((mplusp e)
(let ((i-sum) (o-sum))
(multiple-value-setq (i-sum o-sum) (integer-part-of-sum e))
(setq o-sum (if (equal i-sum 0) `(($ceiling simp) ,o-sum)
(opcons '$ceiling o-sum)))
(add i-sum o-sum)))
;; handle 0 < e < 1 implies ceiling(e) = 1 and
;; -1 < e < 0 implies ceiling(e) = 0.
((and (equal ($compare 0 e) "<") (equal ($compare e 1) "<")) 1)
((and (equal ($compare -1 e) "<") (equal ($compare e 0) "<")) 0)
(t `(($ceiling simp) ,e))))
(defprop $mod simp-nummod operators)
(defprop $mod tex-infix tex)
(defprop $mod (" \\rm{mod} ") texsym)
(defprop $mod 180. tex-rbp)
(defprop $mod 180. tex-rbp)
;; $mod distributes over lists, matrices, and equations
(setf (get '$mod 'distribute_over) '(mlist $matrix mequal))
;; See "Concrete Mathematics," Section 3.21.
(defun simp-nummod (e e1 z)
(twoargcheck e)
(let ((x (simplifya (specrepcheck (cadr e)) z))
(y (simplifya (specrepcheck (caddr e)) z)))
(cond ((or (equal 0 y) (equal 0 x)) x)
((equal 1 y) (sub x (opcons '$floor x)))
((and ($constantp x) ($constantp y))
(sub x (mul y (opcons '$floor (div x y)))))
((not (equal 1 (setq e1 ($gcd x y))))
(mul e1 (opcons '$mod (div x e1) (div y e1))))
(t `(($mod simp) ,x ,y)))))
;; The function 'round' rounds a number to the nearest integer. For a tie, round to the
;; nearest even integer.
(defprop %round simp-round operators)
(setf (get '%round 'integer-valued) t)
(setf (get '%round 'reflection-rule) #'odd-function-reflect)
(setf (get '$round 'alias) '%round)
(setf (get '$round 'verb) '%round)
(setf (get '%round 'noun) '$round)
;; round distributes over lists, matrices, and equations.
(setf (get '%round 'distribute_over) '(mlist $matrix mequal))
(defun simp-round (e yy z)
(oneargcheck e)
(setq yy (caar e)) ;; find a use for the otherwise unused YY.
(setq e (simplifya (specrepcheck (second e)) z))
(cond (($featurep e '$integer) e) ;; takes care of round(round(x)) --> round(x).
((member e '($inf $minf $und $ind) :test #'eq) e)
(t
(let* ((lb (take '($floor) e))
(ub (take '($ceiling) e))
(sgn (csign (sub (sub ub e) (sub e lb)))))
(cond ((eq sgn t) `((,yy simp) ,e))
((eq sgn '$neg) ub)
((eq sgn '$pos) lb)
((alike lb ub) lb) ;; For floats that are integers, this can happen. Maybe featurep should catch this.
((and (eq sgn '$zero) ($featurep lb '$even)) lb)
((and (eq sgn '$zero) ($featurep ub '$even)) ub)
((apply-reflection-simp yy e t))
(t `((,yy simp) ,e)))))))
;; Round a number towards zero.
(defprop %truncate simp-truncate operators)
(setf (get '%truncate 'integer-valued) t)
(setf (get '%truncate 'reflection-rule) #'odd-function-reflect)
(setf (get '$truncate 'alias) '%truncate)
(setf (get '$truncate 'verb) '%truncate)
(setf (get '%truncate 'noun) '$truncate)
;; truncate distributes over lists, matrices, and equations.
(setf (get '%truncate 'distribute_over) '(mlist $matrix mequal))
(defun simp-truncate (e yy z)
(oneargcheck e)
(setq yy (caar e)) ;; find a use for the otherwise unused YY.
(setq e (simplifya (specrepcheck (second e)) z))
(cond (($featurep e '$integer) e) ;; takes care of truncate(truncate(x)) --> truncate(x).
((member e '($inf $minf $und $ind) :test #'eq) e)
(t
(let ((sgn (csign e)))
(cond ((member sgn '($neg $nz) :test #'eq) (take '($ceiling) e))
((member sgn '($zero $pz $pos) :test #'eq) (take '($floor) e))
((apply-reflection-simp yy e t))
(t `((,yy simp) ,e)))))))
|