This file is indexed.

/usr/share/maxima/5.32.1/src/rat3c.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1981 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module rat3c)

;;	THIS IS THE NEW RATIONAL FUNCTION PACKAGE PART 3.
;;	IT INCLUDES THE GCD ROUTINES AND THEIR SUPPORTING FUNCTIONS

(declare-top (special $float $keepfloat $algebraic $ratfac genvar))

;; List of GCD algorithms.  Default one is first.
(defmvar *gcdl* '($spmod $subres $ez $red $mod $algebraic))

(defmvar $gcd (car *gcdl*))		;Sparse Modular

(defun cgcd (a b)
  (cond (modulus 1)
	((and $keepfloat (or (floatp a) (floatp b))) 1)
	(t (gcd a b))))

(defmfun pquotientchk (a b)
  (if (equal b 1) a (pquotient a b)))

;; divides polynomial x by polynomial y
;; avoids error "quotient by polynomial of higher degree"
;;  (returns nil in this case)
(defun pquotientchk-safe (x y)
  (ignore-rat-err (pquotientchk x y)))

(defun ptimeschk (a b)
  (cond ((equal a 1) b)
	((equal b 1) a)
	(t (ptimes a b))))

(defun pfloatp (x)
  (catch 'float (if (pcoefp x) (floatp x) (pfloatp1 x))))

(defun pfloatp1 (x)
  (mapc #'(lambda (q) (cond ((pcoefp q) (when (floatp q) (throw 'float t)))
			    ((pfloatp1 q))))
	(cdr x))
  nil)

(defmfun pgcd (x y)
  (setq x (car (pgcda x y nil)))
  (cond ((pminusp x) (pminus x))
	(modulus (monize x))
	(t x)))

(defmfun plcm (x y)
  (setq x (pgcdcofacts x y))
  (ptimes (car x) (ptimes (cadr x) (caddr x))))

(defun plcmcofacts (x y)
  (setq x (pgcdcofacts x y))
  (list (ptimes (car x) (ptimes (cadr x) (caddr x)))
	(caddr x) (cadr x)))

; returns list (gcd xx yy alg)
; where x * y = gcd^2 * xx * yy / alg^2
; and alg is non-nil only when $algebraic is true
(defun pgcdcofacts (x y)
  (let ((a (pgcda x y t)))
    (cond ((cdr a) a)
	  ((equal (setq a (car a)) 1) (list 1 x y))
	  ((and $algebraic (not (pcoefp a)))
	   (cons a (prog2 (setq x (rquotient x a)
				y (rquotient y a)
				a (pgcdcofacts (cdr x) (cdr y)))
		       (list (ptimes (car x) (caddr a))
			     (ptimes (car y) (cadr a))
			     (ptimes (cadr a) (cdr y))))))
	  ((eq a x) (list x 1 (pquotient y x)))
	  ((eq a y) (list a (pquotient x y) 1))
	  (t (list a (pquotient x a) (pquotient y a))))))

(defun pgcda (x y cofac? &aux a c)
  (cond ((not $gcd) (list 1 x y))
	((and $keepfloat (or (pfloatp x) (pfloatp y)))
	 (cond ((or (pcoefp x) (pcoefp y)
		    (pcoefp (setq a (car (ptermcont x))))
		    (pcoefp (setq a (pgcd a (car (ptermcont y))))))
		(list 1 x y))
	       (t (list a))))
	((pcoefp x)
	 (cond ((pcoefp y)
		(cons (setq a (cgcd x y))
		      (and cofac?
			   (list (cquotient x a) ;(CQUOTIENT 0 0) = 0
				 (cquotient y a)))))
	       ((zerop x) (list y x 1))
	       (t (list (pcontent1 (cdr y) x)))))
	((pcoefp y) (cond ((zerop y) (list x 1 y))
			  (t (list (pcontent1 (cdr x) y)))))
	((equal x y) (list x 1 1))
	($ratfac (fpgcdco x y))
	((not (eq (p-var x) (p-var y)))
	 (list (if (pointergp (p-var x) (p-var y))
		   (oldcontent1 (p-terms x) y)
		   (oldcontent1 (p-terms y) x))))
	((progn (desetq (a x) (ptermcont x))
		(desetq (c y) (ptermcont y))
		(not (and (equal a 1) (equal c 1))))
	 (mapcar #'ptimes (monomgcdco a c cofac?) (pgcda x y cofac?)))
	((and (not $algebraic) (not modulus)
	      (desetq (a . c) (lin-var-find (nreverse (pdegreevector x))
					    (nreverse (pdegreevector y))
					    (reverse genvar))))
	 (cond ((= a 1) (linhack x y (car c) (cadr c) cofac?))
	       (t (setq a (linhack y x a (cadr c) cofac?))
		  (if (cdr a) (rplacd a (nreverse (cdr a))))
		  a)))
	((eq $gcd '$spmod) (list (zgcd x y)))
	((eq $gcd '$subres) (list (oldgcd x y)))
	((eq $gcd '$algebraic)
	 (if (or (palgp x) (palgp y))
	     (let (($gcd '$subres)) (list (oldgcd x y)))
	     (let (($gcd '$spmod)) (list (zgcd x y)))))
	((eq $gcd '$ez) (ezgcd2 x y))
	((eq $gcd '$red) (list (oldgcd x y)))
	((eq $gcd '$mod) (newgcd x y modulus))
	((not (member $gcd *gcdl* :test #'eq))
	 (merror (intl:gettext "gcd: 'gcd' variable must be one of ~M; found: ~M") *gcdl* $gcd))
	(t (list 1 x y))))

(defun monomgcdco (p q cofac?)
  (let ((gcd (monomgcd p q)))
    (cons gcd (if cofac? (list (pquotient p gcd) (pquotient q gcd)) ()))))

