This file is indexed.

/usr/share/maxima/5.32.1/src/rat3a.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1980 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module rat3a)

;; This is the new Rational Function Package Part 1.
;; It includes most of the coefficient and polynomial routines required
;; by the rest of the functions.  Certain specialized functions are found
;; elsewhere.  Most low-level utility programs are also in this file.

(declare-top (unspecial coef var exp p y))

;;These do not need to be special for this file and they
;;slow it down on lispm. We also eliminated the special
;;from ptimes2--wfs

;; Global variables referenced throughout the rational function package.

(defmvar modulus nil "Global switch for doing modular arithmetic")

;; CQUOTIENT
;;
;; Calculate the quotient of two coefficients, which should be numbers. If
;; MODULUS is non-nil, we try to take the reciprocal of A with respect to the
;; modulus (using CRECIP) and then multiply by B. Note that this fails if B
;; divides A as an integer, but B is not a unit in the ring of integers modulo
;; MODULUS. For example,
;;
;;   (let ((modulus 20)) (cquotient 10 5)) => ERROR
;;
;; If MODULUS is nil, then we work over the ring of integers when A and B are
;; integers, and raise a RAT-ERROR if A is not divisible by B. If either A or B
;; is a float then the division is done in floating point. Floats can get as far
;; as the rational function code if $KEEPFLOAT is true.
(defun cquotient (a b)
  (cond ((equal a 0) 0)
	((null modulus)
         (if (or (floatp a) (floatp b)
                 (zerop (rem a b)))
             (/ a b)
             (rat-error "quotient is not exact")))
	(t (ctimes a (crecip b)))))

;; ALG
;;
;; Get any value stored on the tellrat property of (car l). Returns NIL if L
;; turns out not to be a list or if $ALGEBRAIC is false.
(defun alg (l)
  (unless (atom l) (algv (car l))))

;; PACOEFP
;;
;; Return T if either X is a bare coefficient or X is a polynomial whose main
;; variable has a declared value as an algebraic integer. Otherwise return NIL.
(defun pacoefp (x)
  (and (or (pcoefp x) (alg x))
       T))

;; LEADTERM
;;
;; Return the leading term of POLY as a polynomial itself.
(defun leadterm (poly)
  (if (pcoefp poly)
      poly
      (make-poly (p-var poly) (p-le poly) (p-lc poly))))

;; CRECIP
;;
;; Takes the inverse of an integer N mod MODULUS. If there is a modulus then the
;; result is constrained to lie in (-modulus/2, modulus/2]
;;
;; This just uses the extended Euclidean algorithm: once you have found a,b such
;; that a*n + b*modulus = 1 then a must be the reciprocal you're after.
;;
;; When MODULUS is greater than 2^15, we use exactly the same algorithm in
;; CRECIP-GENERAL, but it can't use fixnum arithmetic. Note: There's no
;; particular reason to target 32 bits except that trying to work out the right
;; types on the fly looks complicated and this lisp compiler, at least, uses 32
;; bit words. Since we have to take a product, we constrain the types to 16 bit
;; numbers.
(defun crecip (n)
  ;; Punt on anything complicated
  (unless (and modulus (typep modulus '(unsigned-byte 15)))
    (return-from crecip (crecip-general n)))

  ;; And make sure that -MODULUS < N < MODULUS
  (unless (<= (- modulus) n modulus)
    (merror "N is out of range [-MODULUS, MODULUS] in crecip."))

  ;; N in [0, MODULUS]
  (when (minusp n) (setf n (+ n modulus)))

  ;; The mod-copy parameter stores a copy of MODULUS on the stack, which is
  ;; useful because the lisp implementation doesn't know that the special
  ;; variable MODULUS is still an (unsigned-byte 15) when we get to the end
  ;; (since it can't tell that our function calls don't change it behind our
  ;; backs, I guess)
  (let ((mod modulus) (remainder n) (a 1) (b 0)
        (mod-copy modulus))
    ;; On SBCL in 2013 at least, the compiler doesn't spot that MOD and
    ;; REMAINDER are unsigned and bounded above by MODULUS, a 16-bit integer. So
    ;; we have to tell it. Also, the lisp implementation can't really be
    ;; expected to know that Bezout coefficients are bounded by the modulus and
    ;; remainder, so we have to tell it that too.
    (declare (type (unsigned-byte 15) mod mod-copy remainder)
             (type (signed-byte 16) a b))

    (loop
       until (= remainder 1)

       when (zerop remainder) do
         (merror (intl:gettext "CRECIP: attempted inverse of zero (mod ~M)")
                 mod)
       doing
         (multiple-value-bind (quot rem)
             (truncate mod remainder)
           (setf mod remainder
                 remainder rem)
           (psetf a (- b (* a quot))
                  b a))

       finally
         ;; Since this isn't some general purpose Euclidean algorithm, but
         ;; instead is trying to find a modulo inverse, we need to ensure that
         ;; the Bezout coefficient we found (called A) is actually in [0,
         ;; MODULUS).
         ;;
         ;; The general code calls CMOD here, but that doesn't know about the
         ;; types of A and MODULUS, so we do it by hand, special-casing the easy
         ;; case of modulus=2.
         (return
           (if (= mod-copy 2)
               (logand a 1)
               (let ((nn (mod a mod-copy)))
                 ;; nn here is in [0, modulus)
                 (if (<= (* 2 nn) mod-copy)
                     nn
                     (- nn mod-copy))))))))

