/usr/share/maxima/5.32.1/src/rat3b.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module rat3b)
;; THIS IS THE NEW RATIONAL FUNCTION PACKAGE PART 2.
;; IT INCLUDES RATIONAL FUNCTIONS ONLY.
(declare-top (special $algebraic $ratfac $keepfloat $float))
(defmvar $ratwtlvl nil)
(defmvar $ratalgdenom t) ;If T then denominator is rationalized.
(defun ralgp (r) (or (palgp (car r)) (palgp (cdr r))))
(defun palgp (poly)
(cond ((pcoefp poly) nil)
((alg poly) t)
(t (do ((p (cdr poly) (cddr p)))
((null p))
(and (palgp (cadr p)) (return t))))))
(defun ratdx (e *x*)
(declare (special *x*))
(prog (varlist flag v* genvar *a a trunclist)
(declare (special v* *a flag trunclist))
(and (member 'trunc (car e) :test #'eq) (setq trunclist (cadddr (cdar e))))
(cond ((not (eq (caar e) (quote mrat))) (setq e (ratf e))))
(setq varlist (caddar e))
(setq genvar (car (cdddar e)))
;; Next cond could be flushed if genvar would shrink with varlist
(cond ((> (length genvar) (length varlist))
;; Presumably this produces a copy of GENVAR which has the
;; same length as VARLIST. Why not rplacd?
(setq genvar (mapcar #'(lambda (a b) (declare (ignore a)) b)
varlist genvar))))
(setq *x* (fullratsimp *x*))
(newvar *x*)
(setq a (mapcan #'(lambda (z)
(prog (ff)
(newvar
(setq ff (fullratsimp (sdiff z *x*))))
(orderpointer varlist)
(return (list z ff)))) varlist))
(setq *a (cons nil a))
(mapc #'(lambda(z b)
(cond ((null (old-get *a z))(putprop b (rzero) 'diff))
((and(putprop b(cdr (ratf (old-get *a z))) 'diff)
(alike1 z *x*))
(setq v* b))
(t (setq flag t)))) varlist genvar)
;;; causing lisp error - [ 2010843 ] diff of Taylor poly
;;(cond ((and (signp n (cdr (old-get trunclist v*)))
;; (car (old-get trunclist v*))) (return 0)))
(and trunclist
(return (cons (list 'mrat 'simp varlist genvar trunclist 'trunc)
(cond (flag (psdp (cdr e)))
(t (psderivative (cdr e) v*))))))
(return (cons (list 'mrat 'simp varlist genvar)
(cond (flag (ratdx1 (cadr e) (cddr e)))
(t (ratderivative (cdr e) v*)))))))
(defun ratdx1 (u v)
(ratquotient (ratdif (rattimes (cons v 1) (ratdp u) t)
(rattimes (cons u 1) (ratdp v) t))
(cons (pexpt v 2) 1)))
(defun ratdp (p)
(cond ((pcoefp p) (rzero))
((rzerop (get (car p) 'diff))
(ratdp1 (cons (list (car p) 'foo 1) 1) (cdr p)))
(t (ratdp2 (cons (list (car p) 'foo 1) 1)
(get (car p) 'diff)
(cdr p)))))
(defun ratdp1 (x v)
(cond ((null v) (rzero))
((equal (car v) 0) (ratdp (cadr v)))
(t (ratplus (rattimes (subst (car v) 'foo x) (ratdp (cadr v)) t)
(ratdp1 x (cddr v))))))
(defun ratdp2 (x dx v)
(cond ((null v) (rzero))
((equal (car v) 0) (ratdp (cadr v)))
((equal (car v) 1)
(ratplus (ratdp2 x dx (cddr v))
(ratplus (rattimes dx (cons (cadr v) 1) t)
(rattimes (subst 1 'foo x)
(ratdp (cadr v)) t))))
(t (ratplus (ratdp2 x dx (cddr v))
(ratplus (rattimes dx
(rattimes (subst (1- (car v))
'foo
x)
(cons (ptimes (car v)
(cadr v))
1)
t)
t)
(rattimes (ratdp (cadr v))
(subst (car v) (quote foo) x)
t))))))
(defmfun ratderivative (rat var)
(let ((num (car rat))
(denom (cdr rat)))
(cond ((equal 1 denom) (cons (pderivative num var) 1))
(t (setq denom (pgcdcofacts denom (pderivative denom var)))
(setq num (ratreduce (pdifference (ptimes (cadr denom)
(pderivative num var))
(ptimes num (caddr denom)))
;RATREDUCE ONLY NEEDS TO BE DONE WITH CONTENT OF GCD WRT VAR.
