/usr/share/maxima/5.32.1/src/rat3a.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module rat3a)
;; This is the new Rational Function Package Part 1.
;; It includes most of the coefficient and polynomial routines required
;; by the rest of the functions. Certain specialized functions are found
;; elsewhere. Most low-level utility programs are also in this file.
(declare-top (unspecial coef var exp p y))
;;These do not need to be special for this file and they
;;slow it down on lispm. We also eliminated the special
;;from ptimes2--wfs
;; Global variables referenced throughout the rational function package.
(defmvar modulus nil "Global switch for doing modular arithmetic")
;; CQUOTIENT
;;
;; Calculate the quotient of two coefficients, which should be numbers. If
;; MODULUS is non-nil, we try to take the reciprocal of A with respect to the
;; modulus (using CRECIP) and then multiply by B. Note that this fails if B
;; divides A as an integer, but B is not a unit in the ring of integers modulo
;; MODULUS. For example,
;;
;; (let ((modulus 20)) (cquotient 10 5)) => ERROR
;;
;; If MODULUS is nil, then we work over the ring of integers when A and B are
;; integers, and raise a RAT-ERROR if A is not divisible by B. If either A or B
;; is a float then the division is done in floating point. Floats can get as far
;; as the rational function code if $KEEPFLOAT is true.
(defun cquotient (a b)
(cond ((equal a 0) 0)
((null modulus)
(if (or (floatp a) (floatp b)
(zerop (rem a b)))
(/ a b)
(rat-error "quotient is not exact")))
(t (ctimes a (crecip b)))))
;; ALG
;;
;; Get any value stored on the tellrat property of (car l). Returns NIL if L
;; turns out not to be a list or if $ALGEBRAIC is false.
(defun alg (l)
(unless (atom l) (algv (car l))))
;; PACOEFP
;;
;; Return T if either X is a bare coefficient or X is a polynomial whose main
;; variable has a declared value as an algebraic integer. Otherwise return NIL.
(defun pacoefp (x)
(and (or (pcoefp x) (alg x))
T))
;; LEADTERM
;;
;; Return the leading term of POLY as a polynomial itself.
(defun leadterm (poly)
(if (pcoefp poly)
poly
(make-poly (p-var poly) (p-le poly) (p-lc poly))))
;; CRECIP
;;
;; Takes the inverse of an integer N mod MODULUS. If there is a modulus then the
;; result is constrained to lie in (-modulus/2, modulus/2]
;;
;; This just uses the extended Euclidean algorithm: once you have found a,b such
;; that a*n + b*modulus = 1 then a must be the reciprocal you're after.
;;
;; When MODULUS is greater than 2^15, we use exactly the same algorithm in
;; CRECIP-GENERAL, but it can't use fixnum arithmetic. Note: There's no
;; particular reason to target 32 bits except that trying to work out the right
;; types on the fly looks complicated and this lisp compiler, at least, uses 32
;; bit words. Since we have to take a product, we constrain the types to 16 bit
;; numbers.
(defun crecip (n)
;; Punt on anything complicated
(unless (and modulus (typep modulus '(unsigned-byte 15)))
(return-from crecip (crecip-general n)))
;; And make sure that -MODULUS < N < MODULUS
(unless (<= (- modulus) n modulus)
(merror "N is out of range [-MODULUS, MODULUS] in crecip."))
;; N in [0, MODULUS]
(when (minusp n) (setf n (+ n modulus)))
;; The mod-copy parameter stores a copy of MODULUS on the stack, which is
;; useful because the lisp implementation doesn't know that the special
;; variable MODULUS is still an (unsigned-byte 15) when we get to the end
;; (since it can't tell that our function calls don't change it behind our
;; backs, I guess)
(let ((mod modulus) (remainder n) (a 1) (b 0)
(mod-copy modulus))
;; On SBCL in 2013 at least, the compiler doesn't spot that MOD and
;; REMAINDER are unsigned and bounded above by MODULUS, a 16-bit integer. So
;; we have to tell it. Also, the lisp implementation can't really be
;; expected to know that Bezout coefficients are bounded by the modulus and
;; remainder, so we have to tell it that too.
(declare (type (unsigned-byte 15) mod mod-copy remainder)
(type (signed-byte 16) a b))
(loop
until (= remainder 1)
when (zerop remainder) do
(merror (intl:gettext "CRECIP: attempted inverse of zero (mod ~M)")
mod)
doing
(multiple-value-bind (quot rem)
(truncate mod remainder)
(setf mod remainder
remainder rem)
(psetf a (- b (* a quot))
b a))
finally
;; Since this isn't some general purpose Euclidean algorithm, but
;; instead is trying to find a modulo inverse, we need to ensure that
;; the Bezout coefficient we found (called A) is actually in [0,
;; MODULUS).
;;
;; The general code calls CMOD here, but that doesn't know about the
;; types of A and MODULUS, so we do it by hand, special-casing the easy
;; case of modulus=2.
(return
(if (= mod-copy 2)
(logand a 1)
(let ((nn (mod a mod-copy)))
;; nn here is in [0, modulus)
(if (<= (* 2 nn) mod-copy)
nn
(- nn mod-copy))))))))
;; CRECIP-GENERAL
;;
;; The general algorithm for CRECIP, valid when the modulus is any integer. See
;; CRECIP for more details.
