This file is indexed.

/usr/share/maxima/5.32.1/src/rand-mt19937.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
;;; Mersenne Twister MT19937, adapted from CMUCL rand-mt19937.lisp -r1.11 (2003/03/06)

;;; CMUCL version by Douglas T. Crosher and Raymond Toy based
;;; on public domain code from Carnegie Mellon University.
;;; Modified for Maxima by Robert Dodier.
;;; (1) Construct floating point numbers using portable operations.
;;; (2) Construct large integers using all bits of each chunk.

;;; Begin MT19937 implementation.
;;; **********************************************************************
;;;
;;; Support for the Mersenne Twister, MT19937, random number generator
;;; due to Matsumoto and Nishimura. This implementation has been
;;; placed in the public domain with permission from M. Matsumoto.
;;;
;;; Makoto Matsumoto and T. Nishimura, "Mersenne twister: A
;;; 623-dimensionally equidistributed uniform pseudorandom number
;;; generator.", ACM Transactions on Modeling and Computer Simulation,
;;; 1997, to appear.

(in-package :mt19937)

(defconstant mt19937-n 624)
(defconstant mt19937-m 397)
(defconstant mt19937-upper-mask #x80000000)
(defconstant mt19937-lower-mask #x7fffffff)
(defconstant mt19937-b #x9D2C5680)
(defconstant mt19937-c #xEFC60000)
;;;
;;;; Random state hackery:

;;; The state is stored in a (simple-array (unsigned-byte 32) (627))
;;; wrapped in a random-state structure:
;;;
;;;  0-1:   Constant matrix A. [0, #x9908b0df]
;;;  2:     Index k.
;;;  3-626: State.

;; GENERATE-SEED
;;
;; Generate a random seed that can be used for seeding the generator.
;; The current time is used as the seed.

(defun generate-seed ()
         (logand (get-universal-time) #xffffffff))

;; New initializer proposed by Takuji Nishimura and Makota Matsumoto.
;; (See http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html)
;;
;; This corrects a deficiency in the original initializer wherein the
;; MSB of the seed was not well represented in the state.
;;
;; The initialization routine is described below.  Let s be the seed,
;; mt[] be the state vector.  Then the algorithm is
;;
;; mt[0] = s & 0xffffffffUL
;;
;; for (k = 1; k < N; k++) {
;;   mt[k] = 1812433253 * (mt[k-1] ^ (mt[k-1] >> 30)) + k
;;   mt[k] &= 0xffffffffUL
;; }
;;
;; The multiplier is from Knuth TAOCP Vol2, 3rd Ed., p. 106.
;;

(defun int-init-random-state (&optional (seed 5489) state)
  (declare (type (integer 0 #xffffffff) seed))
  (let ((state (or state (make-array 627 :element-type '(unsigned-byte 32)))))
    (declare (type (simple-array (unsigned-byte 32) (627)) state))
    (setf (aref state 0) 0)
    (setf (aref state 1) #x9908b0df)
    (setf (aref state 2) mt19937-n)
    (setf (aref state 3) seed)
    (do ((k 1 (1+ k)))
	((>= k 624))
      (declare (type (mod 625) k))
      (let ((prev (aref state (+ 3 (1- k)))))
	(setf (aref state (+ 3 k))
	      (logand (+ (* 1812433253 (logxor prev (ash prev -30)))
			 k)
		      #xffffffff))))
    state))

;; Initialize from an array.
;;
;; Here is the algorithm, in C.  init_genrand is the initalizer above,
;; init_key is the seed vector of length key_length.
;;
;;     init_genrand(19650218UL);
;;     i=1; j=0;
;;     k = (N>key_length ? N : key_length);
;;     for (; k; k--) {
;;         mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL))
;;           + init_key[j] + j; /* non linear */
;;         mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
;;         i++; j++;
;;         if (i>=N) {
;;           mt[0] = mt[N-1]; i=1;
;;         }
;;         if (j>=key_length) {
;;           j=0;
;;         }
;;     }
;;     for (k=N-1; k; k--) {
;;         mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL))
;;           - i; /* non linear */
;;         mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
;;         i++;
;;         if (i>=N) { mt[0] = mt[N-1]; i=1; }
;;     }
;;
;;     mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ 
;;