;; CRECIP-GENERAL
;;
;; The general algorithm for CRECIP, valid when the modulus is any integer. See
;; CRECIP for more details.
(defun crecip-general (n)
  ;; We assume that |n| < modulus, so n+modulus is always positive
  (let ((mod modulus)
        (remainder (if (minusp n) (+ n modulus) n))
        (a 1) (b 0))
    (loop
       until (= remainder 1)

       when (zerop remainder) do
         (merror (intl:gettext "CRECIP: attempted inverse of zero (mod ~M)")
                 mod)
       doing
         (let ((quotient (truncate mod remainder)))
           (psetf mod remainder
                  remainder (- mod (* quotient remainder)))
           (psetf a (- b (* a quotient))
                  b a))

       finally (return (cmod a)))))

;; CEXPT
;;
;; Raise an coefficient to a positive integral power. BASE should be a
;; number. POW should be a non-negative integer.
(defun cexpt (base pow)
  (unless (typep pow '(integer 0))
    (error "CEXPT only defined for non-negative integral exponents."))
  (if (not modulus)
      (expt base pow)
      (do ((pow (ash pow -1) (ash pow -1))
           (s (if (oddp pow) base 1)))
          ((zerop pow) s)
        (setq base (rem (* base base) modulus))
        (when (oddp pow) (setq s (rem (* s base) modulus))))))

;; CMOD
;;
;; When MODULUS is null, this is the identity. Otherwise, it normalises N, which
;; should be a number, to lie in the range (-modulus/2, modulus/2].
(defun cmod (n)
  (declare (type number n))
  (if (not modulus)
      n
      (let ((rem (mod n modulus)))
        (if (<= (* 2 rem) modulus)
            rem
            (- rem modulus)))))

(defun cplus       (a b) (cmod (+ a b)))
(defun ctimes      (a b) (cmod (* a b)))
(defun cdifference (a b) (cmod (- a b)))

;; SET-MODULUS
;;
;; Set the base in which the rational function package works. This does
;; sanity-checking on the value chosen and is probably the way you should set
;; the global value.
;;
;; Valid values for M are either a positive integer or NULL.
(defun set-modulus (m)
  (if (or (null m) (typep m '(integer 0)))
      (setq modulus m)
      (error "modulus must be a positive number or nil"))
  (values))

;; PCOEFADD
;;
;; Prepend a term to an existing polynomial. EXPONENT should be the exponent of
;; the term to add; COEFF should be its coefficient; REMAINDER is a list of
;; polynomial terms. The function returns polynomial terms that correspond to
;; adding the given term.
;;
;; The function doesn't check that EXPONENT is higher than the highest exponent
;; in REMAINDER, so you have to do this yourself.
(defmfun pcoefadd (exponent coeff remainder)
  (if (pzerop coeff)
      remainder
      (cons exponent (cons coeff remainder))))

;; PPLUS
;;
;; Add together two polynomials.
(defmfun pplus (x y)
  (cond ((pcoefp x) (pcplus x y))
	((pcoefp y) (pcplus y x))
	((eq (p-var x) (p-var y))
	 (psimp (p-var x) (ptptplus (p-terms y) (p-terms x))))
	((pointergp (p-var x) (p-var y))
	 (psimp (p-var x) (ptcplus y (p-terms x))))
	(t (psimp (p-var y) (ptcplus x (p-terms y))))))

;; PTPTPLUS
;;
;; Add together two lists of polynomial terms.
(defun ptptplus (x y)
  (cond ((ptzerop x) y)
	((ptzerop y) x)
	((= (pt-le x) (pt-le y))
	 (pcoefadd (pt-le x)
		   (pplus (pt-lc x) (pt-lc y))
		   (ptptplus (pt-red x) (pt-red y))))
	((> (pt-le x) (pt-le y))
	 (cons (pt-le x) (cons (pt-lc x) (ptptplus (pt-red x) y))))
	(t (cons (pt-le y) (cons (pt-lc y) (ptptplus x (pt-red y)))))))

;; PCPLUS
;;
;; Add a coefficient to a polynomial
(defun pcplus (c p)
  (if (pcoefp p)
      (cplus p c)
      (psimp (p-var p)
             (ptcplus c (p-terms p)))))

;; PTCPLUS
;;
;; Add a coefficient to a list of terms. C should be a used as a coefficient;
;; TERMS is a list of a polynomial's terms. Note that we don't assume that C is
;; a number: it might be a polynomial in a variable that isn't the main variable
;; of the polynomial.
(defun ptcplus (c terms)
  (cond
    ;; Adding zero doesn't do anything.
    ((pzerop c) terms)
    ;; Adding to zero, you just get the coefficient.
    ((null terms) (list 0 c))
    ;; If terms are from a constant polynomial, we can just add C to its leading
    ;; coefficient (which might not be a number in the multivariate case, so you
    ;; have to use PPLUS)
    ((zerop (pt-le terms))
     (pcoefadd 0 (pplus c (pt-lc terms)) nil))
    ;; If TERMS is a polynomial with degree > 0, recurse.
    (t
     (cons (pt-le terms) (cons (pt-lc terms) (ptcplus c (pt-red terms)))))))