(defun crecip-general (n)
;; We assume that |n| < modulus, so n+modulus is always positive
(let ((mod modulus)
(remainder (if (minusp n) (+ n modulus) n))
(a 1) (b 0))
(loop
until (= remainder 1)
when (zerop remainder) do
(merror (intl:gettext "CRECIP: attempted inverse of zero (mod ~M)")
mod)
doing
(let ((quotient (truncate mod remainder)))
(psetf mod remainder
remainder (- mod (* quotient remainder)))
(psetf a (- b (* a quotient))
b a))
finally (return (cmod a)))))
;; CEXPT
;;
;; Raise an coefficient to a positive integral power. BASE should be a
;; number. POW should be a non-negative integer.
(defun cexpt (base pow)
(unless (typep pow '(integer 0))
(error "CEXPT only defined for non-negative integral exponents."))
(if (not modulus)
(expt base pow)
(do ((pow (ash pow -1) (ash pow -1))
(s (if (oddp pow) base 1)))
((zerop pow) s)
(setq base (rem (* base base) modulus))
(when (oddp pow) (setq s (rem (* s base) modulus))))))
;; CMOD
;;
;; When MODULUS is null, this is the identity. Otherwise, it normalises N, which
;; should be a number, to lie in the range (-modulus/2, modulus/2].
(defun cmod (n)
(declare (type number n))
(if (not modulus)
n
(let ((rem (mod n modulus)))
(if (<= (* 2 rem) modulus)
rem
(- rem modulus)))))
(defun cplus (a b) (cmod (+ a b)))
(defun ctimes (a b) (cmod (* a b)))
(defun cdifference (a b) (cmod (- a b)))
;; SET-MODULUS
;;
;; Set the base in which the rational function package works. This does
;; sanity-checking on the value chosen and is probably the way you should set
;; the global value.
;;
;; Valid values for M are either a positive integer or NULL.
(defun set-modulus (m)
(if (or (null m) (typep m '(integer 0)))
(setq modulus m)
(error "modulus must be a positive number or nil"))
(values))
;; PCOEFADD
;;
;; Prepend a term to an existing polynomial. EXPONENT should be the exponent of
;; the term to add; COEFF should be its coefficient; REMAINDER is a list of
;; polynomial terms. The function returns polynomial terms that correspond to
;; adding the given term.
;;
;; The function doesn't check that EXPONENT is higher than the highest exponent
;; in REMAINDER, so you have to do this yourself.
(defmfun pcoefadd (exponent coeff remainder)
(if (pzerop coeff)
remainder
(cons exponent (cons coeff remainder))))
;; PPLUS
;;
;; Add together two polynomials.
(defmfun pplus (x y)
(cond ((pcoefp x) (pcplus x y))
((pcoefp y) (pcplus y x))
((eq (p-var x) (p-var y))
(psimp (p-var x) (ptptplus (p-terms y) (p-terms x))))
((pointergp (p-var x) (p-var y))
(psimp (p-var x) (ptcplus y (p-terms x))))
(t (psimp (p-var y) (ptcplus x (p-terms y))))))
;; PTPTPLUS
;;
;; Add together two lists of polynomial terms.
(defun ptptplus (x y)
(cond ((ptzerop x) y)
((ptzerop y) x)
((= (pt-le x) (pt-le y))
(pcoefadd (pt-le x)
(pplus (pt-lc x) (pt-lc y))
(ptptplus (pt-red x) (pt-red y))))
((> (pt-le x) (pt-le y))
(cons (pt-le x) (cons (pt-lc x) (ptptplus (pt-red x) y))))
(t (cons (pt-le y) (cons (pt-lc y) (ptptplus x (pt-red y)))))))
;; PCPLUS
;;
;; Add a coefficient to a polynomial
(defun pcplus (c p)
(if (pcoefp p)
(cplus p c)
(psimp (p-var p)
(ptcplus c (p-terms p)))))
;; PTCPLUS
;;
;; Add a coefficient to a list of terms. C should be a used as a coefficient;
;; TERMS is a list of a polynomial's terms. Note that we don't assume that C is
;; a number: it might be a polynomial in a variable that isn't the main variable
;; of the polynomial.
(defun ptcplus (c terms)
(cond
;; Adding zero doesn't do anything.
((pzerop c) terms)
;; Adding to zero, you just get the coefficient.
((null terms) (list 0 c))
;; If terms are from a constant polynomial, we can just add C to its leading
;; coefficient (which might not be a number in the multivariate case, so you
;; have to use PPLUS)
((zerop (pt-le terms))
(pcoefadd 0 (pplus c (pt-lc terms)) nil))
;; If TERMS is a polynomial with degree > 0, recurse.
(t
(cons (pt-le terms) (cons (pt-lc terms) (ptcplus c (pt-red terms)))))))
;; PDIFFERENCE
;;
;; Compute the difference of two polynomials
(defmfun pdifference (x y)
(cond
;; If Y is a coefficient, it's a number, so we can just add -Y to X using
;; pcplus. If, however, X is the coefficient, we have to negate all the
;; coefficients in Y, so defer to a utility function.
