This file is indexed.

/usr/share/maxima/5.32.1/src/pois3.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1981 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module pois3)

;; GENERAL POISSON SERIES

(declare-top (special *argc *coef poisvals b* a* *a ss cc h* poishift
		      poistsm poists $poisz $pois1))

(defvar trim nil)

;;; THESE ARE THE ONLY COEFFICIENT DEPENDENT ROUTINES.

;;; POISCDECODE DECODES A COEFFICIENT
(defun poiscdecode (x) x)

;;; INTOPOISCO PUTS AN EXPRESSION INTO POISSON COEFFICIENT FORM
(defun intopoisco (x) (simplifya x nil))

;;; POISCO+ ADDS 2 COEFFICIENTS
(defun poisco+ (r s) (simplifya (list '(mplus) r s) nil))

;;; POISCO* MULTIPLIES 2 COEFFICIENTS
(defun poisco* (r s) (simplifya (list '(mtimes) r s) nil))

;;; HALVE DIVIDES A COEFFICIENT BY 2
(defun halve (r)
  (simplifya (list '(mtimes) '((rat) 1 2) r) nil))

;;; POISSUBSTCO SUBSTITUTES AN EXPRESSION FOR A VARIABLE IN A COEFFICIENT.
(defun poissubstco (a b c)
  (maxima-substitute a b c))

;;; THIS DIFFERENTIATES A COEFFICIENT
(defun poiscodif (h var)
  ($diff h var))

;;; THIS INTEGRATES A COEFFICIENT
(defun poiscointeg (h var)
  (intopoisco($integrate (poiscdecode h) var)))

;;; TEST FOR ZERO
(defun poispzero (x) (zerop1 x))

(defun fumcheck (x)
  (not (and (atom x) (integerp x) (< (abs x) poistsm))))

(defun checkencode(r)
  (prog(q)
     (setq q ($coeff r '$u))
     (cond ((fumcheck q) (return nil))
	   (t (setq r (simplifya (list '(mplus) r (list '(mtimes) -1  '$u q)) nil))))
     (setq q ($coeff r '$v))
     (cond ((fumcheck q)(return nil))
	   (t (setq r (simplifya (list '(mplus) r (list '(mtimes) -1  '$v q)) nil))))
     (setq q ($coeff r '$w))
     (cond ((fumcheck q)(return nil))
	   (t (setq r (simplifya (list '(mplus) r (list '(mtimes) -1  '$w q)) nil))))
     (setq q ($coeff r '$x))
     (cond ((fumcheck q)(return nil))
	   (t (setq r (simplifya (list '(mplus) r (list '(mtimes) -1  '$x q)) nil))))
     (setq q ($coeff r '$y))
     (cond ((fumcheck q)(return nil))
	   (t (setq r (simplifya (list '(mplus) r (list '(mtimes) -1  '$y q)) nil))))
     (setq q ($coeff r '$z))
     (cond ((fumcheck q)(return nil))
	   (t (setq r (simplifya (list '(mplus) r (list '(mtimes) -1  '$z q)) nil))))
     (cond ((equal r 0)(return t))
	   (t (return nil)))))

(defmfun $poissimp (x)
  (if (mbagp x)
      (cons (car x) (mapcar #'$poissimp (cdr x)))
      ($outofpois x)))

;;;********

;; ABOVE ASSUMES POISLIM(5) OR LESS ALSO REDEFINE ORDER< AND ORDER= TO BE < AND =

;;; THIS TELLS THE EVALUATOR TO KEEP OUT OF POISSON $SERIES.