;; PDIFFERENCE
;;
;; Compute the difference of two polynomials
(defmfun pdifference (x y)
  (cond
    ;; If Y is a coefficient, it's a number, so we can just add -Y to X using
    ;; pcplus. If, however, X is the coefficient, we have to negate all the
    ;; coefficients in Y, so defer to a utility function.
    ((pcoefp x) (pcdiffer x y))
    ((pcoefp y) (pcplus (cminus y) x))
    ;; If X and Y have the same variable, work down their lists of terms.
    ((eq (p-var x) (p-var y))
     (psimp (p-var x) (ptptdiffer (p-terms x) (p-terms y))))
    ;; Treat Y as a coefficient in the main variable of X.
    ((pointergp (p-var x) (p-var y))
     (psimp (p-var x) (ptcdiffer-minus (p-terms x) y)))
    ;; Treat X as a coefficient in the main variable of Y.
    (t (psimp (p-var y) (ptcdiffer x (p-terms y))))))

;; PTPTDIFFER
;;
;; Compute the difference of two lists of polynomial terms (assumed to represent
;; two polynomials in the same variable).
(defun ptptdiffer (x y)
  (cond
    ((ptzerop x) (ptminus y))
    ((ptzerop y) x)
    ((= (pt-le x) (pt-le y))
     (pcoefadd (pt-le x)
               (pdifference (pt-lc x) (pt-lc y))
               (ptptdiffer (pt-red x) (pt-red y))))
    ((> (pt-le x) (pt-le y))
     (cons (pt-le x) (cons (pt-lc x) (ptptdiffer (pt-red x) y))))
    (t (cons (pt-le y) (cons (pminus (pt-lc y))
                             (ptptdiffer x (pt-red y)))))))
;; PCDIFFER
;;
;; Subtract the polynomial P from the coefficient C to form c - p.
(defun pcdiffer (c p)
  (if (pcoefp p)
      (cdifference c p)
      (psimp (p-var p) (ptcdiffer c (p-terms p)))))

;; PTCDIFFER
;;
;; Subtract a polynomial represented by the list of terms, TERMS, from the
;; coefficient C.
(defun ptcdiffer (c terms)
  (cond
    ;; Unlike in the plus case or in PTCDIFFER-MINUS, we don't have a shortcut
    ;; if C=0. However, if TERMS is null then we are calculating C-0, which is
    ;; easy:
    ((null terms)
     (if (pzerop c) nil (list 0 c)))
    ;; If the leading exponent is zero (in the main variable), then we can
    ;; subtract the coefficients. Of course, these might actually be polynomials
    ;; in other variables, so do this using pdifference.
    ((zerop (pt-le terms))
     (pcoefadd 0 (pdifference c (pt-lc terms)) nil))
    ;; Otherwise we have to negate the leading coefficient (using pminus of
    ;; course, because it might be a polynomial in other variables) and recurse.
    (t
     (cons (pt-le terms)
           (cons (pminus (pt-lc terms)) (ptcdiffer c (pt-red terms)))))))

;; PTCDIFFER-MINUS
;;
;; Subtract a coefficient, C, from a polynomial represented by a list of terms,
;; TERMS, to form "p-c". This is the same as PTCDIFFER but the opposite sign (we
;; don't implement it by (pminus (ptcdiffer c terms)) because that would require
;; walking the polynomial twice)
(defun ptcdiffer-minus (terms c)
  (cond
    ;; We're subtracting zero from a polynomial, which is easy!
    ((pzerop c) terms)
    ;; We're subtracting a coefficient from zero, which just comes out as the
    ;; negation of the coefficient (compute it using pminus)
    ((null terms) (list 0 (pminus c)))
    ;; If the leading exponent is zero, subtract the coefficients just like in
    ;; PTCDIFFER.
    ((zerop (pt-le terms))
     (pcoefadd 0 (pdifference (pt-lc terms) c) nil))
    ;; Otherwise recurse.
    (t
     (cons (pt-le terms)
           (cons (pt-lc terms) (ptcdiffer-minus (pt-red terms) c))))))

;; PCSUB
;;
;; Substitute values for variables in the polynomial P. VARS and VALS should be
;; list of variables to substitute for and values to substitute, respectively.
;;
;; The code assumes that if VAR1 precedes VAR2 in the list then (POINTERGP VAR1
;; VAR2). As such, VAR1 won't appear in the coefficients of a polynomial whose
;; main variable is VAR2.
(defun pcsub (p vals vars)
  (cond
    ;; Nothing to substitute, or P has no variables in it.
    ((or (null vals) (pcoefp p)) p)
    ;; The first variable in our list is the main variable of P.
    ((eq (p-var p) (first vars))
     (ptcsub (p-terms p) (first vals)
             (cdr vals) (cdr vars)))
    ;; If the first var should appear before the main variable of P, we know it
    ;; doesn't appear in any of the coefficients, so can (tail-)recurse on vals
    ;; + vars.
    ((pointergp (car vars) (p-var p))
     (pcsub p (cdr vals) (cdr vars)))
    ;; Else, the main variable shouldn't get clobbered, but maybe we should
    ;; replace variables in the coefficients.
    (t (psimp (p-var p) (ptcsub-args (p-terms p) vals vars)))))

;; PCSUBST
;;
;; Substitute VAL for VAR in a polynomial. Like PCSUB, but with only a single
;; var to be substituted.
;;
;; (The logic of this function is exactly the same as PCSUB, but is marginally
;;  simpler because there are no more vars afterwards. Presumably, it was
;;  thought worth separating this case out from PCSUB to avoid spurious
;;  consing. I'm not convinced. RJS)
(defun pcsubst (p val var)
  (cond ((pcoefp p) p)
	((eq (p-var p) var) (ptcsub (cdr p) val nil nil))
	((pointergp var (p-var p)) p)
	(t (psimp (car p) (ptcsub-args (cdr p) (list val) (list var))))))