((pcoefp x) (pcdiffer x y))
((pcoefp y) (pcplus (cminus y) x))
;; If X and Y have the same variable, work down their lists of terms.
((eq (p-var x) (p-var y))
(psimp (p-var x) (ptptdiffer (p-terms x) (p-terms y))))
;; Treat Y as a coefficient in the main variable of X.
((pointergp (p-var x) (p-var y))
(psimp (p-var x) (ptcdiffer-minus (p-terms x) y)))
;; Treat X as a coefficient in the main variable of Y.
(t (psimp (p-var y) (ptcdiffer x (p-terms y))))))
;; PTPTDIFFER
;;
;; Compute the difference of two lists of polynomial terms (assumed to represent
;; two polynomials in the same variable).
(defun ptptdiffer (x y)
(cond
((ptzerop x) (ptminus y))
((ptzerop y) x)
((= (pt-le x) (pt-le y))
(pcoefadd (pt-le x)
(pdifference (pt-lc x) (pt-lc y))
(ptptdiffer (pt-red x) (pt-red y))))
((> (pt-le x) (pt-le y))
(cons (pt-le x) (cons (pt-lc x) (ptptdiffer (pt-red x) y))))
(t (cons (pt-le y) (cons (pminus (pt-lc y))
(ptptdiffer x (pt-red y)))))))
;; PCDIFFER
;;
;; Subtract the polynomial P from the coefficient C to form c - p.
(defun pcdiffer (c p)
(if (pcoefp p)
(cdifference c p)
(psimp (p-var p) (ptcdiffer c (p-terms p)))))
;; PTCDIFFER
;;
;; Subtract a polynomial represented by the list of terms, TERMS, from the
;; coefficient C.
(defun ptcdiffer (c terms)
(cond
;; Unlike in the plus case or in PTCDIFFER-MINUS, we don't have a shortcut
;; if C=0. However, if TERMS is null then we are calculating C-0, which is
;; easy:
((null terms)
(if (pzerop c) nil (list 0 c)))
;; If the leading exponent is zero (in the main variable), then we can
;; subtract the coefficients. Of course, these might actually be polynomials
;; in other variables, so do this using pdifference.
((zerop (pt-le terms))
(pcoefadd 0 (pdifference c (pt-lc terms)) nil))
;; Otherwise we have to negate the leading coefficient (using pminus of
;; course, because it might be a polynomial in other variables) and recurse.
(t
(cons (pt-le terms)
(cons (pminus (pt-lc terms)) (ptcdiffer c (pt-red terms)))))))
;; PTCDIFFER-MINUS
;;
;; Subtract a coefficient, C, from a polynomial represented by a list of terms,
;; TERMS, to form "p-c". This is the same as PTCDIFFER but the opposite sign (we
;; don't implement it by (pminus (ptcdiffer c terms)) because that would require
;; walking the polynomial twice)
(defun ptcdiffer-minus (terms c)
(cond
;; We're subtracting zero from a polynomial, which is easy!
((pzerop c) terms)
;; We're subtracting a coefficient from zero, which just comes out as the
;; negation of the coefficient (compute it using pminus)
((null terms) (list 0 (pminus c)))
;; If the leading exponent is zero, subtract the coefficients just like in
;; PTCDIFFER.
((zerop (pt-le terms))
(pcoefadd 0 (pdifference (pt-lc terms) c) nil))
;; Otherwise recurse.
(t
(cons (pt-le terms)
(cons (pt-lc terms) (ptcdiffer-minus (pt-red terms) c))))))
;; PCSUB
;;
;; Substitute values for variables in the polynomial P. VARS and VALS should be
;; list of variables to substitute for and values to substitute, respectively.
;;
;; The code assumes that if VAR1 precedes VAR2 in the list then (POINTERGP VAR1
;; VAR2). As such, VAR1 won't appear in the coefficients of a polynomial whose
;; main variable is VAR2.
(defun pcsub (p vals vars)
(cond
;; Nothing to substitute, or P has no variables in it.
((or (null vals) (pcoefp p)) p)
;; The first variable in our list is the main variable of P.
((eq (p-var p) (first vars))
(ptcsub (p-terms p) (first vals)
(cdr vals) (cdr vars)))
;; If the first var should appear before the main variable of P, we know it
;; doesn't appear in any of the coefficients, so can (tail-)recurse on vals
;; + vars.
((pointergp (car vars) (p-var p))
(pcsub p (cdr vals) (cdr vars)))
;; Else, the main variable shouldn't get clobbered, but maybe we should
;; replace variables in the coefficients.
(t (psimp (p-var p) (ptcsub-args (p-terms p) vals vars)))))
;; PCSUBST
;;
;; Substitute VAL for VAR in a polynomial. Like PCSUB, but with only a single
;; var to be substituted.
