/usr/share/maxima/5.32.1/src/rand-mt19937.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 | ;;; Mersenne Twister MT19937, adapted from CMUCL rand-mt19937.lisp -r1.11 (2003/03/06)
;;; CMUCL version by Douglas T. Crosher and Raymond Toy based
;;; on public domain code from Carnegie Mellon University.
;;; Modified for Maxima by Robert Dodier.
;;; (1) Construct floating point numbers using portable operations.
;;; (2) Construct large integers using all bits of each chunk.
;;; Begin MT19937 implementation.
;;; **********************************************************************
;;;
;;; Support for the Mersenne Twister, MT19937, random number generator
;;; due to Matsumoto and Nishimura. This implementation has been
;;; placed in the public domain with permission from M. Matsumoto.
;;;
;;; Makoto Matsumoto and T. Nishimura, "Mersenne twister: A
;;; 623-dimensionally equidistributed uniform pseudorandom number
;;; generator.", ACM Transactions on Modeling and Computer Simulation,
;;; 1997, to appear.
(in-package :mt19937)
(defconstant mt19937-n 624)
(defconstant mt19937-m 397)
(defconstant mt19937-upper-mask #x80000000)
(defconstant mt19937-lower-mask #x7fffffff)
(defconstant mt19937-b #x9D2C5680)
(defconstant mt19937-c #xEFC60000)
;;;
;;;; Random state hackery:
;;; The state is stored in a (simple-array (unsigned-byte 32) (627))
;;; wrapped in a random-state structure:
;;;
;;; 0-1: Constant matrix A. [0, #x9908b0df]
;;; 2: Index k.
;;; 3-626: State.
;; GENERATE-SEED
;;
;; Generate a random seed that can be used for seeding the generator.
;; The current time is used as the seed.
(defun generate-seed ()
(logand (get-universal-time) #xffffffff))
;; New initializer proposed by Takuji Nishimura and Makota Matsumoto.
;; (See http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html)
;;
;; This corrects a deficiency in the original initializer wherein the
;; MSB of the seed was not well represented in the state.
;;
;; The initialization routine is described below. Let s be the seed,
;; mt[] be the state vector. Then the algorithm is
;;
;; mt[0] = s & 0xffffffffUL
;;
;; for (k = 1; k < N; k++) {
;; mt[k] = 1812433253 * (mt[k-1] ^ (mt[k-1] >> 30)) + k
;; mt[k] &= 0xffffffffUL
;; }
;;
;; The multiplier is from Knuth TAOCP Vol2, 3rd Ed., p. 106.
;;
(defun int-init-random-state (&optional (seed 5489) state)
(declare (type (integer 0 #xffffffff) seed))
(let ((state (or state (make-array 627 :element-type '(unsigned-byte 32)))))
(declare (type (simple-array (unsigned-byte 32) (627)) state))
(setf (aref state 0) 0)
(setf (aref state 1) #x9908b0df)
(setf (aref state 2) mt19937-n)
(setf (aref state 3) seed)
(do ((k 1 (1+ k)))
((>= k 624))
(declare (type (mod 625) k))
(let ((prev (aref state (+ 3 (1- k)))))
(setf (aref state (+ 3 k))
(logand (+ (* 1812433253 (logxor prev (ash prev -30)))
k)
#xffffffff))))
state))
;; Initialize from an array.
;;
;; Here is the algorithm, in C. init_genrand is the initalizer above,
;; init_key is the seed vector of length key_length.
;;
;; init_genrand(19650218UL);
;; i=1; j=0;
;; k = (N>key_length ? N : key_length);
;; for (; k; k--) {
;; mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL))
;; + init_key[j] + j; /* non linear */
;; mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
;; i++; j++;
;; if (i>=N) {
;; mt[0] = mt[N-1]; i=1;
;; }
;; if (j>=key_length) {
;; j=0;
;; }
;; }
;; for (k=N-1; k; k--) {
;; mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL))
;; - i; /* non linear */
;; mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
;; i++;
;; if (i>=N) { mt[0] = mt[N-1]; i=1; }
;; }
;;
;; mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
;;
(defun vec-init-random-state (key &optional state)
(declare (type (array (unsigned-byte 32) (*)) key))
(let ((key-len (length key))
(state (init-random-state 19650218 state))
(i 1)
(j 0))
(loop for k from (max key-len mt19937-n) above 0 do
(let ((prev (aref state (+ 3 (1- i)))))
(setf (aref state (+ 3 i))
(ldb (byte 32 0)
(+ (aref key j) j
(logxor (aref state (+ 3 i))
(ldb (byte 32 0)
(* 1664525
(logxor prev (ash prev -30))))))))
(incf i)
(incf j)
(when (>= i mt19937-n)
(setf (aref state 3)
(aref state (+ 3 (- mt19937-n 1))))
(setf i 1))
(when (>= j key-len)
(setf j 0))))
(loop for k from (1- mt19937-n) above 0 do
(let ((prev (aref state (+ 3 (1- i)))))
(setf (aref state (+ 3 i))
(ldb (byte 32 0)
(- (logxor (aref state (+ 3 i))
(* 1566083941
(logxor prev (ash prev -30))))
i)))
(incf i)
(when (>= i mt19937-n)
(setf (aref state 3)
(aref state (+ 3 (- mt19937-n 1))))
(setf i 1))))
(setf (aref state 3) #x80000000)
state))
;;
(defun init-random-state (&optional (seed 5489) state)
"Generate an random state vector from the given SEED. The seed can be
either an integer or a vector of (unsigned-byte 32)"
(declare (type (or null integer
(array (unsigned-byte 32) (*)))
seed))
(etypecase seed
(integer
(int-init-random-state (ldb (byte 32 0) seed) state))
((array (unsigned-byte 32) (*))
(vec-init-random-state seed state))))
(defstruct (random-state
(:constructor make-random-object))
(state (init-random-state) :type (simple-array (unsigned-byte 32) (627))))
(defvar *random-state* (make-random-object))
(defun make-random-state (&optional state)
"Make a random state object. If STATE is not supplied, return a copy
of the default random state. If STATE is a random state, then return a
copy of STATE. If STATE is T then return a random state generated from
the universal time. To make a random state from an integer seed, try
``(make-random-object :state (init-random-state <seed>))''."