(defun vec-init-random-state (key &optional state)
  (declare (type (array (unsigned-byte 32) (*)) key))
  (let ((key-len (length key))
	(state (init-random-state 19650218 state))
	(i 1)
	(j 0))
    (loop for k from (max key-len mt19937-n) above 0 do
	  (let ((prev (aref state (+ 3 (1- i)))))
	    (setf (aref state (+ 3 i))
		  (ldb (byte 32 0)
		       (+ (aref key j) j
			  (logxor (aref state (+ 3 i))
				  (ldb (byte 32 0)
				       (* 1664525
					  (logxor prev (ash prev -30))))))))
	    (incf i)
	    (incf j)
	    (when (>= i mt19937-n)
	      (setf (aref state 3)
		    (aref state (+ 3 (- mt19937-n 1))))
	      (setf i 1))
	    (when (>= j key-len)
	      (setf j 0))))

    (loop for k from (1- mt19937-n) above 0 do
	  (let ((prev (aref state (+ 3 (1- i)))))
	    (setf (aref state (+ 3 i))
		  (ldb (byte 32 0)
		       (- (logxor (aref state (+ 3 i))
				  (* 1566083941
				     (logxor prev (ash prev -30))))
			  i)))
	    (incf i)
	    (when (>= i mt19937-n)
	      (setf (aref state 3)
		    (aref state (+ 3 (- mt19937-n 1))))
	      (setf i 1))))
    (setf (aref state 3) #x80000000)
    state))

;; 
(defun init-random-state (&optional (seed 5489) state)
  "Generate an random state vector from the given SEED.  The seed can be
  either an integer or a vector of (unsigned-byte 32)"
  (declare (type (or null integer
		     (array (unsigned-byte 32) (*)))
		 seed))
  (etypecase seed
    (integer
     (int-init-random-state (ldb (byte 32 0) seed) state))
    ((array (unsigned-byte 32) (*))
     (vec-init-random-state seed state))))

(defstruct (random-state
	     (:constructor make-random-object))
  (state (init-random-state) :type (simple-array (unsigned-byte 32) (627))))

(defvar *random-state* (make-random-object))

(defun make-random-state (&optional state)
  "Make a random state object.  If STATE is not supplied, return a copy
  of the default random state.  If STATE is a random state, then return a
  copy of STATE.  If STATE is T then return a random state generated from
  the universal time.  To make a random state from an integer seed, try
  ``(make-random-object :state (init-random-state <seed>))''."
  (flet ((copy-random-state (state)
	   (let ((state (random-state-state state))
		 (new-state
		  (make-array 627 :element-type '(unsigned-byte 32))))
	     (dotimes (i 627)
	       (setf (aref new-state i) (aref state i)))
	     (make-random-object :state new-state))))
    (cond ((not state) (copy-random-state *random-state*))
	  ((random-state-p state) (copy-random-state state))
	  ((eq state t)
	   (make-random-object :state (init-random-state (generate-seed))))
	  (t (error (intl:gettext "make_random_state: argument must be a random state object, or true, or false; found: ~S") state)))))

;;;; Random entries:

;;; Size of the chunks returned by random-chunk.
;;;
(defconstant random-chunk-length 32)