;; PTCSUB
;;
;; Substitute a constant, VAL, for the main variable in TERMS, which represent
;; the terms of a polynomial. The coefficients might themselves be polynomials
;; and, if so, we might substitute values for them too. To do so, pass VALS and
;; VARS, with the same ordering requirements as in PCSUB.
(defun ptcsub (terms val vals vars)
  (if (eql val 0)
      ;; If we're substituting 0 for the value, then we just extract the
      ;; constant term.
      (pcsub (ptterm terms 0) vals vars)
      ;; Otherwise, walk through the polynomial using Horner's scheme to
      ;; evaluate it. Because the polynomial is sparse, you can't just multiply
      ;; by VAL every step, and instead have to keep track of the jump in
      ;; exponents, which is what the LAST-LE variable does.
      (do ((terms (pt-red terms) (pt-red terms))
	   (ans (pcsub (pt-lc terms) vals vars)
		(pplus (ptimes ans (pexpt val (- last-le (pt-le terms))))
		       (pcsub (pt-lc terms) vals vars)))
	   (last-le (pt-le terms) (pt-le terms)))
	  ((null terms)
           (ptimes ans (pexpt val last-le))))))

;; PTCSUB-ARGS
;;
;; Substitute values for vars in TERMS, which should be the terms of some
;; polynomial. Unlike PTCSUB, we assume that the main variable of the polynomial
;; isn't being substituted. VARS and VALS should be ordered as in PCSUB.
(defun ptcsub-args (terms vals vars)
  (loop
     for (exp coef) on terms by #'cddr
     unless (pzerop (setq coef (pcsub coef vals vars)))
     nconc (list exp coef)))

;; PCSUBSTY
;;
;; Like PCSUB, but with arguments in a different order and with a special case
;; that you can pass atoms for VALS and VARS, in which case they will be treated
;; as one-element lists. The big difference with PCSUB is that we don't assume
;; that VARS and VALS come pre-sorted, and sort them here.
(defun pcsubsty (vals vars p)
  (cond
    ;; If there is nothing to do, the answer is just P.
    ((null vars) p)
    ;; When there's only one variable, we don't need to do any sorting, so skip
    ;; it and call PCSUB directly.
    ((atom vars) (pcsub p (list vals) (list vars)))
    ;; Otherwise, call PCSUB with a sorted list of VARS and VALS.
    (t
     (let ((pairs (sort (mapcar #'cons vars vals) #'pointergp :key #'car)))
       (pcsub p (mapcar #'cdr pairs) (mapcar #'car pairs))))))

;; PDERIVATIVE
;;
;; Compute the derivative of the polynomial P with respect to the variable VARI.
(defmfun pderivative (p vari)
  (cond
    ;; The derivative of a constant is zero.
    ((pcoefp p) 0)
    ;; If we have the same variable, do the differentiation term-by-term.
    ((eq vari (p-var p))
     (psimp (p-var p) (ptderivative (p-terms p))))
    ;; If VARI > (P-VAR P) then we know it doesn't occur in any of the
    ;; coefficients either, so return zero. This test comes after the one above
    ;; because we expect more univariate polynomials and eq is cheaper than
    ;; pointergp.
    ((pointergp vari (p-var p)) 0)
    ;; The other possibility is that (P-VAR P) > VARI, so the coefficients might
    ;; need differentiating.
    (t
     (psimp (p-var p) (ptderivative-coeffs (p-terms p) vari)))))

;; PTDERIVATIVE
;;
;; Formally differentiate TERMS, which is a list of the terms of some
;; polynomial, with respect to that polynomial's main variable.
(defun ptderivative (terms)
  (if (or (null terms) (zerop (pt-le terms)))
      ;; Zero or constant polynomials -> 0
      nil
      ;; Recurse, adding up "k . x^(k-1)" each time.
      (pcoefadd (1- (pt-le terms))
                (pctimes (cmod (pt-le terms)) (pt-lc terms))
                (ptderivative (pt-red terms)))))

;; PTDERIVATIVE-COEFFS
;;
;; Differentiate TERMS, which is a list of the terms of some polynomial, with
;; respect to the variable VARI. We assume that VARI is not the main variable of
;; the polynomial, but it might crop up in the coefficients.
(defun ptderivative-coeffs (terms vari)
  (and terms
       ;; Recurse down the list of terms, calling PDERIVATIVE to actually
       ;; differentiate each coefficient, then PTDERIVATIVE-COEFFS to do the rest.
       (pcoefadd (pt-le terms)
                 (pderivative (pt-lc terms) vari)
                 (ptderivative-coeffs (pt-red terms) vari))))

;; PDIVIDE
;;
;; Polynomial division with remainder. X and Y should be polynomials. If V
;; denotes the main variable of X, then we are carrying out the division in a
;; ring of polynomials over Q where all variables that occur after V have been
;; formally inverted. This is a Euclidean ring, and PDIVIDE implements division
;; with remainder in this ring.
;;
;; The result is a list of two elements (Q R). Each is a rational function (a
;; cons pair of polynomials), representing an element of F[V].
(defmfun pdivide (x y)
  (cond
    ((pzerop y) (rat-error "Quotient by zero"))
    ;; If Y is a coefficient, it doesn't matter what X is: we can always do the
    ;; division.
    ((pacoefp y) (list (ratreduce x y) (rzero)))
    ;; If X is a coefficient but Y isn't then the quotient must be zero
    ((pacoefp x) (list (rzero) (cons x 1)))
    ;; If neither is a coefficient then compare the variables. If V is greater
    ;; than the main variable of Y, then Y is invertible in F[V].
    ((pointergp (p-var x) (p-var y)) (list (ratreduce x y) (rzero)))
    ;; If we've got to here, V might occur in the coefficients of Y, but it
    ;; needn't be the main variable.
    (t
     (do* ((lcy (cons (p-lc y) 1))
           (q (rzero))
           (r (cons x 1))
           (k (- (pdegree x (p-var y)) (p-le y))
              (- (pdegree (car r) (p-var y)) (p-le y))))