(flet ((copy-random-state (state)
(let ((state (random-state-state state))
(new-state
(make-array 627 :element-type '(unsigned-byte 32))))
(dotimes (i 627)
(setf (aref new-state i) (aref state i)))
(make-random-object :state new-state))))
(cond ((not state) (copy-random-state *random-state*))
((random-state-p state) (copy-random-state state))
((eq state t)
(make-random-object :state (init-random-state (generate-seed))))
(t (error (intl:gettext "make_random_state: argument must be a random state object, or true, or false; found: ~S") state)))))
;;;; Random entries:
;;; Size of the chunks returned by random-chunk.
;;;
(defconstant random-chunk-length 32)
;;; random-chunk -- Internal
;;;
;;; This function generaters a 32bit integer between 0 and #xffffffff
;;; inclusive.
;;;
(declaim (inline random-chunk))
;;;
;;; Portable implementation.
(defun random-mt19937-update (state)
(declare (type (simple-array (unsigned-byte 32) (627)) state)
(optimize (speed 3) (safety 0)))
(let ((y 0))
(declare (type (unsigned-byte 32) y))
(do ((kk 3 (1+ kk)))
((>= kk (+ 3 (- mt19937-n mt19937-m))))
(declare (type (mod 628) kk))
(setf y (logior (logand (aref state kk) mt19937-upper-mask)
(logand (aref state (1+ kk)) mt19937-lower-mask)))
(setf (aref state kk) (logxor (aref state (+ kk mt19937-m))
(ash y -1) (aref state (logand y 1)))))
(do ((kk (+ (- mt19937-n mt19937-m) 3) (1+ kk)))
((>= kk (+ (1- mt19937-n) 3)))
(declare (type (mod 628) kk))
(setf y (logior (logand (aref state kk) mt19937-upper-mask)
(logand (aref state (1+ kk)) mt19937-lower-mask)))
(setf (aref state kk) (logxor (aref state (+ kk (- mt19937-m mt19937-n)))
(ash y -1) (aref state (logand y 1)))))
(setf y (logior (logand (aref state (+ 3 (1- mt19937-n)))
mt19937-upper-mask)
(logand (aref state 3) mt19937-lower-mask)))
(setf (aref state (+ 3 (1- mt19937-n)))
(logxor (aref state (+ 3 (1- mt19937-m)))
(ash y -1) (aref state (logand y 1)))))
(values))
;;;
(defun random-chunk (state)
(declare (type random-state state)
(optimize (speed 3) (safety 0)))
(let* ((state (random-state-state state))
(k (aref state 2)))
(declare (type (mod 628) k))
(when (= k mt19937-n)
(random-mt19937-update state)
(setf k 0))
(setf (aref state 2) (1+ k))
(let ((y (aref state (+ 3 k))))
(declare (type (unsigned-byte 32) y))
(setf y (logxor y (ash y -11)))
(setf y (logxor y (ash (logand y (ash mt19937-b -7)) 7)))
(setf y (logxor y (ash (logand y (ash mt19937-c -15)) 15)))
(setf y (logxor y (ash y -18)))
y)))
;;; %RANDOM-SINGLE-FLOAT, %RANDOM-DOUBLE-FLOAT -- Interface
;;;
(declaim (inline %random-single-float %random-double-float
#+(or scl clisp) %random-long-float
#+(and cmu double-double) %random-double-double-float))
;;;
(declaim (ftype (function ((single-float (0f0)) random-state)
(single-float 0f0))
%random-single-float))
;;;
(declaim (ftype (function ((double-float (0d0)) random-state)
(double-float 0d0))
%random-double-float))
;;;
#+(or scl clisp)
(declaim (ftype (function ((long-float (0l0)) random-state)
(long-float 0l0))
%random-long-float))
;;;
#+(and cmu double-double)
(declaim (ftype (function ((kernel:double-double-float (0w0)) random-state)
(kernel:double-double-float 0w0))
%random-double-double-float))
;;;
;;;
(defun %random-single-float (arg state)
"Handle the single or double float case of RANDOM. We generate a float
in [0f0, 1f0) by clobbering the mantissa of 1f0 with random bits (23 bits);
this yields a number in [1f0, 2f0). Then 1f0 is subtracted."
