/usr/share/maxima/5.32.1/src/rat3c.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1981 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module rat3c)
;; THIS IS THE NEW RATIONAL FUNCTION PACKAGE PART 3.
;; IT INCLUDES THE GCD ROUTINES AND THEIR SUPPORTING FUNCTIONS
(declare-top (special $float $keepfloat $algebraic $ratfac genvar))
;; List of GCD algorithms. Default one is first.
(defmvar *gcdl* '($spmod $subres $ez $red $mod $algebraic))
(defmvar $gcd (car *gcdl*)) ;Sparse Modular
(defun cgcd (a b)
(cond (modulus 1)
((and $keepfloat (or (floatp a) (floatp b))) 1)
(t (gcd a b))))
(defmfun pquotientchk (a b)
(if (equal b 1) a (pquotient a b)))
;; divides polynomial x by polynomial y
;; avoids error "quotient by polynomial of higher degree"
;; (returns nil in this case)
(defun pquotientchk-safe (x y)
(ignore-rat-err (pquotientchk x y)))
(defun ptimeschk (a b)
(cond ((equal a 1) b)
((equal b 1) a)
(t (ptimes a b))))
(defun pfloatp (x)
(catch 'float (if (pcoefp x) (floatp x) (pfloatp1 x))))
(defun pfloatp1 (x)
(mapc #'(lambda (q) (cond ((pcoefp q) (when (floatp q) (throw 'float t)))
((pfloatp1 q))))
(cdr x))
nil)
(defmfun pgcd (x y)
(setq x (car (pgcda x y nil)))
(cond ((pminusp x) (pminus x))
(modulus (monize x))
(t x)))
(defmfun plcm (x y)
(setq x (pgcdcofacts x y))
(ptimes (car x) (ptimes (cadr x) (caddr x))))
(defun plcmcofacts (x y)
(setq x (pgcdcofacts x y))
(list (ptimes (car x) (ptimes (cadr x) (caddr x)))
(caddr x) (cadr x)))
; returns list (gcd xx yy alg)
; where x * y = gcd^2 * xx * yy / alg^2
; and alg is non-nil only when $algebraic is true
(defun pgcdcofacts (x y)
(let ((a (pgcda x y t)))
(cond ((cdr a) a)
((equal (setq a (car a)) 1) (list 1 x y))
((and $algebraic (not (pcoefp a)))
(cons a (prog2 (setq x (rquotient x a)
y (rquotient y a)
a (pgcdcofacts (cdr x) (cdr y)))
(list (ptimes (car x) (caddr a))
(ptimes (car y) (cadr a))
(ptimes (cadr a) (cdr y))))))
((eq a x) (list x 1 (pquotient y x)))
((eq a y) (list a (pquotient x y) 1))
(t (list a (pquotient x a) (pquotient y a))))))
(defun pgcda (x y cofac? &aux a c)
(cond ((not $gcd) (list 1 x y))
((and $keepfloat (or (pfloatp x) (pfloatp y)))
(cond ((or (pcoefp x) (pcoefp y)
(pcoefp (setq a (car (ptermcont x))))
(pcoefp (setq a (pgcd a (car (ptermcont y))))))
(list 1 x y))
(t (list a))))
((pcoefp x)
(cond ((pcoefp y)
(cons (setq a (cgcd x y))
(and cofac?
(list (cquotient x a) ;(CQUOTIENT 0 0) = 0
(cquotient y a)))))
((zerop x) (list y x 1))
(t (list (pcontent1 (cdr y) x)))))
((pcoefp y) (cond ((zerop y) (list x 1 y))
(t (list (pcontent1 (cdr x) y)))))
((equal x y) (list x 1 1))
($ratfac (fpgcdco x y))
((not (eq (p-var x) (p-var y)))
(list (if (pointergp (p-var x) (p-var y))
(oldcontent1 (p-terms x) y)
(oldcontent1 (p-terms y) x))))
((progn (desetq (a x) (ptermcont x))
(desetq (c y) (ptermcont y))
(not (and (equal a 1) (equal c 1))))
(mapcar #'ptimes (monomgcdco a c cofac?) (pgcda x y cofac?)))
((and (not $algebraic) (not modulus)
(desetq (a . c) (lin-var-find (nreverse (pdegreevector x))
(nreverse (pdegreevector y))
(reverse genvar))))
(cond ((= a 1) (linhack x y (car c) (cadr c) cofac?))
(t (setq a (linhack y x a (cadr c) cofac?))