(defprop mpois (lambda (x) x) mfexpr*)

(defmfun $poisplus (a b)
  (setq a (intopois a) b (intopois b))
  (list '(mpois simp) (poismerge22 (cadr a) (cadr b)) (poismerge22 (caddr a) (caddr b))))

(declare-top (special *b *fn))

(defmfun $poismap (p sinfn cosfn)
  (prog (*b *fn)
     (setq p (intopois p))
     (setq *fn (list sinfn))
     (return (list (car p)
		   (poismap (cadr p))
		   (prog2 (setq *fn (list cosfn)) (poismap (caddr p)))))))

(defun poismap (y)
  (cond ((null y) nil)
	(t (setq *b (meval (list *fn (poiscdecode (cadr y)) (poisdecodec (car y)))))
	   (tcons3(car y) (intopoisco  *b) (poismap (cddr y))))))

(defun poismerge22 (r s)
  (cond ((null r) s)
	((null s) r)
	((equal (car r) (car s))
	 (prog (tt)
	    (setq tt (poisco+ (cadr r) (cadr s)))
	    (return (cond ((poispzero tt) (poismerge22 (cddr r) (cddr s)))
			  (t (cons (car s) (cons tt (poismerge22 (cddr r) (cddr s)))))))))
	((< (car r) (car s)) (cons (car r) (cons (cadr r) (poismerge22 (cddr r) s))))
	(t (cons (car s) (cons (cadr s) (poismerge22 (cddr s) r))))))

(defun poiscosine (m)
  (setq m (poisencode m))
  (cond ((poisnegpred m) (setq m (poischangesign m))))
  (list '(mpois simp) nil (list m 1)))

(defun poissine (m)
  (setq m (poisencode m))
  (cond ((poisnegpred m) (list '(mpois simp) (list (poischangesign m) -1) nil))
	(t (list '(mpois simp) (list m 1) nil))))

(defmfun $intopois (x)
  (let (*a)
    (intopois x)))

(defun intopois (a)
  (cond ((atom a)
	 (cond ((equal a 0) $poisz) (t (list '(mpois simp) nil (list poishift (intopoisco a))))))
	((eq (caar a) 'mpois) a)
	((eq (caar a) '%sin) (poissine (cadr a)))
	((eq (caar a) '%cos) (poiscosine (cadr a)))
	((and (eq (caar a) 'mexpt) (numberp (caddr a)) (> (caddr a) 0.))
	 ($poisexpt (intopois (cadr a)) (caddr a)))
	((eq (caar a) 'mplus)
	 (setq *a (intopois (cadr a)))
	 (mapc (function (lambda (z) (setq *a ($poisplus *a (intopois z))))) (cddr a))
	 *a)
	((eq (caar a) 'mtimes)
	 (setq *a (intopois (cadr a)))
	 (mapc (function (lambda (z) (setq *a ($poistimes *a (intopois z))))) (cddr a))
	 *a)
	((eq (caar a) 'mrat) (intopois (ratdisrep a)))
	(t (list '(mpois simp) nil (list poishift (intopoisco a))))))

(defun tcons (r s)
  (if (poispzero (car s))
      (cdr s)
      (cons r s)))

(defun poisnegpred ($n)
  (prog ($r)
   $loop (cond ((equal $n 0) (return nil))
	       (t nil))
   (setq $r (- (rem $n poists) poistsm))
   (cond ((> $r 0) (return nil))
	 ((> 0 $r) (return t))
	 (t (setq $n (quotient $n poists))))
   (go $loop)))

(defun poischangesign ($n)
  (- (* poishift 2) $n))

(declare-top (special $u $v $w $x $y $z))

(defun poisencode (h*)
  (unless (checkencode h*)
    ;; NOT CLEAR WHAT IS ILLEGAL HERE
    (merror (intl:gettext "poissimp: illegal argument: ~M") h*))
  (apply #'(lambda ($z $y $x $w $v $u)
	     (declare (special $u $v $w $x $y $z))
	     (setq h* (meval h*))
	     ;; NOT CLEAR WHAT IS ILLEGAL HERE EITHER
	     (unless (integerp h*) (merror  (intl:gettext "poisson: illegal trigonometric argument.")))
	     (+ poishift  h*))
	 poisvals))

(let ((n 5))
   (setq poists (expt 2 n)
	 poisvals (loop for i from 5 downto 0 collect (expt poists i))
	 poistsm (expt 2 (1- n))
	 poishift (loop for i from 0 to 5 sum (* poistsm (expt poists i)))
	 $poisz '((mpois simp) nil nil)
	 $pois1 (list '(mpois simp) nil (list poishift 1)))
   n)