          ;; k is the degree of the numerator of the remainder minus the degree
          ;; of y, both in the leading variable of y. For there to be further
          ;; factors of y to subtract from q, this must be non-negative.
          ((minusp k) (list q r))

       ;; Divide the leading coefficient of r (which means the leading term of
       ;; the numerator, divided by the denominator) by the leading coefficient
       ;; of y.
       ;;
       ;; The quotient gets added to q and gets multiplied back up by y and the
       ;; result is subtracted from r.
       (let* ((lcr (cons (p-lc (car r)) (cdr r)))
              (quot (ratquotient lcr lcy))
              (quot-simp (cons (psimp (p-var y) (list k (car quot)))
                               (cdr quot))))
         (setf q (ratplus q quot-simp)
               r (ratplus r (rattimes (cons (pminus y) 1) quot-simp t))))))))

;; PEXPT
;;
;; Polynomial exponentiation. Raise the polynomial P to the power N (which
;; should be an integer)
(defmfun pexpt (p n)
  (cond
    ;; p^0 = 1; p^1 = p
    ((= n 0) 1)
    ((= n 1) p)
    ;; p^(-n) = 1/p^n
    ((minusp n) (pquotient 1 (pexpt p (- n))))
    ;; When p is a coefficient, we can the simpler cexpt (which expects n >= 0,
    ;; guaranteed by the previous clause)
    ((pcoefp p) (cexpt p n))
    ;; If the main variable of P is an algebraic integer, calculate the power by
    ;; repeated squaring (which will correctly take the remainder wrt the
    ;; minimal polynomial for the variable)
    ((alg p) (pexptsq p n))
    ;; If p is a monomial in the main variable, we're doing something like
    ;; (x^2(y+1))^n, which is x^2n (y+1)^n, exponentiate the coefficient by
    ;; recursion and just multiply the exponent. The call to PCOEFADD is just to
    ;; ensure that we get zero if the coefficient raises to the power
    ;; zero. (Possible when the coefficient is an algebraic integer)
    ((null (p-red p))
     (psimp (p-var p)
            (pcoefadd (* n (p-le p)) (pexpt (p-lc p) n) nil)))
    ;; In the general case, expand using the binomial theorem. Write the
    ;; calculation as
    ;;
    ;;    (b + rest)^n  = sum (binomial (n,k) * rest^k * b^(n-k), k, 0, n)
    ;;
    ;; We pre-compute a list of descending powers of B and use the formula
    ;;
    ;;    binomial(n,k)/binomial(n,k-1) = (n+1-k) / k
    ;;
    ;; to keep track of the binomial coefficient.
    (t
     (let ((descending-powers (p-descending-powers
                               (make-poly (p-var p) (p-le p) (p-lc p)) n))
           (rest (psimp (p-var p) (p-red p))))
       (do* ((b-list descending-powers (rest b-list))
             (k 0 (1+ k))
             (n-choose-k 1 (truncate (* n-choose-k (- (1+ n) k)) k))
             (rest-pow 1 (case k
                           (1 rest)
                           (2 (pexpt rest 2))
                           (t (ptimes rest rest-pow))))
             (sum (first descending-powers)
                  (pplus sum
                         (if b-list
                             (ptimes (pctimes (cmod n-choose-k) rest-pow)
                                     (first b-list))
                             (pctimes (cmod n-choose-k) rest-pow)))))
            ((> k n) sum))))))

;; P-DESCENDING-POWERS
;;
;; Return a list of the powers of the polynomial P in descending order, starting
;; with P^N and ending with P.
(defun p-descending-powers (p n)
  (let ((lst (list p)))
    (dotimes (i (1- n)) (push (ptimes p (car lst)) lst))
    lst))

;; PMINUSP
;;
;; Returns true if the coefficient of the leading monomial of the polynomial is
;; negative. Note that this depends on the variable ordering (for example,
;; consider x-y).
;;
;;   (pminusp '(y 1 -1 0 (x 1 1))) => T     but
;;   (pminusp '(x 1 1 0 (y 1 -1))) => NIL
(defmfun pminusp (p)
  (if (realp p) (minusp p)
      (pminusp (p-lc p))))

;; PMINUS
;;
;; Unary negation for polynomials.
(defmfun pminus (p)
  (if (pcoefp p) (cminus p)
      (cons (p-var p) (ptminus (p-terms p)))))

;; PTMINUS
;;
;; Negate a list of polynomial terms.
(defun ptminus (x)
  (loop for (exp coef) on x by #'cddr
	 nconc (list exp (pminus coef))))

;; PMOD
;;
;; Reduce a polynomial modulo the current value of MODULUS.
(defmfun pmod (p)
  (if (pcoefp p) (cmod p)
      (psimp (car p)
	     (loop for (exp coef) on (p-terms p) by #'cddr
		    unless (pzerop (setq coef (pmod coef)))
		    nconc (list exp coef)))))