;;
;; (The logic of this function is exactly the same as PCSUB, but is marginally
;; simpler because there are no more vars afterwards. Presumably, it was
;; thought worth separating this case out from PCSUB to avoid spurious
;; consing. I'm not convinced. RJS)
(defun pcsubst (p val var)
(cond ((pcoefp p) p)
((eq (p-var p) var) (ptcsub (cdr p) val nil nil))
((pointergp var (p-var p)) p)
(t (psimp (car p) (ptcsub-args (cdr p) (list val) (list var))))))
;; PTCSUB
;;
;; Substitute a constant, VAL, for the main variable in TERMS, which represent
;; the terms of a polynomial. The coefficients might themselves be polynomials
;; and, if so, we might substitute values for them too. To do so, pass VALS and
;; VARS, with the same ordering requirements as in PCSUB.
(defun ptcsub (terms val vals vars)
(if (eql val 0)
;; If we're substituting 0 for the value, then we just extract the
;; constant term.
(pcsub (ptterm terms 0) vals vars)
;; Otherwise, walk through the polynomial using Horner's scheme to
;; evaluate it. Because the polynomial is sparse, you can't just multiply
;; by VAL every step, and instead have to keep track of the jump in
;; exponents, which is what the LAST-LE variable does.
(do ((terms (pt-red terms) (pt-red terms))
(ans (pcsub (pt-lc terms) vals vars)
(pplus (ptimes ans (pexpt val (- last-le (pt-le terms))))
(pcsub (pt-lc terms) vals vars)))
(last-le (pt-le terms) (pt-le terms)))
((null terms)
(ptimes ans (pexpt val last-le))))))
;; PTCSUB-ARGS
;;
;; Substitute values for vars in TERMS, which should be the terms of some
;; polynomial. Unlike PTCSUB, we assume that the main variable of the polynomial
;; isn't being substituted. VARS and VALS should be ordered as in PCSUB.
(defun ptcsub-args (terms vals vars)
(loop
for (exp coef) on terms by #'cddr
unless (pzerop (setq coef (pcsub coef vals vars)))
nconc (list exp coef)))
;; PCSUBSTY
;;
;; Like PCSUB, but with arguments in a different order and with a special case
;; that you can pass atoms for VALS and VARS, in which case they will be treated
;; as one-element lists. The big difference with PCSUB is that we don't assume
;; that VARS and VALS come pre-sorted, and sort them here.
(defun pcsubsty (vals vars p)
(cond
;; If there is nothing to do, the answer is just P.
((null vars) p)
;; When there's only one variable, we don't need to do any sorting, so skip
;; it and call PCSUB directly.
((atom vars) (pcsub p (list vals) (list vars)))
;; Otherwise, call PCSUB with a sorted list of VARS and VALS.
(t
(let ((pairs (sort (mapcar #'cons vars vals) #'pointergp :key #'car)))
(pcsub p (mapcar #'cdr pairs) (mapcar #'car pairs))))))
;; PDERIVATIVE
;;
;; Compute the derivative of the polynomial P with respect to the variable VARI.
(defmfun pderivative (p vari)
(cond
;; The derivative of a constant is zero.
((pcoefp p) 0)
;; If we have the same variable, do the differentiation term-by-term.
((eq vari (p-var p))
(psimp (p-var p) (ptderivative (p-terms p))))
;; If VARI > (P-VAR P) then we know it doesn't occur in any of the
;; coefficients either, so return zero. This test comes after the one above
;; because we expect more univariate polynomials and eq is cheaper than
;; pointergp.
((pointergp vari (p-var p)) 0)
;; The other possibility is that (P-VAR P) > VARI, so the coefficients might
;; need differentiating.
(t
(psimp (p-var p) (ptderivative-coeffs (p-terms p) vari)))))
;; PTDERIVATIVE
;;
;; Formally differentiate TERMS, which is a list of the terms of some
;; polynomial, with respect to that polynomial's main variable.
(defun ptderivative (terms)
(if (or (null terms) (zerop (pt-le terms)))
;; Zero or constant polynomials -> 0
nil
;; Recurse, adding up "k . x^(k-1)" each time.
(pcoefadd (1- (pt-le terms))
(pctimes (cmod (pt-le terms)) (pt-lc terms))
(ptderivative (pt-red terms)))))
;; PTDERIVATIVE-COEFFS
;;
;; Differentiate TERMS, which is a list of the terms of some polynomial, with
;; respect to the variable VARI. We assume that VARI is not the main variable of
;; the polynomial, but it might crop up in the coefficients.
(defun ptderivative-coeffs (terms vari)
(and terms
;; Recurse down the list of terms, calling PDERIVATIVE to actually
;; differentiate each coefficient, then PTDERIVATIVE-COEFFS to do the rest.
(pcoefadd (pt-le terms)
(pderivative (pt-lc terms) vari)
(ptderivative-coeffs (pt-red terms) vari))))
;; PDIVIDE
;;
;; Polynomial division with remainder. X and Y should be polynomials. If V
;; denotes the main variable of X, then we are carrying out the division in a
;; ring of polynomials over Q where all variables that occur after V have been
;; formally inverted. This is a Euclidean ring, and PDIVIDE implements division
;; with remainder in this ring.
;;
;; The result is a list of two elements (Q R). Each is a rational function (a
;; cons pair of polynomials), representing an element of F[V].
(defmfun pdivide (x y)
(cond
((pzerop y) (rat-error "Quotient by zero"))
;; If Y is a coefficient, it doesn't matter what X is: we can always do the
;; division.