(defun poisdecodec (m)
  (prog (arg h)
     (setq h m)
     (setq arg (list '(mtimes) (- (rem h poists) poistsm) '$u))
     (setq h (quotient h poists))
     (setq arg
	   (list '(mplus)
		 arg
		 (list '(mtimes) (- (rem h poists) poistsm) '$v)))
     (setq h (quotient h poists))
     (setq arg
	   (list '(mplus)
		 arg
		 (list '(mtimes) (- (rem h poists) poistsm) '$w)))
     (setq h (quotient h poists))
     (setq arg
	   (list '(mplus)
		 arg
		 (list '(mtimes) (- (rem h poists) poistsm) '$x)))
     (setq h (quotient h poists))
     (setq arg
	   (list '(mplus)
		 arg
		 (list '(mtimes) (- (rem h poists) poistsm) '$y)))
     (setq h (quotient h poists))
     (setq arg
	   (list '(mplus)
		 arg
		 (list '(mtimes) (- (rem h poists) poistsm) '$z)))
     (return (simplifya arg nil))))


;;; THIS PROGRAM MULTIPLIES A POISSON SERIES P BY A NON-SERIES, C,
;;; WHICH IS FREE OF SINES AND COSINES .

(defmfun $poisctimes (c p)
  (list '(mpois simp) (poisctimes1 (setq c (intopoisco c)) (cadr p)) (poisctimes1 c (caddr p))))

(defmfun $outofpois (p)
  (prog (ans)
     (cond ((or (atom p) (not (eq (caar p) 'mpois))) (setq p (intopois p))))

     ;; DO SINES
     (do ((m
	   (cadr p)
	   (cddr m)))(
		      (null m))
       (setq ans (cons (list '(mtimes)
			     (poiscdecode (cadr m))
			     (list '(%sin) (poisdecodec (car m))))
		       ans)))

     ;; DO COSINES
     (do ((m
	   (caddr p)
	   (cddr m)))(
		      (null m))
       (setq ans (cons (list '(mtimes)
			     (poiscdecode (cadr m))
			     (cond ((equal (car m) poishift) 1)
				   (t (list '(%cos) (poisdecodec (car m))))))
		       ans)))
     (return (cond ((null ans) 0.) (t (simplifya (cons '(mplus) ans) nil))))))

(defmfun $printpois (p)
  (prog nil
     (setq p (intopois p))

     ;; DO SINES
     (do ((m
	   (cadr p)
	   (cddr m)))(
		      (null m))
       (displa (simplifya (list '(mtimes)
				(poiscdecode (cadr m))
				(list '(%sin) (poisdecodec (car m))))
			  t))
       (terpri))

     ;; DO COSINES
     (do ((m
	   (caddr p)
	   (cddr m)))(
		      (null m))
       (displa (simplifya (list '(mtimes)
				(poiscdecode (cadr m))
				(cond ((equal (car m) poishift) 1.)
				      (t (list '(%cos) (poisdecodec (car m))))))
			  t))
       (terpri))
     (return '$done)))


;;; $POISDIFF DIFFERENTIATES A POISSON SERIES WRT X, Y, Z, U, V, W, OR A COEFF VAR.


(defmfun $poisdiff (p m)
  (declare (special m))
  (cond ((member m '($u $v $w $x $y $z) :test #'eq)
	 (list (car p) (cosdif (caddr p) m) (sindif (cadr p) m)))
	(t (list (car p) (poisdif4(cadr p)) (poisdif4 (caddr p))))))


(defun poisdif4 (y)
  (declare (special m))
  (cond ((null y) nil)
	(t (tcons3 (car y)(poiscodif (cadr y) m) (poisdif4 (cddr y))))))


;;; COSDIF DIFFERENTIATES COSINES TO GET SINES

(defun cosdif (h m)
  (cond ((null h) nil)
	(t (tcons (car h)
		  (cons (poisco* (intopoisco (- (poisxcoef (car h) m))) (cadr h))
			(cosdif (cddr h) m))))))