;;; random-chunk -- Internal
;;;
;;; This function generaters a 32bit integer between 0 and #xffffffff
;;; inclusive.
;;;
(declaim (inline random-chunk))
;;;
;;; Portable implementation.
(defun random-mt19937-update (state)
  (declare (type (simple-array (unsigned-byte 32) (627)) state)
	   (optimize (speed 3) (safety 0)))
  (let ((y 0))
    (declare (type (unsigned-byte 32) y))
    (do ((kk 3 (1+ kk)))
	((>= kk (+ 3 (- mt19937-n mt19937-m))))
      (declare (type (mod 628) kk))
      (setf y (logior (logand (aref state kk) mt19937-upper-mask)
		      (logand (aref state (1+ kk)) mt19937-lower-mask)))
      (setf (aref state kk) (logxor (aref state (+ kk mt19937-m))
				    (ash y -1) (aref state (logand y 1)))))
    (do ((kk (+ (- mt19937-n mt19937-m) 3) (1+ kk)))
	((>= kk (+ (1- mt19937-n) 3)))
      (declare (type (mod 628) kk))
      (setf y (logior (logand (aref state kk) mt19937-upper-mask)
		      (logand (aref state (1+ kk)) mt19937-lower-mask)))
      (setf (aref state kk) (logxor (aref state (+ kk (- mt19937-m mt19937-n)))
				    (ash y -1) (aref state (logand y 1)))))
    (setf y (logior (logand (aref state (+ 3 (1- mt19937-n)))
			    mt19937-upper-mask)
		    (logand (aref state 3) mt19937-lower-mask)))
    (setf (aref state (+ 3 (1- mt19937-n)))
	  (logxor (aref state (+ 3 (1- mt19937-m)))
		  (ash y -1) (aref state (logand y 1)))))
  (values))
;;;
(defun random-chunk (state)
  (declare (type random-state state)
	   (optimize (speed 3) (safety 0)))
  (let* ((state (random-state-state state))
	 (k (aref state 2)))
    (declare (type (mod 628) k))
    (when (= k mt19937-n)
      (random-mt19937-update state)
      (setf k 0))
    (setf (aref state 2) (1+ k))
    (let ((y (aref state (+ 3 k))))
      (declare (type (unsigned-byte 32) y))
      (setf y (logxor y (ash y -11)))
      (setf y (logxor y (ash (logand y (ash mt19937-b -7)) 7)))
      (setf y (logxor y (ash (logand y (ash mt19937-c -15)) 15)))
      (setf y (logxor y (ash y -18)))
      y)))

;;; %RANDOM-SINGLE-FLOAT, %RANDOM-DOUBLE-FLOAT  --  Interface
;;;
(declaim (inline %random-single-float %random-double-float
		 #+(or scl clisp) %random-long-float
		 #+(and cmu double-double) %random-double-double-float))
;;;
(declaim (ftype (function ((single-float (0f0)) random-state)
			  (single-float 0f0))
		%random-single-float))
;;;
(declaim (ftype (function ((double-float (0d0)) random-state)
			  (double-float 0d0))
		%random-double-float))
;;;
#+(or scl clisp)
(declaim (ftype (function ((long-float (0l0)) random-state)
			  (long-float 0l0))
		%random-long-float))
;;;
#+(and cmu double-double)
(declaim (ftype (function ((kernel:double-double-float (0w0)) random-state)
			  (kernel:double-double-float 0w0))
		%random-double-double-float))
;;;
;;;
(defun %random-single-float (arg state)
  "Handle the single or double float case of RANDOM.  We generate a float
  in [0f0, 1f0) by clobbering the mantissa of 1f0 with random bits (23 bits);
  this yields a number in [1f0, 2f0). Then 1f0 is subtracted."
  (let*
    ((random-mantissa-bits (%random-integer (expt 2 23) state))
    (random-unit-float (- (scale-float (float (+ (expt 2 23) random-mantissa-bits) 1f0) -23) 1f0)))
  (* arg random-unit-float)))

(defun %random-double-float (arg state)
  "Handle the single or double float case of RANDOM.  We generate a float
  in [0d0, 1d0) by clobbering the mantissa of 1d0 with random bits (52 bits);
  this yields a number in [1d0, 2d0). Then 1d0 is subtracted."
  (let*
    ((random-mantissa-bits (%random-integer (expt 2 52) state))
    (random-unit-double (- (scale-float (float (+ (expt 2 52) random-mantissa-bits) 1d0) -52) 1d0)))
  (* arg random-unit-double)))