((pacoefp y) (list (ratreduce x y) (rzero)))
;; If X is a coefficient but Y isn't then the quotient must be zero
((pacoefp x) (list (rzero) (cons x 1)))
;; If neither is a coefficient then compare the variables. If V is greater
;; than the main variable of Y, then Y is invertible in F[V].
((pointergp (p-var x) (p-var y)) (list (ratreduce x y) (rzero)))
;; If we've got to here, V might occur in the coefficients of Y, but it
;; needn't be the main variable.
(t
(do* ((lcy (cons (p-lc y) 1))
(q (rzero))
(r (cons x 1))
(k (- (pdegree x (p-var y)) (p-le y))
(- (pdegree (car r) (p-var y)) (p-le y))))
;; k is the degree of the numerator of the remainder minus the degree
;; of y, both in the leading variable of y. For there to be further
;; factors of y to subtract from q, this must be non-negative.
((minusp k) (list q r))
;; Divide the leading coefficient of r (which means the leading term of
;; the numerator, divided by the denominator) by the leading coefficient
;; of y.
;;
;; The quotient gets added to q and gets multiplied back up by y and the
;; result is subtracted from r.
(let* ((lcr (cons (p-lc (car r)) (cdr r)))
(quot (ratquotient lcr lcy))
(quot-simp (cons (psimp (p-var y) (list k (car quot)))
(cdr quot))))
(setf q (ratplus q quot-simp)
r (ratplus r (rattimes (cons (pminus y) 1) quot-simp t))))))))
;; PEXPT
;;
;; Polynomial exponentiation. Raise the polynomial P to the power N (which
;; should be an integer)
(defmfun pexpt (p n)
(cond
;; p^0 = 1; p^1 = p
((= n 0) 1)
((= n 1) p)
;; p^(-n) = 1/p^n
((minusp n) (pquotient 1 (pexpt p (- n))))
;; When p is a coefficient, we can the simpler cexpt (which expects n >= 0,
;; guaranteed by the previous clause)
((pcoefp p) (cexpt p n))
;; If the main variable of P is an algebraic integer, calculate the power by
;; repeated squaring (which will correctly take the remainder wrt the
;; minimal polynomial for the variable)
((alg p) (pexptsq p n))
;; If p is a monomial in the main variable, we're doing something like
;; (x^2(y+1))^n, which is x^2n (y+1)^n, exponentiate the coefficient by
;; recursion and just multiply the exponent. The call to PCOEFADD is just to
;; ensure that we get zero if the coefficient raises to the power
;; zero. (Possible when the coefficient is an algebraic integer)
((null (p-red p))
(psimp (p-var p)
(pcoefadd (* n (p-le p)) (pexpt (p-lc p) n) nil)))
;; In the general case, expand using the binomial theorem. Write the
;; calculation as
;;
;; (b + rest)^n = sum (binomial (n,k) * rest^k * b^(n-k), k, 0, n)
;;
;; We pre-compute a list of descending powers of B and use the formula
;;
;; binomial(n,k)/binomial(n,k-1) = (n+1-k) / k
;;
;; to keep track of the binomial coefficient.
(t
(let ((descending-powers (p-descending-powers
(make-poly (p-var p) (p-le p) (p-lc p)) n))
(rest (psimp (p-var p) (p-red p))))
(do* ((b-list descending-powers (rest b-list))
(k 0 (1+ k))
(n-choose-k 1 (truncate (* n-choose-k (- (1+ n) k)) k))
(rest-pow 1 (case k
(1 rest)
(2 (pexpt rest 2))
(t (ptimes rest rest-pow))))
(sum (first descending-powers)
(pplus sum
(if b-list
(ptimes (pctimes (cmod n-choose-k) rest-pow)
(first b-list))
(pctimes (cmod n-choose-k) rest-pow)))))
((> k n) sum))))))
;; P-DESCENDING-POWERS
;;
;; Return a list of the powers of the polynomial P in descending order, starting
;; with P^N and ending with P.
(defun p-descending-powers (p n)
(let ((lst (list p)))
(dotimes (i (1- n)) (push (ptimes p (car lst)) lst))
lst))
;; PMINUSP
;;
;; Returns true if the coefficient of the leading monomial of the polynomial is
;; negative. Note that this depends on the variable ordering (for example,
;; consider x-y).
;;
;; (pminusp '(y 1 -1 0 (x 1 1))) => T but
;; (pminusp '(x 1 1 0 (y 1 -1))) => NIL
(defmfun pminusp (p)
(if (realp p) (minusp p)
(pminusp (p-lc p))))
;; PMINUS
;;
;; Unary negation for polynomials.
(defmfun pminus (p)
(if (pcoefp p) (cminus p)
(cons (p-var p) (ptminus (p-terms p)))))
;; PTMINUS
;;
;; Negate a list of polynomial terms.
(defun ptminus (x)
(loop for (exp coef) on x by #'cddr
nconc (list exp (pminus coef))))
;; PMOD
;;
;; Reduce a polynomial modulo the current value of MODULUS.