(if (cdr a) (rplacd a (nreverse (cdr a))))
a)))
((eq $gcd '$spmod) (list (zgcd x y)))
((eq $gcd '$subres) (list (oldgcd x y)))
((eq $gcd '$algebraic)
(if (or (palgp x) (palgp y))
(let (($gcd '$subres)) (list (oldgcd x y)))
(let (($gcd '$spmod)) (list (zgcd x y)))))
((eq $gcd '$ez) (ezgcd2 x y))
((eq $gcd '$red) (list (oldgcd x y)))
((eq $gcd '$mod) (newgcd x y modulus))
((not (member $gcd *gcdl* :test #'eq))
(merror (intl:gettext "gcd: 'gcd' variable must be one of ~M; found: ~M") *gcdl* $gcd))
(t (list 1 x y))))
(defun monomgcdco (p q cofac?)
(let ((gcd (monomgcd p q)))
(cons gcd (if cofac? (list (pquotient p gcd) (pquotient q gcd)) ()))))
(defun monomgcd (p q)
(cond ((or (pcoefp p) (pcoefp q)) 1)
((eq (p-var p) (p-var q))
(make-poly (p-var p) (min (p-le p) (p-le q))
(monomgcd (p-lc p) (p-lc q))))
((pointergp (car p) (car q)) (monomgcd (p-lc p) q))
(t (monomgcd p (p-lc q)))))
(defun linhack (pol1 pol2 nonlindeg var cofac?)
(prog (coeff11 coeff12 gcdab rpol1 rpol2 gcdcd gcdcoef)
(desetq (coeff11 . coeff12) (bothprodcoef (make-poly var) pol1))
(setq gcdab (if (pzerop coeff12) coeff11
(pgcd coeff11 coeff12)))
(cond ((equal gcdab 1)
(cond ((setq coeff11 (testdivide pol2 pol1))
(return (list pol1 1 coeff11)))
(t (return (list 1 pol1 pol2))))))
(setq rpol1 (pquotient pol1 gcdab))
(desetq (gcdcd rpol2) (linhackcontent var pol2 nonlindeg))
(cond ((equal gcdcd 1)
(cond ((setq coeff12 (testdivide rpol2 rpol1))
(return (list rpol1 gcdab coeff12)))
(t (return (list 1 pol1 pol2))))))
(cond (cofac? (desetq (gcdcoef coeff11 coeff12)
(pgcdcofacts gcdab gcdcd))
(cond ((setq gcdcd (testdivide rpol2 rpol1))
(return (list (ptimes gcdcoef rpol1)
coeff11
(ptimes coeff12 gcdcd))))
(t (return (list gcdcoef
(ptimes coeff11 rpol1)
(ptimes coeff12 rpol2))))))
(t (setq gcdcoef (pgcd gcdcd gcdab))
(cond ((testdivide rpol2 rpol1)
(return (list (ptimes gcdcoef rpol1))))
(t (return (list gcdcoef))))))))
(defun lin-var-find (a b c)
(do ((varl c (cdr varl))
(degl1 a (cdr degl1))
(degl2 b (cdr degl2)))
((or (null degl1) (null degl2)) nil)
(if (equal (min (car degl1) (car degl2)) 1)
(return (list (car degl1) (car degl2) (car varl))))))
(defun linhackcontent (var pol nonlindeg &aux (npol pol) coef gcd)
(do ((i nonlindeg (1- i)))
((= i 0) (list (setq gcd (pgcd gcd npol)) (pquotient pol gcd)))
(desetq (coef . npol) (bothprodcoef (make-poly var i 1) npol))
(unless (pzerop coef)
(setq gcd (if (null gcd) coef (pgcd coef gcd)))
(if (equal gcd 1) (return (list 1 pol))))))
;;*** THIS IS THE REDUCED POLYNOMIAL REMAINDER SEQUENCE GCD (COLLINS')
(defun oldgcd (x y &aux u v s egcd) ;only called from pgcda
(desetq (x u) (oldcontent x))
(desetq (y v) (oldcontent y))
(setq egcd (gcd (pgcdexpon u) (pgcdexpon v)))
(if (> egcd 1)
(setq u (pexpon*// u egcd nil)
v (pexpon*// v egcd nil)))
(if (> (p-le v) (p-le u)) (exch u v))
(setq s (case $gcd
($red (redgcd u v))
($subres (subresgcd u v))
(t (merror "OLDGCD: found gcd = ~M; how did that happen?" $gcd))))
;; Check for gcd that simplifies to 0. SourceForge bugs 831445 and 1313987
(unless (ignore-rat-err (rainv s))
(setq s 1))
(unless (equal s 1)
(setq s (pexpon*// (primpart
(if $algebraic s
(pquotient s (pquotient (p-lc s)
(pgcd (p-lc u) (p-lc v))))))
egcd t)))
(setq s (ptimeschk s (pgcd x y)))
(and $algebraic (not (pcoefp (setq u (leadalgcoef s))))
(not (equal u s)) (setq s (algnormal s)))
(cond (modulus (monize s))
((pminusp s) (pminus s))
(t s)))
(defun pgcdexpon (p)
(if (pcoefp p) 0
(do ((d (cadr p) (gcd d (car l)))
(l (cdddr p) (cddr l)))
((or (null l) (= d 1)) d))))
(defun pexpon*// (p n *?)