(defun sindif (h m)
  (cond ((null h) nil)
	(t (tcons (car h)
		  (cons (poisco* (intopoisco (poisxcoef (car h) m)) (cadr h)) (sindif (cddr h) m))))))

(defun poisxcoef (h m)
  (- (rem (quotient h
		    (expt poists
			  (cadr (member m '($u 0 $v 1 $w 2 $x 3 $y 4 $z 5) :test #'eq))))
	  poists)
     poistsm))


;;; AVL BALANCED TREE SEARCH AND INSERTION.
;;; NODE LOOKS LIKE (KEY (LLINK .  RLKINK) BALANCEFACTOR .  RECORD)
;;; PROGRAM FOLLOWS ALGORITHM GIVEN IN KNUTH VOL. 3 455-57

(declare-top (special ans))


;; MACROS TO EXTRACT FIELDS FROM NODE

(defmacro key  (&rest l) (cons 'car l))

(defmacro llink  (&rest l) (cons 'caadr l))

(defmacro rlink  (&rest l) (cons 'cdadr l))

(defmacro bp  (&rest l) (cons 'caddr l))

(defmacro rec  (&rest l) (cons 'cdddr l))


;;  FOR ORDERING KEYS

(defmacro order<  (&rest l) (cons '<  l))
(defmacro order=  (&rest l) (cons '=  l))

;; MACROS TO SET FIELDS IN NODE

(defmacro setrlink  (&rest l) (setq l (cons nil l))
	  (list 'rplacd (list 'cadr (cadr l)) (caddr l)))

(defmacro setllink  (&rest l) (setq l (cons nil l))
	  (list 'rplaca (list 'cadr (cadr l)) (caddr l)))

(defmacro setbp  (&rest l) (setq l (cons nil l))
	  (list 'rplaca (list 'cddr (cadr l)) (caddr l)))

(defmacro setrec  (&rest l)(setq l (cons nil l))
	  (list 'rplacd (list 'cddr (cadr l)) (caddr l)))


(defun insert-it (pp newrec) (setrec pp (poisco+ (rec pp) newrec)))

(defun avlinsert (k newrec head)
  (prog (qq tt ss pp rr)
     (setq tt head)
     (setq ss (setq pp (rlink head)))
     a2   (cond ((order< k (key pp)) (go a3))
		((order< (key pp) k) (go a4))
		(t (insert-it pp newrec) (return head)))
     a3   (setq qq (llink pp))
     (cond ((null qq) (setllink pp (cons k (cons (cons nil nil) (cons 0. newrec)))) (go a6))
	   ((order= 0. (bp qq)) nil)
	   (t (setq tt pp ss qq)))
     (setq pp qq)
     (go a2)
     a4   (setq qq (rlink pp))
     (cond ((null qq) (setrlink pp (cons k (cons (cons nil nil) (cons 0. newrec)))) (go a6))
	   ((order= 0 (bp qq)) nil)
	   (t (setq tt pp ss qq)))
     (setq pp qq)
     (go a2)
     a6   (cond ((order< k (key ss)) (setq rr (setq pp (llink ss)))) (t (setq rr (setq pp (rlink ss)))))
     a6loop
     (cond ((order< k (key pp)) (setbp pp -1) (setq pp (llink pp)))
	   ((order< (key pp) k) (setbp pp 1) (setq pp (rlink pp)))
	   ((order= k (key pp)) (go a7)))
     (go a6loop)
     a7   (cond ((order< k (key ss)) (go a7l)) (t (go a7r)))
     a7l  (cond ((order= 0. (bp ss)) (setbp ss -1) (setllink head (1+ (llink head))) (return head))
		((order= (bp ss) 1) (setbp ss 0) (return head)))
     (cond ((order= (bp rr) -1) nil) (t (go a9l)))
     (setq pp rr)
     (setllink ss (rlink rr))
     (setrlink rr ss)
     (setbp ss 0)
     (setbp rr 0)
     (go a10)
     a9l  (setq pp (rlink rr))
     (setrlink rr (llink pp))
     (setllink pp rr)
     (setllink ss (rlink pp))
     (setrlink pp ss)
     (cond ((order= (bp pp) -1.) (setbp ss 1.) (setbp rr 0.))
	   ((order= (bp pp) 0.) (setbp ss 0.) (setbp rr 0.))
	   ((order= (bp pp) 1.) (setbp ss 0.) (setbp rr -1.)))
     (setbp pp 0.)
     (go a10)
     a7r  (cond ((order= 0. (bp ss)) (setbp ss 1.) (setllink head (1+ (llink head))) (return head))
		((order= (bp ss) -1.) (setbp ss 0.) (return head)))
     (cond ((order= (bp rr) 1.) nil) (t (go a9r)))
     (setq pp rr)
     (setrlink ss (llink rr))
     (setllink rr ss)
     (setbp ss 0.)
     (setbp rr 0.)
     (go a10)
     a9r  (setq pp (llink rr))
     (setllink rr (rlink pp))
     (setrlink pp rr)
     (setrlink ss (llink pp))
     (setllink pp ss)
     (cond ((order= (bp pp) 1.) (setbp ss -1.) (setbp rr 0.))
	   ((order= (bp pp) 0.) (setbp ss 0.) (setbp rr 0.))
	   ((order= (bp pp) -1.) (setbp ss 0.) (setbp rr 1.)))
     (setbp pp 0.)
     a10  (cond ((eq ss (rlink tt)) (setrlink tt pp)) (t (setllink tt pp)))
     (return head)))