(defmfun pmod (p)
(if (pcoefp p) (cmod p)
(psimp (car p)
(loop for (exp coef) on (p-terms p) by #'cddr
unless (pzerop (setq coef (pmod coef)))
nconc (list exp coef)))))
;; PQUOTIENT
;;
;; Calculate x/y in the polynomial ring over the integers. Y should divide X
;; without remainder.
(defmfun pquotient (x y)
(cond ((pcoefp x)
(cond ((pzerop x) (pzero))
((pcoefp y) (cquotient x y))
((alg y) (paquo x y))
(t (rat-error "Quotient by a polynomial of higher degree"))))
((pcoefp y)
(cond ((pzerop y) (rat-error "Quotient by zero"))
(modulus (pctimes (crecip y) x))
(t (pcquotient x y))))
;; If (alg y) is true, then y is a polynomial in some variable that
;; itself has a minimum polynomial. Moreover, the $algebraic flag must
;; be true. We first try to compute an exact quotient ignoring that
;; minimal polynomial, by binding $algebraic to nil. If that fails, we
;; try to invert y and then multiply the results together.
((alg y) (or (let ($algebraic)
(ignore-rat-err (pquotient x y)))
(patimes x (rainv y))))
;; If the main variable of Y comes after the main variable of X, Y must
;; be free of that variable, so must divide each coefficient in X. Thus
;; we can use PCQUOTIENT.
((pointergp (p-var x) (p-var y)) (pcquotient x y))
;; Either Y contains a variable that is not in X, or they have the same
;; main variable and Y has a higher degree. There can't possibly be an
;; exact quotient.
((or (pointergp (p-var y) (p-var x)) (> (p-le y) (p-le x)))
(rat-error "Quotient by a polynomial of higher degree"))
;; If we got to here then X and Y have the same main variable and Y has
;; a degree less than or equal to that of X. We can now forget about the
;; main variable and work on the terms, with PTPTQUOTIENT.
(t
(psimp (p-var x) (ptptquotient (p-terms x) (p-terms y))))))
;; PCQUOTIENT
;;
;; Divide the polynomial P by Q. Q should be either a coefficient (so that
;; (pcoefp q) => T), or should be a polynomial in a later variable than the main
;; variable of P. Either way, Q is free of the main variable of P. The division
;; is done at each coefficient.
(defun pcquotient (p q)
(psimp (p-var p)
(loop
for (exp coef) on (p-terms p) by #'cddr
nconc (list exp (pquotient coef q)))))
;; PTPTQUOTIENT
;;
;; Exactly divide two polynomials in the same variable, represented here by the
;; list of their terms.
(defun ptptquotient (u v)
;; The algorithm is classic long division. You notice that if X/Y = Q then X =
;; QY, so lc(X) = lc(Q)lc(Y) (where lc(Q)=Q when Q is a bare coefficient). Now
;; divide again in the ring of coefficients to see that lc(X)/lc(Y) =
;; lc(Q). Of course, you also know that le(Q) = le(X) - le(Y).
;;
;; Once you know lc(Q), you can subtract Y * lc(Q)*(var^le(Q)) from X and
;; repeat. You know that you'll remove the leading term, so the algorithm will
;; always terminate. To do the subtraction, use PTPT-SUBTRACT-POWERED-PRODUCT.
(do ((q-terms nil)
(u u (ptpt-subtract-powered-product (pt-red u) (pt-red v)
(first q-terms) (second q-terms))))
((ptzerop u)
(nreverse q-terms))
;; If B didn't divide A after all, then eventually we'll end up with the
;; remainder in u, which has lower degree than that of B.
(when (< (pt-le u) (pt-le v))
(rat-error "Polynomial quotient is not exact"))
(let ((le-q (- (pt-le u) (pt-le v)))
(lc-q (pquotient (pt-lc u) (pt-lc v))))
;; We've calculated the leading exponent and coefficient of q. Push them
;; backwards onto q-terms (which holds the terms in reverse order).
(setf q-terms (cons lc-q (cons le-q q-terms))))))
;; PTPT-SUBTRACT-POWERED-PRODUCT
;;
;; U and V are the terms of two polynomials, A and B, in the same variable, x. Q
;; is free of x. This function computes the terms of A - x^k * B * Q. This
;; rather specialised function is used to update a numerator when doing
;; polynomial long division.
(defun ptpt-subtract-powered-product (u v q k)
(cond
;; A - x^k * 0 * Q = A
((null v) u)
;; 0 - x^k * B * Q = x^k * B * (- Q)
((null u) (pcetimes1 v k (pminus q)))
(t
;; hipow is the highest exponent in x^k*B*Q.
(let ((hipow (+ (pt-le v) k)))
(cond
;; If hipow is greater than the highest exponent in A, we have to
;; prepend the first coefficient, which will be Q * lc(B). We can then
;; recurse to this function to sort out the rest of the sum.
((> hipow (pt-le u))
(pcoefadd hipow
(ptimes q (pminus (pt-lc v)))
(ptpt-subtract-powered-product u (pt-red v) q k)))
;; If hipow is equal to the highest exponent in A, we can just subtract
;; the two leading coefficients and recurse to sort out the rest.