(car denom)))
(cond ((pzerop (car num)) num)
(t (rplacd num (ptimes (cdr num)
(pexpt (cadr denom) 2)))))))))
(defmfun ratdif (x y)
(ratplus x (ratminus y)))
(defmfun ratfact (x fn)
(cond ((and $keepfloat (or (pfloatp (car x)) (pfloatp (cdr x)))
(setq fn 'floatfact) nil))
((not (equal (cdr x) 1))
(nconc (funcall fn (car x)) (fixmult (funcall fn (cdr x)) -1)))
(t (funcall fn (car x)))))
(defun floatfact (p)
(destructuring-let (((cont primp) (ptermcont p)))
(setq cont (monom->facl cont))
(cond ((equal primp 1) cont)
(t (append cont (list primp 1))))))
(defun ratinvert (y)
(ratalgdenom
(cond ((pzerop (car y)) (rat-error "`quotient' by `zero'"))
((and modulus (pcoefp (car y)))
(cons (pctimes (crecip (car y)) (cdr y)) 1))
((and $keepfloat (floatp (car y)))
(cons (pctimes (/ (car y)) (cdr y)) 1))
((pminusp (car y)) (cons (pminus (cdr y)) (pminus (car y))))
(t (cons (cdr y) (car y))))))
(defmfun ratminus (x)
(cons (pminus (car x)) (cdr x)))
(defun ratalgdenom (x)
(cond ((not $ratalgdenom) x)
((pcoefp (cdr x)) x)
((and (alg (cdr x))
(ignore-rat-err
(rattimes (cons (car x) 1)
(rainv (cdr x)) t))))
(t x)))
(defmfun ratreduce (x y &aux b)
(cond ((pzerop y) (rat-error "`quotient' by `zero'"))
((pzerop x) (rzero))
((equal y 1) (cons x 1))
((and $keepfloat (pcoefp y) (or $float (floatp y) (pfloatp x)))
(cons (pctimes (quotient 1.0 y) x) 1))
(t (setq b (pgcdcofacts x y))
(setq b (ratalgdenom (rplacd (cdr b) (caddr b))))
(cond ((and modulus (pcoefp (cdr b)))
(cons (pctimes (crecip (cdr b)) (car b)) 1))
((pminusp (cdr b))
(cons (pminus (car b)) (pminus (cdr b))))
(t b)))))
(defun ptimes* (p q)
(cond ($ratwtlvl (wtptimes p q 0))
(t (ptimes p q))))
(defmfun rattimes (x y gcdsw)
(cond ($ratfac (facrtimes x y gcdsw))
((and $algebraic gcdsw (ralgp x) (ralgp y))
(let ((w (rattimes x y nil)))
(ratreduce (car w) (cdr w))))
((equal 1 (cdr x))
(cond ((equal 1 (cdr y)) (cons (ptimes* (car x) (car y)) 1))
(t (cond (gcdsw (rattimes (ratreduce (car x) (cdr y))
(cons (car y) 1) nil))
(t (cons (ptimes* (car x) (car y)) (cdr y)))))))
((equal 1 (cdr y)) (rattimes y x gcdsw))
(t (cond (gcdsw (rattimes (ratreduce (car x) (cdr y))
(ratreduce (car y) (cdr x)) nil))
(t (cons (ptimes* (car x) (car y))
(ptimes* (cdr x) (cdr y))))))))
(defmfun ratexpt (x n)
(cond ((equal n 0) '(1 . 1))
((equal n 1) x)
((minusp n) (ratinvert (ratexpt x (- n))))
($ratwtlvl (ratreduce (wtpexpt (car x) n) (wtpexpt (cdr x) n)))
($algebraic (ratreduce (pexpt (car x) n) (pexpt (cdr x) n)))
(t (cons (pexpt (car x) n) (pexpt (cdr x) n)))))
(defmfun ratplus (x y &aux q n)
(cond ($ratfac (facrplus x y))
($ratwtlvl
(ratreduce
(pplus (wtptimes (car x) (cdr y) 0)
(wtptimes (car y) (cdr x) 0))
(wtptimes (cdr x) (cdr y) 0)))
((and $algebraic (ralgp x) (ralgp y))
(ratreduce
(pplus (ptimeschk (car x) (cdr y))
(ptimeschk (car y) (cdr x)))
(ptimeschk (cdr x) (cdr y))))
((equal 1 (cdr x))
(cond ((equal 0 (car x)) y)
((equal 1 (cdr y)) (cons (pplus (car x) (car y)) 1))
(t (cons (pplus (ptimes (car x) (cdr y)) (car y)) (cdr y)))))
((equal 1 (cdr y))
(cond ((equal 0 (car y)) x)
(t (cons (pplus (ptimes (car y) (cdr x)) (car x)) (cdr x)))))
(t (setq q (pgcdcofacts (cdr x) (cdr y)))
(setq n (pplus (ptimes (car x)(caddr q))
(ptimes (car y)(cadr q))))
(if (cadddr q) ; denom factor from algebraic gcd
(setq n (ptimes n (cadddr q))))
(ratreduce n
(ptimes (car q)
(ptimes (cadr q) (caddr q)))))))
(defmfun ratquotient (x y)
(rattimes x (ratinvert y) t))
;; THIS IS THE END OF THE NEW RATIONAL FUNCTION PACKAGE PART 2.
;; IT INCLUDES RATIONAL FUNCTIONS ONLY.
|