;; PQUOTIENT
;;
;; Calculate x/y in the polynomial ring over the integers. Y should divide X
;; without remainder.
(defmfun pquotient (x y)
  (cond ((pcoefp x)
	 (cond ((pzerop x) (pzero))
	       ((pcoefp y) (cquotient x y))
	       ((alg y) (paquo x y))
	       (t (rat-error "Quotient by a polynomial of higher degree"))))

	((pcoefp y)
         (cond ((pzerop y) (rat-error "Quotient by zero"))
               (modulus (pctimes (crecip y) x))
               (t (pcquotient x y))))

        ;; If (alg y) is true, then y is a polynomial in some variable that
        ;; itself has a minimum polynomial. Moreover, the $algebraic flag must
        ;; be true. We first try to compute an exact quotient ignoring that
        ;; minimal polynomial, by binding $algebraic to nil. If that fails, we
        ;; try to invert y and then multiply the results together.
	((alg y) (or (let ($algebraic)
                       (ignore-rat-err (pquotient x y)))
		     (patimes x (rainv y))))

        ;; If the main variable of Y comes after the main variable of X, Y must
        ;; be free of that variable, so must divide each coefficient in X. Thus
        ;; we can use PCQUOTIENT.
	((pointergp (p-var x) (p-var y)) (pcquotient x y))

        ;; Either Y contains a variable that is not in X, or they have the same
        ;; main variable and Y has a higher degree. There can't possibly be an
        ;; exact quotient.
	((or (pointergp (p-var y) (p-var x)) (> (p-le y) (p-le x)))
	 (rat-error "Quotient by a polynomial of higher degree"))

        ;; If we got to here then X and Y have the same main variable and Y has
        ;; a degree less than or equal to that of X. We can now forget about the
        ;; main variable and work on the terms, with PTPTQUOTIENT.
	(t
         (psimp (p-var x) (ptptquotient (p-terms x) (p-terms y))))))

;; PCQUOTIENT
;;
;; Divide the polynomial P by Q. Q should be either a coefficient (so that
;; (pcoefp q) => T), or should be a polynomial in a later variable than the main
;; variable of P. Either way, Q is free of the main variable of P. The division
;; is done at each coefficient.
(defun pcquotient (p q)
  (psimp (p-var p)
         (loop
            for (exp coef) on (p-terms p) by #'cddr
            nconc (list exp (pquotient coef q)))))

;; PTPTQUOTIENT
;;
;; Exactly divide two polynomials in the same variable, represented here by the
;; list of their terms.
(defun ptptquotient (u v)
  ;; The algorithm is classic long division. You notice that if X/Y = Q then X =
  ;; QY, so lc(X) = lc(Q)lc(Y) (where lc(Q)=Q when Q is a bare coefficient). Now
  ;; divide again in the ring of coefficients to see that lc(X)/lc(Y) =
  ;; lc(Q). Of course, you also know that le(Q) = le(X) - le(Y).
  ;;
  ;; Once you know lc(Q), you can subtract Y * lc(Q)*(var^le(Q)) from X and
  ;; repeat. You know that you'll remove the leading term, so the algorithm will
  ;; always terminate. To do the subtraction, use PTPT-SUBTRACT-POWERED-PRODUCT.
  (do ((q-terms nil)
       (u u (ptpt-subtract-powered-product (pt-red u) (pt-red v)
                                           (first q-terms) (second q-terms))))
      ((ptzerop u)
       (nreverse q-terms))
    ;; If B didn't divide A after all, then eventually we'll end up with the
    ;; remainder in u, which has lower degree than that of B.
    (when (< (pt-le u) (pt-le v))
      (rat-error "Polynomial quotient is not exact"))
    (let ((le-q (- (pt-le u) (pt-le v)))
          (lc-q (pquotient (pt-lc u) (pt-lc v))))
      ;; We've calculated the leading exponent and coefficient of q. Push them
      ;; backwards onto q-terms (which holds the terms in reverse order).
      (setf q-terms (cons lc-q (cons le-q q-terms))))))

;; PTPT-SUBTRACT-POWERED-PRODUCT
;;
;; U and V are the terms of two polynomials, A and B, in the same variable, x. Q
;; is free of x. This function computes the terms of A - x^k * B * Q. This
;; rather specialised function is used to update a numerator when doing
;; polynomial long division.
(defun ptpt-subtract-powered-product (u v q k)
  (cond
    ;; A - x^k * 0 * Q = A
    ((null v) u)
    ;; 0 - x^k * B * Q = x^k * B * (- Q)
    ((null u) (pcetimes1 v k (pminus q)))
    (t
     ;; hipow is the highest exponent in x^k*B*Q.
     (let ((hipow (+ (pt-le v) k)))
       (cond
         ;; If hipow is greater than the highest exponent in A, we have to
         ;; prepend the first coefficient, which will be Q * lc(B). We can then
         ;; recurse to this function to sort out the rest of the sum.
         ((> hipow (pt-le u))
          (pcoefadd hipow
                    (ptimes q (pminus (pt-lc v)))
                    (ptpt-subtract-powered-product u (pt-red v) q k)))
         ;; If hipow is equal to the highest exponent in A, we can just subtract
         ;; the two leading coefficients and recurse to sort out the rest.
         ((= hipow (pt-le u))
          (pcoefadd hipow
                    (pdifference (pt-lc u) (ptimes q (pt-lc v)))
                    (ptpt-subtract-powered-product (pt-red u) (pt-red v) q k)))
         ;; If hipow is lower than the highest exponent in A then keep the first
         ;; term of A and recurse.
         (t
          (list* (pt-le u) (pt-lc u)
                 (ptpt-subtract-powered-product (pt-red u) v q k))))))))