((= hipow (pt-le u))
(pcoefadd hipow
(pdifference (pt-lc u) (ptimes q (pt-lc v)))
(ptpt-subtract-powered-product (pt-red u) (pt-red v) q k)))
;; If hipow is lower than the highest exponent in A then keep the first
;; term of A and recurse.
(t
(list* (pt-le u) (pt-lc u)
(ptpt-subtract-powered-product (pt-red u) v q k))))))))
(defun algord (var)
(and $algebraic (get var 'algord)))
;; PSIMP
;;
;; Return a "simplified" polynomial whose main variable is VAR and whose terms
;; are given by X.
;;
;; If the polynomial is free of X, the result is the zero'th order coefficient:
;; either a polynomial in later variables or a number. PSIMP also deals with
;; reordering variables when $ALGEBRAIC is true, behaviour which is triggered by
;; the ALGORD property on the main variable.
(defun psimp (var x)
(cond ((ptzerop x) 0)
((atom x) x)
((zerop (pt-le x)) (pt-lc x))
((algord var)
;; Fix wrong alg ordering: We deal with the case that the main variable
;; of a coefficient should precede VAR.
(do ((p x (cddr p)) (sum 0))
((null p)
(if (pzerop sum)
(cons var x)
(pplus sum (p-delete-zeros var x))))
;; We only need to worry about the wrong ordering if a coefficient is
;; a polynomial in another variable, and that variable should precede
;; VAR.
(unless (or (pcoefp (pt-lc p))
(pointergp var (p-var (pt-lc p))))
(setq sum (pplus sum
(if (zerop (pt-le p)) (pt-lc p)
(ptimes (make-poly var (pt-le p) 1)
(pt-lc p)))))
;; When we finish, we'll call PPLUS to add SUM and the remainder of
;; X, and this line zeroes out this term in X (through P) to avoid
;; double counting. The term will be deleted by the call to
;; P-DELETE-ZEROS later.
(setf (pt-lc p) 0))))
(t
(cons var x))))
;; P-DELETE-ZEROS
;;
;; Destructively operate on X, deleting any terms that have a zero coefficient.
(defun p-delete-zeros (var x)
;; The idea is that P always points one before the term in which we're
;; interested. When that term has zero coefficient, it is trimmed from P by
;; replacing the cdr. Consing NIL to the front of X allows us to throw away
;; the first term if necessary.
(do ((p (setq x (cons nil x))))
((null (cdr p))
;; Switch off $algebraic so that we can recurse to PSIMP without any fear
;; of an infinite recursion - PSIMP only calls this function when (ALGORD
;; VAR) is true, and that only happens when $algebraic is true.
(let (($algebraic)) (psimp var (cdr x))))
(if (pzerop (pt-lc (cdr p)))
(setf (cdr p) (pt-red (cdr p)))
(setq p (cddr p)))))
;; PTTERM
;;
;; Given X representing the terms of a polynomial in a variable z, return the
;; coefficient of z^n.
(defun ptterm (x n)
(do ((x x (pt-red x)))
((ptzerop x) (pzero))
(cond ((< (pt-le x) n) (return (pzero)))
((= (pt-le x) n) (return (pt-lc x))))))
(defmfun ptimes (x y)
(cond ((pcoefp x) (if (pzerop x) (pzero) (pctimes x y)))
((pcoefp y) (if (pzerop y) (pzero) (pctimes y x)))
((eq (p-var x) (p-var y))
(palgsimp (p-var x) (ptimes1 (p-terms x) (p-terms y)) (alg x)))
((pointergp (p-var x) (p-var y))
(psimp (p-var x) (pctimes1 y (p-terms x))))
(t (psimp (p-var y) (pctimes1 x (p-terms y))))))
(defun ptimes1 (x y-orig &aux uuu )
(do ((vvv (setq uuu (pcetimes1 y-orig (pt-le x) (pt-lc x))))
(x (pt-red x) (pt-red x)))
((ptzerop x) uuu)
(let ((y y-orig) (xe (pt-le x)) (xc (pt-lc x)))
(prog (e u c)
a1 (cond ((null y) (return nil)))
(setq e (+ xe (car y)))
(setq c (ptimes (cadr y) xc))
(cond ((pzerop c) (setq y (cddr y)) (go a1))
((or (null vvv) (> e (car vvv)))
(setq uuu (setq vvv (ptptplus uuu (list e c))))
(setq y (cddr y)) (go a1))
((= e (car vvv))
(setq c (pplus c (cadr vvv)))
(cond ((pzerop c)
(setq uuu (setq vvv (ptptdiffer uuu (list (car vvv) (cadr vvv))))))
(t (rplaca (cdr vvv) c)))
(setq y (cddr y))
(go a1)))
a
(cond ((and (cddr vvv) (> (caddr vvv) e))