(if (or (pcoefp p) (= n 1)) p
(do ((ans (list (car p))
(cons (cadr l)
(cons (if *? (* (car l) n)
(truncate (car l) n))
ans)))
(l (cdr p) (cddr l)))
((null l) (nreverse ans)))))
;;polynomial gcd using reduced prs
(defun redgcd (p q &aux (d 0))
(loop until (zerop (pdegree q (p-var p)))
do (psetq p q
q (pquotientchk-safe (prem p q) (pexpt (p-lc p) d))
d (+ (p-le p) 1 (- (p-le q))))
(if (< d 1) (return 1))
finally (return (if (pzerop q) p 1))))
;;computes gcd's using subresultant prs
;;ACM Transactions On Mathematical Software Sept. 1978
(defun subresgcd (p q)
(loop for g = 1 then (p-lc p)
for h = 1 then (pquotientchk-safe (pexpt g d) h^1-d)
for d = (- (p-le p) (p-le q))
for h^1-d = 1 then (if (< d 1)
(return 1)
(pexpt h (1- d)))
do (psetq p q
q (pquotientchk-safe (prem p q) (ptimes g (ptimes h h^1-d))))
if (zerop (pdegree q (p-var p))) return (if (pzerop q) p 1)))
;;*** THIS COMPUTES PSEUDO REMAINDERS
(defun psquorem1 (u v quop)
(prog (k (m 0) lcu lcv quo lc)
(declare (special lcu lcv))
(setq lcv (pt-lc v))
(setq k (- (pt-le u) (pt-le v)))
(cond ((minusp k) (return (list 1 '(0 0) u))))
(if quop (setq lc (pexpt (pt-lc v) (1+ k))))
a (setq lcu (pminus (pt-lc u)))
(if quop (setq quo (cons (ptimes (pt-lc u) (pexpt (pt-lc v) k))
(cons k quo))))
(cond ((null (setq u (pgcd2 (pt-red u) (pt-red v) k)))
(return (list lc (nreverse quo) '(0 0))))
((minusp (setq m (- (pt-le u) (pt-le v))))
(setq u (cond ((zerop k) u)
(t (pctimes1 (pexpt lcv k) u))))
(return (list lc (nreverse quo) u)))
((> (1- k) m)
(setq u (pctimes1 (pexpt lcv (- (1- k) m)) u))))
(setq k m)
(go a)))
(defun prem (p q)
(cond ((pcoefp p)
(if (pcoefp q)
(if (or modulus (floatp p) (floatp q))
0
(rem p q))
p))
((pcoefp q) (pzero))
(t (psimp (p-var p) (pgcd1 (p-terms p) (p-terms q))))))
(defmfun pgcd1 (u v) (caddr (psquorem1 u v nil)))
(defun pgcd2 (u v k &aux (i 0))
(declare (special lcu lcv) (fixnum k i))
(cond ((null u) (pcetimes1 v k lcu))
((null v) (pctimes1 lcv u))
((zerop (setq i (+ (pt-le u) (- k) (- (car v)))))
(pcoefadd (pt-le u) (pplus (ptimes lcv (pt-lc u))
(ptimes lcu (pt-lc v)))
(pgcd2 (pt-red u) (pt-red v) k)))
((minusp i)
(list* (+ (pt-le v) k) (ptimes lcu (pt-lc v)) (pgcd2 u (pt-red v) k)))
(t (list* (pt-le u) (ptimes lcv (pt-lc u)) (pgcd2 (pt-red u) v k)))))
;;;*** OLDCONTENT REMOVES ALL BUT MAIN VARIABLE AND PUTS THAT IN CONTENT
;;;*** OLDCONTENT OF 3*A*X IS 3*A (WITH MAINVAR=X)
(defun rcontent (p) ;RETURNS RAT-FORMS
(let ((q (oldcontenta p)))
(list (cons q 1) (cond ($algebraic (rquotient p q))
(t (cons (pquotient p q) 1))))))
(defun oldcontenta (x)
(cond ((pcoefp x) x)
(t (setq x (contsort (cdr x)))
(oldcontent2 (cdr x) (car x)))))
(defmfun oldcontent (x)
(cond ((pcoefp x) (list x 1))
((null (p-red x))
(list (p-lc x) (make-poly (p-var x) (p-le x) 1)))
(t (let ((u (contsort (cdr x))) v)
(setq u (oldcontent2 (cdr u) (car u))