(defun avlinit (key rec)
  (cons 'top (cons (cons 0. (cons key (cons (cons nil nil) (cons 0. rec)))) (cons 0. nil))))


;; UNTREE CONVERTS THE TREE TO A LIST WHICH LOOKS LIKE ( SmALLEST-KEY RECORD NEXT-SMALLEST-KEY RECORD ....  LARGEST-KEY
;;RECORD)

(defun untree (h) (prog (ans) (untree1 (rlink h)) (return ans)))

(defun untree1 (h)
  (cond ((null h) ans)
	((null (rlink h)) (setq ans (tcons3 (key h) (rec h) ans)) (untree1 (llink h)))
	(t (setq ans (tcons3 (key h) (rec h) (untree1 (rlink h)))) (untree1 (llink h)))))

(defun tcons3 (r s tt) (cond ((poispzero s) tt) (t (cons r (cons s tt)))))


(defun poismerges (a ae l)
  (cond ((equal poishift ae) l)		; SINE(0) IS 0
	((poisnegpred ae) (poismerge (poisco* -1 a) (poischangesign ae) l))
	(t (poismerge a ae l))))

(defun poismergec (a ae l)
  (cond ((poisnegpred ae) (poismerge a (poischangesign ae) l)) (t (poismerge a ae l))))

(defun poismerge (a ae l) (cond ((poispzero a) nil) (t (merge11 a ae l))))

(defun poismerge2 (r s)
  (cond ((null r) s)
	((null s) r)
	(t (prog (m n tt)
	      (setq m (setq n (cons 0. r)))
	      a    (cond ((null r) (rplacd m s) (return (cdr n)))
			 ((null s) (return (cdr n)))
			 ((equal (car r) (car s))
			  (setq tt (poisco+ (cadr r) (cadr s)))
			  (cond ((poispzero tt) (rplacd m (cddr r)) (setq r (cddr r) s (cddr s)))
				(t (rplaca (cdr r) tt) (setq s (cddr s) r (cddr r) m (cddr m)))))
			 ((> (car r) (car s))
			  (rplacd m s)
			  (setq s (cddr s))
			  (rplacd (cddr m) r)
			  (setq m (cddr m)))
			 (t (setq r (cddr r)) (setq m (cddr m))))
	      (go a)))))

(defun merge11 (a ae l)
  (poismerge2 (list ae a) l))