(defun algord (var)
  (and $algebraic (get var 'algord)))

;; PSIMP
;;
;; Return a "simplified" polynomial whose main variable is VAR and whose terms
;; are given by X.
;;
;; If the polynomial is free of X, the result is the zero'th order coefficient:
;; either a polynomial in later variables or a number. PSIMP also deals with
;; reordering variables when $ALGEBRAIC is true, behaviour which is triggered by
;; the ALGORD property on the main variable.
(defun psimp (var x)
  (cond ((ptzerop x) 0)
	((atom x) x)
	((zerop (pt-le x)) (pt-lc x))
	((algord var)
         ;; Fix wrong alg ordering: We deal with the case that the main variable
         ;; of a coefficient should precede VAR.
         (do ((p x (cddr p)) (sum 0))
             ((null p)
              (if (pzerop sum)
                  (cons var x)
                  (pplus sum (p-delete-zeros var x))))
           ;; We only need to worry about the wrong ordering if a coefficient is
           ;; a polynomial in another variable, and that variable should precede
           ;; VAR.
           (unless (or (pcoefp (pt-lc p))
                       (pointergp var (p-var (pt-lc p))))
             (setq sum (pplus sum
                              (if (zerop (pt-le p)) (pt-lc p)
                                  (ptimes (make-poly var (pt-le p) 1)
                                          (pt-lc p)))))
             ;; When we finish, we'll call PPLUS to add SUM and the remainder of
             ;; X, and this line zeroes out this term in X (through P) to avoid
             ;; double counting. The term will be deleted by the call to
             ;; P-DELETE-ZEROS later.
             (setf (pt-lc p) 0))))

        (t
         (cons var x))))

;; P-DELETE-ZEROS
;;
;; Destructively operate on X, deleting any terms that have a zero coefficient.
(defun p-delete-zeros (var x)
  ;; The idea is that P always points one before the term in which we're
  ;; interested. When that term has zero coefficient, it is trimmed from P by
  ;; replacing the cdr. Consing NIL to the front of X allows us to throw away
  ;; the first term if necessary.
  (do ((p (setq x (cons nil x))))
      ((null (cdr p))
       ;; Switch off $algebraic so that we can recurse to PSIMP without any fear
       ;; of an infinite recursion - PSIMP only calls this function when (ALGORD
       ;; VAR) is true, and that only happens when $algebraic is true.
       (let (($algebraic)) (psimp var (cdr x))))
    (if (pzerop (pt-lc (cdr p)))
        (setf (cdr p) (pt-red (cdr p)))
        (setq p (cddr p)))))

;; PTTERM
;;
;; Given X representing the terms of a polynomial in a variable z, return the
;; coefficient of z^n.
(defun ptterm (x n)
  (do ((x x (pt-red x)))
      ((ptzerop x) (pzero))
    (cond ((< (pt-le x) n) (return (pzero)))
	  ((= (pt-le x) n) (return (pt-lc x))))))

(defmfun ptimes (x y)
  (cond ((pcoefp x) (if (pzerop x) (pzero) (pctimes x y)))
	((pcoefp y) (if (pzerop y) (pzero) (pctimes y x)))
	((eq (p-var x) (p-var y))
	 (palgsimp (p-var x) (ptimes1 (p-terms x) (p-terms y)) (alg x)))
	((pointergp (p-var x) (p-var y))
	 (psimp (p-var x) (pctimes1 y (p-terms x))))
	(t (psimp (p-var y) (pctimes1 x (p-terms y))))))

(defun   ptimes1 (x y-orig &aux uuu  )
  (do ((vvv (setq uuu (pcetimes1 y-orig (pt-le x) (pt-lc x))))
       (x (pt-red x) (pt-red x)))
      ((ptzerop x) uuu)
    (let ((y y-orig) (xe (pt-le x)) (xc (pt-lc x)))
      (prog (e u c) 
       a1 (cond ((null y) (return nil)))
       (setq e (+ xe (car y)))
       (setq c (ptimes (cadr y) xc))
       (cond ((pzerop c) (setq y (cddr y)) (go a1))
	     ((or (null vvv) (> e (car vvv)))
	      (setq uuu (setq vvv (ptptplus uuu (list e c))))
	      (setq y (cddr y)) (go a1))
	     ((= e (car vvv))
	      (setq c (pplus c (cadr vvv)))
	      (cond ((pzerop c)
		     (setq uuu (setq vvv (ptptdiffer uuu (list (car vvv) (cadr vvv))))))
		    (t (rplaca (cdr vvv) c)))
	      (setq y (cddr y))
	      (go a1)))
       a  
       (cond ((and (cddr vvv) (> (caddr vvv) e))
	      (setq vvv (cddr vvv)) (go a)))
       (setq u (cdr vvv ))
       b  (cond ((or (null (cdr u)) (< (cadr u) e))
		 (rplacd u (cons e (cons c (cdr u)))) (go e)))
       (cond ((pzerop (setq c (pplus (caddr u) c)))
	      (rplacd u (cdddr u)) (go d))
	     (t (rplaca (cddr u) c)))
       e  (setq u (cddr u))
       d  (setq y (cddr y))
       (cond ((null y) (return nil)))
       (setq e (+ xe (car y)))
       (setq c (ptimes (cadr y) xc))
       c  (cond ((and (cdr u) (> (cadr u) e)) (setq u (cddr u)) (go c)))
       (go b))))
  uuu)