v (cond ($algebraic (car (rquotient x u)))
(t (pcquotient x u))))
(cond ((pminusp v) (list (pminus u) (pminus v)))
(t (list u v)))))))
(defun oldcontent1 (x gcd)
(cond ((equal gcd 1) 1)
((null x) gcd)
(t (oldcontent2 (contsort x) gcd))))
(defun oldcontent2 (x gcd)
(do ((x x (cdr x))
(gcd gcd (pgcd (car x) gcd)))
((or (null x) (equal gcd 1)) gcd)))
(defun contsort (x)
(setq x (coefl x))
(cond ((member 1 x) '(1))
((null (cdr x)) x)
(t (sort x #'contodr))))
(defun coefl (x)
(do ((x x (cddr x))
(ans nil (cons (cadr x) ans)))
((null x) ans)))
(defun contodr (a b)
(cond ((pcoefp a) t)
((pcoefp b) nil)
((eq (car a) (car b)) (not (> (cadr a) (cadr b))))
(t (pointergp (car b)(car a)))))
;;;*** PCONTENT COMPUTES INTEGER CONTENT
;;;*** PCONTENT OF 3*A*X IS 3 IF MODULUS = NIL 1 OTHERWISE
(defun pcontent (x)
(cond ((pcoefp x) (list x 1))
(t (let ((u (pcontentz x)))
(if (equal u 1) (list 1 x)
(list u (pcquotient x u)))))))
(defun pcontent1 (x gcd)
(do ((x x (cddr x))
(gcd gcd (cgcd gcd (pcontentz (cadr x)))))
((or (null x) (equal gcd 1)) gcd)))
(defun pcontentz (p)
(cond ((pcoefp p) p)
(t (pcontent1 (p-red p) (pcontentz (p-lc p))))))
(defun ucontent (p) ;CONTENT OF UNIV. POLY
(cond ((pcoefp p) (abs p))
(t (setq p (mapcar #'abs (coefl (cdr p))))
(let ((m (apply #'min p)))
(oldcontent2 (delete m p :test #'equal) m)))))
;;*** PGCDU CORRESPONDS TO BROWN'S ALGORITHM U
;;;PGCDU IS NOT NOW IN RAT;UFACT >
(defmfun pgcdu (p q)
(do () ((pzerop q) (monize p))
(psetq p q q (pmodrem p q))))
(defun pmodrem (x y)
(cond ((null modulus)
(merror "PMODREM: null modulus; how did that happen?"))
((pacoefp y) (if (pzerop y) x 0))
((pacoefp x) x)
((eq (p-var x) (p-var y))
(psimp (car x) (pgcdu1 (p-terms x) (p-terms y) nil)))
(t (merror "PMODREM: I can't handle this; x = ~M, y = ~M" x y))))
(defun pmodquo (u v &aux quo)
(declare (special quo))
(cond ((null modulus)
(merror "PMODQUO: null modulus; how did that happen?"))
((pcoefp v) (cons (ptimes (crecip v) u) 0))
((alg v) (cons (ptimes (painvmod v) u) 0))
((pacoefp u) (cons 0 u))
((not (eq (p-var u) (p-var v)))
(merror "PMODQUO: arguments have different variables; how did that happen?"))
(t (xcons (psimp (car u) (pgcdu1 (cdr u) (cdr v) t))
(psimp (car u) quo)))))
(defun pgcdu1 (u v pquo*)
(let ((invv (painvmod (pt-lc v))) (k 0) q*)
(declare (special k quo q*) (fixnum k))
(loop until (minusp (setq k (- (pt-le u) (pt-le v))))
do (setq q* (ptimes invv (pt-lc u)))
if pquo* do (setq quo (nconc quo (list k q*)))
when (ptzerop (setq u (ptpt-subtract-powered-product
(pt-red u) (pt-red v) q* k)))
return (ptzero)
finally (return u))))
(defun rtzerl2 (n)
(cond ((zerop n) 0)
(t (do ((n n (ash n -2)))
((not (zerop (haipart n -2))) n)))))
(defmfun $jacobi (p q)
(cond ((null (and (integerp p) (integerp q)))
(list '($jacobi) p q))
((zerop q) (merror (intl:gettext "jacobi: zero denominator.")))