(defun poismergesx (a ae l)
  (cond ((equal poishift ae) l)		; SINE(0) IS 0
	((poisnegpred ae) (avlinsert (poischangesign ae) (poisco* -1 a) l))
	(t (avlinsert ae a l))))

(defun poismergecx (a ae l)
  (cond ((poisnegpred ae) (avlinsert (poischangesign ae) a l)) (t (avlinsert ae a l))))

(defun poisctimes1 (c h)
  (cond ((null h) nil)
	((and trim (trimf (car h))) (poisctimes1 c (cddr h)))
	(t (tcons (car h) (cons (poisco* c (cadr h)) (poisctimes1 c (cddr h)))))))

(defun trimf (m)
  (meval (list '($poistrim)
	       (poisxcoef m '$u)
	       (poisxcoef m '$v)
	       (poisxcoef m '$w)
	       (poisxcoef m '$x)
	       (poisxcoef m '$y)
	       (poisxcoef m '$z))))

(defmfun $poistimes (a b)
  (prog (slc clc temp ae aa zero trim t1 t2 f1 f2)
     (setq a (intopois a) b (intopois b))
     (cond ((or (getl-lm-fcn-prop '$poistrim '(expr subr))
		(mget '$poistrim 'mexpr))
	    (setq trim t)))
     (cond ((nonperiod a) (return ($poisctimes (cadr (caddr a)) b)))
	   ((nonperiod b) (return ($poisctimes (cadr (caddr b)) a))))
     (setq slc (avlinit poishift (setq zero (intopoisco 0.))) clc (avlinit poishift zero))
     ;; PROCEED THROUGH ALL THE SINES IN ARGUMENT A
     (do ((sla
	   (cadr a)
	   (cddr sla)))(
			(null sla))
       (setq aa (halve (cadr sla)) ae (car sla))
       ;; SINE(U)*SINE(V) ==> (-COSINE(U+V) + COSINE(U-V))/2
       (do ((slb
	     (cadr b)
	     (cddr slb)))(
			  (null slb))
	 (setq t1 (+ ae poishift (- (car slb))) t2 (+ ae (- poishift) (car slb)))
	 (cond(trim(setq f1(trimf t1) f2 (trimf t2)))
	      (t (setq f1 nil f2 nil)))
	 (setq temp (poisco* aa (cadr slb)))
	 (cond ((poispzero temp) nil)
	       (t (or f1 (poismergecx temp t1 clc))
		  (or f2 (poismergecx (poisco* -1 temp) t2 clc)))))
       ;; SINE*COSINE ==> SINE + SINE
       (do ((clb
	     (caddr b)
	     (cddr clb)))(
			  (null clb))
	 (setq t1 (+ ae poishift (- (car clb))) t2 (+ ae (- poishift) (car clb)))
	 (cond(trim(setq f1(trimf t1) f2 (trimf t2)))
	      (t (setq f1 nil f2 nil)))
	 (setq temp (poisco* aa (cadr clb)))
	 (cond ((poispzero temp) nil)
	       (t (or f1 (poismergesx temp t1 slc)) (or f2 (poismergesx temp t2 slc))))))
     ;; PROCEED THROUGH ALL THE COSINES IN ARGUMENT A
     (do ((cla
	   (caddr a)
	   (cddr cla)))(
			(null cla))
       (setq aa (halve (cadr cla)) ae (car cla))
       ;; COSINE*SINE ==> SINE - SINE
       (do ((slb
	     (cadr b)
	     (cddr slb)))(
			  (null slb))
	 (setq t1 (+ ae poishift (- (car slb)))
	       t2 (+ ae (- poishift) (car slb)))
	 (cond (trim (setq f1 (trimf t1) f2 (trimf t2)))
	       (t (setq f1 nil f2 nil)))
	 (cond (t (setq temp (poisco* aa (cadr slb)))
		  (cond ((poispzero temp) nil)
			(t (or f1 (poismergesx (poisco* -1 temp) t1 slc))
			   (or f2 (poismergesx temp t2 slc)))))))
       ;; COSINE*COSINE ==> COSINE + COSINE
       (do ((clb (caddr b) (cddr clb)))
	   ((null clb))
	 (setq t1 (+ ae poishift (- (car clb)))
	       t2 (+ ae (- poishift) (car clb)))
	 (cond (trim (setq f1 (trimf t1) f2 (trimf t2)))
	       (t (setq f1 nil f2 nil)))
	 (cond
	   (t (setq temp (poisco* aa (cadr clb)))
	      (cond ((poispzero temp) nil)
		    (t (or f1 (poismergecx temp t1 clc))
		       (or f2 (poismergecx temp t2 clc))))))))
     (return (list '(mpois simp) (untree slc) (untree clc)))))