#+(or scl clisp)
(defun %random-long-float (arg state)
  "Handle the long float case of RANDOM.  We generate a float in [0l0, 1l0) by
  clobbering the mantissa of 1l0 with random bits; this yields a number in
  [1l0, 2l0). Then 1l0 is subtracted."
  (let* ((d (1- (float-digits 1l0)))
	 (m (expt 2 d))
	 (random-mantissa-bits (%random-integer m state))
	 (random-unit-double (- (scale-float (float (+ m random-mantissa-bits) 1l0) (- d)) 1l0)))
    (* arg random-unit-double)))

#+(and cmu double-double)
(defun %random-double-double-float (arg state)
  "Handle the double-double float case of RANDOM.  We generate a float in [0w0, 1w0) by
  clobbering the mantissa of 1w0 with random bits; this yields a number in
  [1w0, 2w0). Then 1w0 is subtracted."
  (let* ((d (1- (float-digits 1w0)))
	 (m (expt 2 d))
	 (random-mantissa-bits (%random-integer m state))
	 (random-unit-double (- (scale-float (float (+ m random-mantissa-bits) 1w0) (- d)) 1w0)))
    (* arg random-unit-double)))

;;;; Random integers:

;;; %RANDOM-INTEGER  --  Internal
;;;
(defun %random-integer (arg state)
  "Generates an integer greater than or equal to zero and less than Arg.
  Successive chunks are concatenated without overlap to construct integers
  larger than a single chunk. The return value has this property:
  If two integers are generated from the same state with Arg equal to 2^m and 2^n,
  respectively, then bit k is the same in both integers for 0 <= k < min(m,n).
  Each call to %RANDOM-INTEGER consumes at least one chunk; bits left over
  from previous chunks are not re-used."
  (declare (type (integer 1) arg) (type random-state state))
    (do*
      ((nchunks (ceiling (integer-length (1- arg)) random-chunk-length) (1- nchunks))
        (new-bits 0 (random-chunk state))
        (bits 0 (logior bits (ash new-bits shift)))
        (shift 0 (+ shift random-chunk-length)))
      ((= 0 nchunks)
        (rem bits arg))))

(defun random (arg &optional (state *random-state*))
  "Generates a uniformly distributed pseudo-random number greater than or equal to zero
  and less than Arg.  State, if supplied, is the random state to use."
  (declare (inline %random-single-float %random-double-float))
  (cond
    #-gcl  ; GCL's single and double floats are the same; route all floats through %random-double-float
    ((and (typep arg 'single-float) (> arg 0.0F0))
     (%random-single-float arg state))
    ((and (typep arg 'double-float) (> arg 0.0D0))
     (%random-double-float arg state))
    #+(or scl clisp)
    ((and (typep arg 'long-float) (> arg 0.0L0))
     (%random-long-float arg state))
    #+(and cmu double-double)
    ((and (typep arg 'kernel:double-double-float) (> arg 0.0W0))
     (%random-double-double-float arg state))
    ((and (integerp arg) (> arg 0))
     (%random-integer arg state))
    (t
     (error 'simple-type-error
	    :expected-type '(or (integer 1) (float (0))) :datum arg
	    :format-control (intl:gettext "random: argument must be a positive integer or a positive float; found: ~S")
	    :format-arguments (list arg)))))

;;; begin Maxima-specific stuff

(in-package :maxima)

(defmfun $set_random_state (x)
  "Copy the argument, and assign the copy to MT19937::*RANDOM-STATE*.
  Returns '$done."
  (setq mt19937::*random-state* (mt19937::make-random-state x))
  '$done)

(defmfun $make_random_state (x)
  "Returns a new random state object. If argument is an integer or array,
  use argument to initialize random state. Otherwise punt to MT19937::MAKE-RANDOM-STATE."
  (cond
    ((or (integerp x) (arrayp x))
      (mt19937::make-random-object :state (mt19937::init-random-state x)))
    (t
      (mt19937::make-random-state x))))

(defmfun $random (x)
  "Returns the next number from this generator.
  Punt to MT19937::RANDOM."
  (if (and (or (integerp x) (floatp x))
	   (> x 0))
      (mt19937::random x)
    (merror (intl:gettext "random: argument must be a positive integer or positive float; found: ~M") x)))

;;; end Maxima-specific stuff