(defun pcetimes1 (y e c)		;C*V^E*Y
  (loop for (exp coef) on y by #'cddr
	 unless (pzerop (setq coef (ptimes c coef)))
	 nconc (list (+ e exp) coef)))

(defun pctimes (c p)
  (if (pcoefp p) (ctimes c p)
      (psimp (p-var p) (pctimes1 c (p-terms p)))))

(defun pctimes1 (c terms)
  (loop for (exp coef) on terms by #'cddr
	 unless (pzerop (setq coef (ptimes c coef)))
	 nconc (list exp coef)))

(defun leadalgcoef (p)
  (cond ((pacoefp p) p)
	(t (leadalgcoef (p-lc p))) ))

(defun painvmod (q)
  (cond ((pcoefp q) (crecip q))
	(t (paquo (list (car q) 0 1) q ))))

(defun palgsimp (var p tell)		;TELL=(N X) -> X^(1/N)
  (psimp var (cond ((or (null tell) (null p)
			(< (car p) (car tell))) p)
		   ((null (cddr tell)) (pasimp1 p (car tell) (cadr tell)))
		   (t (pgcd1 p tell)) )))

(defun pasimp1 (p deg kernel)		;assumes deg>=(car p)
  (do ((a p (pt-red a))
       (b p a))
      ((or (null a) (< (pt-le a) deg))
       (rplacd (cdr b) nil)
       (ptptplus (pctimes1 kernel p) a))
    (rplaca a (- (pt-le a) deg))))

(defmfun monize (p) 
  (cond ((pcoefp p) (if (pzerop p) p 1))
	(t (cons (p-var p) (pmonicize (copy-list (p-terms p)))))))

(defun pmonicize (p)			;CLOBBERS POLY
  (cond ((equal (pt-lc p) 1) p)
	(t (pmon1 (painvmod (leadalgcoef (pt-lc p))) p) p)))

(defun pmon1 (mult l)
  (cond (l (pmon1 mult (pt-red l))
	   (setf (pt-lc l) (ptimes mult (pt-lc l))))))

(defun pmonz (poly &aux lc)		;A^(N-1)*P(X/A)
  (setq poly (pabs poly))       
  (cond ((equal (setq lc (p-lc poly)) 1) poly)
	(t (do ((p (p-red poly) (pt-red p))
		(p1 (make-poly (p-var poly) (p-le poly) 1))
		(mult 1)
		(deg (1- (p-le poly)) (pt-le p)))
	       ((null p) p1)
	     (setq mult (ptimes mult (pexpt lc (- deg (pt-le p)))))
	     (nconc p1 (list (pt-le p) (ptimes mult (pt-lc p))))))))

;;	THESE ARE ROUTINES FOR MANIPULATING ALGEBRAIC NUMBERS

(defun algnormal (p) (car (rquotient p (leadalgcoef p))))

(defun algcontent (p)
  (destructuring-let* ((lcf (leadalgcoef p))
		       ((prim . denom) (rquotient p lcf)))
    (list (ratreduce lcf denom) prim)))

(defun rquotient (p q &aux algfac* a e)	;FINDS PSEUDO QUOTIENT IF PSEUDOREM=0
  (cond ((equal p q) (cons 1 1))
	((pcoefp q) (ratreduce p q))
	((setq a (testdivide p q)) (cons a 1))
	((alg q) (rattimes (cons p 1) (rainv q) t))
	(t (cond ((alg (setq a (leadalgcoef q)))
		  (setq a (rainv a))
		  (setq p (ptimes p (car a)))
		  (setq q (ptimes q (car a)))
		  (setq a (cdr a)) ))
	   (cond ((minusp (setq e (+ 1 (- (cadr q)) (pdegree p (car q)))))
		  (rat-error "Quotient by a polynomial of higher degree")))
	   (setq a (pexpt a e))
	   (ratreduce (or (testdivide (ptimes a p) q)
			  (prog2 (setq a (pexpt (p-lc q) e))
			      (pquotient (ptimes a p) q)))
		      a)) ))

(defun patimes (x r) (pquotientchk (ptimes x (car r)) (cdr r)))

(defun paquo (x y) (patimes x (rainv y)))

(defun mpget (var)
  (cond ((null (setq var (alg var))) nil)
	((cddr var) var)
	(t (list (car var) 1 0 (pminus (cadr var))))))


(defun rainv (q)
  (cond ((pcoefp q)
	 (cond (modulus (cons (crecip q) 1))
	       (t (cons 1 q))))
	(t (let ((var (car q)) (p (mpget q)))
	     (declare (special var))	;who uses this? --gsb
	     (cond ((null p) (cons 1 q))
		   (t (setq p (car (let ($ratalgdenom)
				     (bprog q (cons var p)))))
		      (rattimes (cons (car p) 1) (rainv (cdr p)) t)))))))

(defun pexptsq (p n)
  (do ((n (ash n -1) (ash n -1))
       (s (if (oddp n) p 1)))
      ((zerop n) s)
    (setq p (ptimes p p))
    (and (oddp n) (setq s (ptimes s p))) ))

;;	THIS IS THE END OF THE NEW RATIONAL FUNCTION PACKAGE PART 1.