(defmfun $poisexpt (p n)
  (prog (u h)
     (cond ((oddp n) (setq u p)) (t (setq u (setq h (intopois 1.)))))
     a    (setq n (ash n -1))
     (cond ((zerop n) (return u)))
     (setq p ($poistimes p p))
     (cond ((oddp n) (setq u (cond ((equal u h) p) (t ($poistimes u p))))))
     (go a)))

(defmfun $poissquare (a) ($poisexpt a 2))

;;; $POISINT INTEGRATES A POISSON SERIES WRT X,Y, Z, U, V, W.  THE VARIABLE OF
;;; INTEGRATION MUST OCCUR ONLY IN THE ARGUMENTS OF SIN OR COS,
;;; OR ONLY IN THE COEFFICIENTS.  POISCOINTEG IS CALLED TO INTEGRATE COEFFS.

;;; NON-PERIODIC TERMS ARE REMOVED.

(defmfun $poisint (p m)
  (declare (special m))
  (prog (b*)
     (setq p (intopois p))
     (cond ((member m '($u $v $w $x $y $z) :test #'eq)
	    (return (list (car p)
			  (cosint* (caddr p) m)
			  (sinint* (cadr p) m))))
	   (t (return (list (car p)
			    (poisint4 (cadr p))
			    (poisint4 (caddr p))))))))

(defun poisint4 (y)
  (declare (special m))
  (cond ((null y) nil)
	(t (tcons3 (car y)(poiscointeg (cadr y) m) (poisint4 (cddr y))))))

;;;COSINT* INTEGRATES COSINES TO GET SINES

(defun cosint* (h m)
  (cond ((null h) nil)
	((equal 0 (setq b* (poisxcoef (car h) m))) (cosint* (cddr h) m))
	(t (tcons (car h)
		  (cons (poisco* (intopoisco (list '(mexpt) b* -1)) (cadr h))
			(cosint* (cddr h) m))))))

(defun sinint* (h m)
  (cond ((null h) nil)
	((equal 0 (setq b* (poisxcoef (car h) m))) (sinint* (cddr h) m))
	(t (tcons (car h)
		  (cons (poisco* (intopoisco (list '(mexpt) (- (poisxcoef (car h) m)) -1))
				 (cadr h))
			(sinint* (cddr h) m))))))


;;; $POISSUBST SUBSTITUTES AN EXPRESSION FOR A VARIABLE IN ARGUMENT OF TRIG FUNCTIONS OR
;;; COEFFICIENTS.

(defun poissubsta (a b* c)
  (prog (ss cc)
     (setq h* (- (poisencode (list '(mplus) a (list '(mtimes) -1 b*))) poishift))
     (poissubst1s (cadr c))
     (poissubst1c (caddr c))
     (return (list (car c) ss cc))))

(defun poissubst1s (c)
  (cond ((null c) nil)
	(t (setq ss (poismerges (cadr c) (argsubst (car c)) ss))
	   (poissubst1s (cddr c)))))

(defun poissubst1c (c)
  (cond ((null c) nil)
	(t (setq cc (poismergec (cadr c) (argsubst (car c)) cc))
	   (poissubst1c (cddr c)))))

(defun argsubst (c)
  (+ c (* h* (poisxcoef c b*))))