((minusp q) ($jacobi p (- q)))
((and (evenp (setq q (rtzerl2 q)))
(setq q (ash q -1))
(evenp p)) 0)
((equal q 1) 1)
((minusp (setq p (rem p q)))
(jacobi (rtzerl2 (+ p q)) q))
(t (jacobi (rtzerl2 p) q))))
(defun jacobi (p q)
(do ((r1 p (rtzerl2 (rem r2 r1)))
(r2 q r1)
(bit2 (haipart q -2))
(odd 0 (boole boole-xor odd (boole boole-and bit2 (setq bit2 (haipart r1 -2))))))
((zerop r1) 0)
(cond ((evenp r1)
(setq r1 (ash r1 -1))
(setq odd (boole boole-xor odd (ash (expt (haipart r2 -4) 2) -2)))))
(and (equal r1 1) (return (expt -1 (boole boole-and 1 (ash odd -1)))))))
;; it is convenient to have the *bigprimes* be actually less than
;; half the size of the most positive fixnum, so that arithmetic is easier
(defvar *bigprimes* (loop with p = (ash most-positive-fixnum -1) repeat 20 do
(setq p (next-prime (1- p) -1))
collect p))
(defmvar *alpha (car *bigprimes*))
(defun newprime (p)
(do ((pl *bigprimes* (cdr pl)))
((null pl)
(setq p (next-prime (1- p) -1))
(setq *bigprimes* (nconc *bigprimes* (list p)))
p)
(when (< (car pl) p)
(return (car pl)))))
(defun leadcoefficient (p)
(if (pcoefp p) p (leadcoefficient (caddr p))))
(defun maxcoefficient (p)
(if (pcoefp p) (abs p) (maxcoef1 (cdr p))))
(defun maxcoef1 (p)
(if (null p) 0 (max (maxcoefficient (cadr p)) (maxcoef1 (cddr p)))))
(defun maxnorm (poly)
(if (null poly) 0 (max (norm (cadr poly)) (maxnorm (cddr poly)))))
(defun norm (poly)
(cond ((null poly) 0)
((pcoefp poly) (abs poly))
(t (+ (norm (caddr poly)) (norm1 (cdddr poly)) )) ))
(defun norm1 (poly)
(if (null poly) 0 (+ (norm (cadr poly)) (norm1 (cddr poly)) )) )
(defmfun pdegree (p var)
(cond ((pcoefp p) 0)
((eq var (p-var p)) (p-le p))
((pointergp var (p-var p)) 0)
(t (do ((l (p-red p) (pt-red l))
(e (pdegree (p-lc p) var) (max e (pdegree (pt-lc l) var))))
((null l) e)))))
(defun poly-in-var (p v)
(cond ((or (pcoefp p) (pointergp v (p-var p))) (list 0 p))
((eq (p-var p) v) (p-terms p))
((loop with ans
for (exp coef) on (p-terms p) by #'cddr
do (setq ans (ptptplus ans
(everysubst2 (poly-in-var coef v)
(list (p-var p) exp 1))))
finally (return ans)))))
(defun univar (x)
(or (null x) (and (pcoefp (pt-lc x)) (univar (pt-red x)))))
;;**THE CHINESE REMAINDER ALGORITHM IS A SPECIAL CASE OF LAGRANGE INTERPOLATION
(defun lagrange3 (u uk p qk)
(set-modulus p)
(setq uk (pdifference uk (pmod u)))
(cond ((pzerop uk) (setq modulus nil) u)
(t (setq uk (pctimes (crecip (cmod qk)) uk))
(setq modulus nil)
(pplus u (pctimes qk uk)))))
(defun lagrange33 (u uk qk xk)
(declare (special xv))
(setq uk (pdifference uk (pcsubst u xk xv)))
(cond ((pzerop uk) u)
(t (pplus u (ptimes
(pctimes (crecip (pcsubst qk xk xv)) uk)
qk)))))
;;;*************************************************************
;; THIS IS THE END OF THE NEW RATIONAL FUNCTION PACKAGE PART 3.
;; IT INCLUDES THE GCD ROUTINES AND THEIR SUPPORTING FUNCTIONS
|