(setq vvv (cddr vvv)) (go a)))
(setq u (cdr vvv ))
b (cond ((or (null (cdr u)) (< (cadr u) e))
(rplacd u (cons e (cons c (cdr u)))) (go e)))
(cond ((pzerop (setq c (pplus (caddr u) c)))
(rplacd u (cdddr u)) (go d))
(t (rplaca (cddr u) c)))
e (setq u (cddr u))
d (setq y (cddr y))
(cond ((null y) (return nil)))
(setq e (+ xe (car y)))
(setq c (ptimes (cadr y) xc))
c (cond ((and (cdr u) (> (cadr u) e)) (setq u (cddr u)) (go c)))
(go b))))
uuu)
(defun pcetimes1 (y e c) ;C*V^E*Y
(loop for (exp coef) on y by #'cddr
unless (pzerop (setq coef (ptimes c coef)))
nconc (list (+ e exp) coef)))
(defun pctimes (c p)
(if (pcoefp p) (ctimes c p)
(psimp (p-var p) (pctimes1 c (p-terms p)))))
(defun pctimes1 (c terms)
(loop for (exp coef) on terms by #'cddr
unless (pzerop (setq coef (ptimes c coef)))
nconc (list exp coef)))
(defun leadalgcoef (p)
(cond ((pacoefp p) p)
(t (leadalgcoef (p-lc p))) ))
(defun painvmod (q)
(cond ((pcoefp q) (crecip q))
(t (paquo (list (car q) 0 1) q ))))
(defun palgsimp (var p tell) ;TELL=(N X) -> X^(1/N)
(psimp var (cond ((or (null tell) (null p)
(< (car p) (car tell))) p)
((null (cddr tell)) (pasimp1 p (car tell) (cadr tell)))
(t (pgcd1 p tell)) )))
(defun pasimp1 (p deg kernel) ;assumes deg>=(car p)
(do ((a p (pt-red a))
(b p a))
((or (null a) (< (pt-le a) deg))
(rplacd (cdr b) nil)
(ptptplus (pctimes1 kernel p) a))
(rplaca a (- (pt-le a) deg))))
(defmfun monize (p)
(cond ((pcoefp p) (if (pzerop p) p 1))
(t (cons (p-var p) (pmonicize (copy-list (p-terms p)))))))
(defun pmonicize (p) ;CLOBBERS POLY
(cond ((equal (pt-lc p) 1) p)
(t (pmon1 (painvmod (leadalgcoef (pt-lc p))) p) p)))
(defun pmon1 (mult l)
(cond (l (pmon1 mult (pt-red l))
(setf (pt-lc l) (ptimes mult (pt-lc l))))))
(defun pmonz (poly &aux lc) ;A^(N-1)*P(X/A)
(setq poly (pabs poly))
(cond ((equal (setq lc (p-lc poly)) 1) poly)
(t (do ((p (p-red poly) (pt-red p))
(p1 (make-poly (p-var poly) (p-le poly) 1))
(mult 1)
(deg (1- (p-le poly)) (pt-le p)))
((null p) p1)
(setq mult (ptimes mult (pexpt lc (- deg (pt-le p)))))
(nconc p1 (list (pt-le p) (ptimes mult (pt-lc p))))))))
;; THESE ARE ROUTINES FOR MANIPULATING ALGEBRAIC NUMBERS
(defun algnormal (p) (car (rquotient p (leadalgcoef p))))
(defun algcontent (p)
(destructuring-let* ((lcf (leadalgcoef p))
((prim . denom) (rquotient p lcf)))
(list (ratreduce lcf denom) prim)))
(defun rquotient (p q &aux algfac* a e) ;FINDS PSEUDO QUOTIENT IF PSEUDOREM=0
(cond ((equal p q) (cons 1 1))
((pcoefp q) (ratreduce p q))
((setq a (testdivide p q)) (cons a 1))
((alg q) (rattimes (cons p 1) (rainv q) t))
(t (cond ((alg (setq a (leadalgcoef q)))
(setq a (rainv a))
(setq p (ptimes p (car a)))
(setq q (ptimes q (car a)))
(setq a (cdr a)) ))
(cond ((minusp (setq e (+ 1 (- (cadr q)) (pdegree p (car q)))))
(rat-error "Quotient by a polynomial of higher degree")))
(setq a (pexpt a e))
(ratreduce (or (testdivide (ptimes a p) q)
(prog2 (setq a (pexpt (p-lc q) e))
(pquotient (ptimes a p) q)))
a)) ))
(defun patimes (x r) (pquotientchk (ptimes x (car r)) (cdr r)))
(defun paquo (x y) (patimes x (rainv y)))
(defun mpget (var)
(cond ((null (setq var (alg var))) nil)
((cddr var) var)
(t (list (car var) 1 0 (pminus (cadr var))))))
(defun rainv (q)
(cond ((pcoefp q)
(cond (modulus (cons (crecip q) 1))
(t (cons 1 q))))
(t (let ((var (car q)) (p (mpget q)))
(declare (special var)) ;who uses this? --gsb
(cond ((null p) (cons 1 q))
(t (setq p (car (let ($ratalgdenom)
(bprog q (cons var p)))))
(rattimes (cons (car p) 1) (rainv (cdr p)) t)))))))
(defun pexptsq (p n)
(do ((n (ash n -1) (ash n -1))
(s (if (oddp n) p 1)))
((zerop n) s)
(setq p (ptimes p p))
(and (oddp n) (setq s (ptimes s p))) ))
;; THIS IS THE END OF THE NEW RATIONAL FUNCTION PACKAGE PART 1.
|