(defmfun $poissubst (aa bb cc &optional dd nn)
  (if (and dd nn)
      (fancypoissubst aa bb (intopois cc) (intopois dd) nn)
      (let ((a* aa) (b* bb) (c (intopois cc)))
	(if (member b* '($u $v $w $x $y $z) :test #'eq)
	    (poissubsta a* b* c)
	    (list (car c) (poissubstco1 (cadr c)) (poissubstco1 (caddr c)))))))

(declare-top (unspecial $u $v $w $x $y $z))

(defun poissubstco1 (c)
  (if (null c)
      nil
      (tcons (car c) (cons (poissubstco a* b* (cadr c)) (poissubstco1 (cddr c))))))

(declare-top (special dc ds *ans))

(defun fancypoissubst (a b* c d n)
  ;;SUBSTITUTES A+D FOR B IN C, WHERE D IS EXPANDED IN POWERSERIES TO ORDER N
  (prog (h* dc ds *ans)
     (setq *ans (list '(mpois simp) nil nil) d (intopois d) dc (intopois 1) ds (intopois 0))
     (when (equal n 0) (return ($poissubst a b* c)))
     (fancypois1s d 1 1 n)
     (setq h* (- (poisencode (list '(mplus) a (list '(mtimes) -1 b*))) poishift))
     (fancypas (cadr c))
     (fancypac (caddr c))
     (return *ans)))

(defun fancypois1s (d dp n lim)	; DP IS LAST POWER: D^(N-1), LIM IS HIGHEST TO
  (cond ((> n lim) nil)		;GO
	(t (setq ds ($poisplus ds
			       ($poisctimes (list '(rat)
						  (expt -1 (ash (1- n) -1))
						  (factorial n))
					    (setq dp ($poistimes dp d)))))
	   (fancypois1c d dp (1+ n) lim))))

(defun fancypois1c (d dp n lim)	; DP IS LAST POWER: D^(N-1), LIM IS HIGHEST TO
  (cond ((> n lim) nil)		;GO
	(t (setq dc
		 ($poisplus dc
			    ($poisctimes (list '(rat) (expt -1 (ash n -1)) (factorial n))
					 (setq dp ($poistimes dp d)))))
	   (fancypois1s d dp (1+ n) lim))))

;;; COS(R+K*B) ==> K*COS(R+K*A)*DC - K*SIN(R+K*A)*DS
;;; SIN(R+K*B) ==> K*COS(R+K*A)*DS + K*SIN(R+K*A)*DC

(defun fancypac (c)
  (prog nil
     (cond ((null c) (return nil)))
     (setq *coef (poisxcoef (car c) b*))
     (cond ((equal *coef 0)
	    (setq *ans ($poisplus *ans (list '(mpois simp) nil (list (car c) (cadr c)))))
	    (go end)))
     (cond ((poispzero (setq *coef (poisco* (cadr c) (intopoisco *coef)))) (go end)))
     (setq *argc (argsubst (car c)))
     (setq *ans
	   ($poisplus *ans
		      ($poisplus ($poistimes (list '(mpois simp)
						   nil
						   (poismergec *coef *argc nil))
					     dc)
				 ($poistimes (list '(mpois simp)
						   (poismerges (poisco* -1 *coef) *argc nil)
						   nil)
					     ds))))
     end  (fancypac (cddr c))))

(defun fancypas (c)
  (prog nil
     (cond ((null c) (return nil)))
     (setq *coef (poisxcoef (car c) b*))
     (cond ((equal *coef 0.)
	    (setq *ans ($poisplus *ans (list '(mpois simp) (list (car c) (cadr c)) nil)))
	    (go end)))
     (cond ((poispzero (setq *coef (poisco* (cadr c) (intopoisco *coef)))) (go end)))
     (setq *argc (argsubst (car c)))
     (setq *ans ($poisplus *ans
			   ($poisplus ($poistimes (list '(mpois simp)
							nil
							(poismergec *coef *argc nil))
						  ds)
				      ($poistimes (list '(mpois simp)
							(poismerges *coef *argc nil)
							nil)
						  dc))))
     end  (fancypas (cddr c))))