(let*
((random-mantissa-bits (%random-integer (expt 2 23) state))
(random-unit-float (- (scale-float (float (+ (expt 2 23) random-mantissa-bits) 1f0) -23) 1f0)))
(* arg random-unit-float)))
(defun %random-double-float (arg state)
"Handle the single or double float case of RANDOM. We generate a float
in [0d0, 1d0) by clobbering the mantissa of 1d0 with random bits (52 bits);
this yields a number in [1d0, 2d0). Then 1d0 is subtracted."
(let*
((random-mantissa-bits (%random-integer (expt 2 52) state))
(random-unit-double (- (scale-float (float (+ (expt 2 52) random-mantissa-bits) 1d0) -52) 1d0)))
(* arg random-unit-double)))
#+(or scl clisp)
(defun %random-long-float (arg state)
"Handle the long float case of RANDOM. We generate a float in [0l0, 1l0) by
clobbering the mantissa of 1l0 with random bits; this yields a number in
[1l0, 2l0). Then 1l0 is subtracted."
(let* ((d (1- (float-digits 1l0)))
(m (expt 2 d))
(random-mantissa-bits (%random-integer m state))
(random-unit-double (- (scale-float (float (+ m random-mantissa-bits) 1l0) (- d)) 1l0)))
(* arg random-unit-double)))
#+(and cmu double-double)
(defun %random-double-double-float (arg state)
"Handle the double-double float case of RANDOM. We generate a float in [0w0, 1w0) by
clobbering the mantissa of 1w0 with random bits; this yields a number in
[1w0, 2w0). Then 1w0 is subtracted."
(let* ((d (1- (float-digits 1w0)))
(m (expt 2 d))
(random-mantissa-bits (%random-integer m state))
(random-unit-double (- (scale-float (float (+ m random-mantissa-bits) 1w0) (- d)) 1w0)))
(* arg random-unit-double)))
;;;; Random integers:
;;; %RANDOM-INTEGER -- Internal
;;;
(defun %random-integer (arg state)
"Generates an integer greater than or equal to zero and less than Arg.
Successive chunks are concatenated without overlap to construct integers
larger than a single chunk. The return value has this property:
If two integers are generated from the same state with Arg equal to 2^m and 2^n,
respectively, then bit k is the same in both integers for 0 <= k < min(m,n).
Each call to %RANDOM-INTEGER consumes at least one chunk; bits left over
from previous chunks are not re-used."
(declare (type (integer 1) arg) (type random-state state))
(do*
((nchunks (ceiling (integer-length (1- arg)) random-chunk-length) (1- nchunks))
(new-bits 0 (random-chunk state))
(bits 0 (logior bits (ash new-bits shift)))
(shift 0 (+ shift random-chunk-length)))
((= 0 nchunks)
(rem bits arg))))
(defun random (arg &optional (state *random-state*))
"Generates a uniformly distributed pseudo-random number greater than or equal to zero
and less than Arg. State, if supplied, is the random state to use."
(declare (inline %random-single-float %random-double-float))
(cond
#-gcl ; GCL's single and double floats are the same; route all floats through %random-double-float
((and (typep arg 'single-float) (> arg 0.0F0))
(%random-single-float arg state))
((and (typep arg 'double-float) (> arg 0.0D0))
(%random-double-float arg state))
#+(or scl clisp)
((and (typep arg 'long-float) (> arg 0.0L0))
(%random-long-float arg state))
#+(and cmu double-double)
((and (typep arg 'kernel:double-double-float) (> arg 0.0W0))
(%random-double-double-float arg state))
((and (integerp arg) (> arg 0))
(%random-integer arg state))
(t
(error 'simple-type-error
:expected-type '(or (integer 1) (float (0))) :datum arg
:format-control (intl:gettext "random: argument must be a positive integer or a positive float; found: ~S")
:format-arguments (list arg)))))
;;; begin Maxima-specific stuff
(in-package :maxima)
(defmfun $set_random_state (x)
"Copy the argument, and assign the copy to MT19937::*RANDOM-STATE*.
Returns '$done."
(setq mt19937::*random-state* (mt19937::make-random-state x))
'$done)
(defmfun $make_random_state (x)
"Returns a new random state object. If argument is an integer or array,
use argument to initialize random state. Otherwise punt to MT19937::MAKE-RANDOM-STATE."
(cond
((or (integerp x) (arrayp x))
(mt19937::make-random-object :state (mt19937::init-random-state x)))
(t
(mt19937::make-random-state x))))
(defmfun $random (x)
"Returns the next number from this generator.
Punt to MT19937::RANDOM."
(if (and (or (integerp x) (floatp x))
(> x 0))
(mt19937::random x)
(merror (intl:gettext "random: argument must be a positive integer or positive float; found: ~M") x)))
;;; end Maxima-specific stuff
|