(defun monomgcd (p q)
  (cond ((or (pcoefp p) (pcoefp q)) 1)
	((eq (p-var p) (p-var q))
	 (make-poly (p-var p) (min (p-le p) (p-le q))
		    (monomgcd (p-lc p) (p-lc q))))
	((pointergp (car p) (car q)) (monomgcd (p-lc p) q))
	(t (monomgcd p (p-lc q)))))

(defun linhack (pol1 pol2 nonlindeg var cofac?)
  (prog (coeff11 coeff12 gcdab rpol1 rpol2 gcdcd gcdcoef)
     (desetq (coeff11 . coeff12) (bothprodcoef (make-poly var) pol1))
     (setq gcdab (if (pzerop coeff12) coeff11
		     (pgcd coeff11 coeff12)))
     (cond ((equal gcdab 1)
	    (cond ((setq coeff11 (testdivide pol2 pol1))
		   (return (list pol1 1 coeff11)))
		  (t (return (list 1 pol1 pol2))))))
     (setq rpol1 (pquotient pol1 gcdab))
     (desetq (gcdcd rpol2) (linhackcontent var pol2 nonlindeg))
     (cond ((equal gcdcd 1)
	    (cond ((setq coeff12 (testdivide rpol2 rpol1))
		   (return (list rpol1 gcdab coeff12)))
		  (t (return (list 1 pol1 pol2))))))
     (cond (cofac? (desetq (gcdcoef coeff11 coeff12)
			   (pgcdcofacts gcdab gcdcd))
		   (cond ((setq gcdcd (testdivide rpol2 rpol1))
			  (return (list (ptimes gcdcoef rpol1)
					coeff11
					(ptimes coeff12 gcdcd))))
			 (t (return (list gcdcoef
					  (ptimes coeff11 rpol1)
					  (ptimes coeff12 rpol2))))))
	   (t (setq gcdcoef (pgcd gcdcd gcdab))
	      (cond ((testdivide rpol2 rpol1)
		     (return (list (ptimes gcdcoef rpol1))))
		    (t (return (list gcdcoef))))))))

(defun lin-var-find (a b c)
  (do ((varl c (cdr varl))
       (degl1 a (cdr degl1))
       (degl2 b (cdr degl2)))
      ((or (null degl1) (null degl2)) nil)
    (if (equal (min (car degl1) (car degl2)) 1)
	(return (list (car degl1) (car degl2) (car varl))))))

(defun linhackcontent (var pol nonlindeg &aux (npol pol) coef gcd)
  (do ((i nonlindeg (1- i)))
      ((= i 0) (list (setq gcd (pgcd gcd npol)) (pquotient pol gcd)))
    (desetq (coef . npol) (bothprodcoef (make-poly var i 1) npol))
    (unless (pzerop coef)
      (setq gcd (if (null gcd) coef (pgcd coef gcd)))
      (if (equal gcd 1) (return (list 1 pol))))))

;;*** THIS IS THE REDUCED POLYNOMIAL REMAINDER SEQUENCE GCD (COLLINS')

(defun oldgcd (x y &aux u v s egcd)	;only called from pgcda
  (desetq (x  u) (oldcontent x))
  (desetq (y  v) (oldcontent y))
  (setq egcd (gcd (pgcdexpon u) (pgcdexpon v)))
  (if (> egcd 1)
      (setq u (pexpon*// u egcd nil)
	    v (pexpon*// v egcd nil)))
  (if (> (p-le v) (p-le u)) (exch u v))
  (setq s (case $gcd
	    ($red (redgcd u v))
	    ($subres (subresgcd u v))
	    (t (merror "OLDGCD: found gcd = ~M; how did that happen?" $gcd))))
  ;; Check for gcd that simplifies to 0. SourceForge bugs 831445 and 1313987
  (unless (ignore-rat-err (rainv s))
    (setq s 1))
  (unless (equal s 1)
    (setq s (pexpon*// (primpart
			(if $algebraic s
			    (pquotient s (pquotient (p-lc s)
						    (pgcd (p-lc u) (p-lc v))))))
		       egcd t)))
  (setq s (ptimeschk s (pgcd x y)))
  (and $algebraic (not (pcoefp (setq u (leadalgcoef s))))
       (not (equal u s)) (setq s (algnormal s)))
  (cond (modulus (monize s))
	((pminusp s) (pminus s))
	(t s)))

(defun pgcdexpon (p)
  (if (pcoefp p) 0
      (do ((d (cadr p) (gcd d (car l)))
	   (l (cdddr p) (cddr l)))
	  ((or (null l) (= d 1)) d))))

(defun pexpon*// (p n *?)
  (if (or (pcoefp p) (= n 1)) p
      (do ((ans (list (car p))
		(cons (cadr l)
		      (cons (if *? (* (car l) n)
				(truncate (car l) n))
			    ans)))
	   (l (cdr p) (cddr l)))
	  ((null l) (nreverse ans)))))

;;polynomial gcd using reduced prs

(defun redgcd (p q &aux (d 0))
  (loop until (zerop (pdegree q (p-var p)))
	 do (psetq p q
		   q (pquotientchk-safe (prem p q) (pexpt (p-lc p) d))
		   d (+ (p-le p) 1 (- (p-le q))))
	 (if (< d 1) (return 1))
	 finally (return (if (pzerop q) p 1))))

;;computes gcd's using subresultant prs
;;ACM Transactions On Mathematical Software Sept. 1978

(defun subresgcd (p q)
  (loop for g = 1 then (p-lc p)
	 for h = 1 then (pquotientchk-safe (pexpt g d) h^1-d)
	 for d = (- (p-le p) (p-le q))
	 for h^1-d = 1 then (if (< d 1)
				(return 1)
			      (pexpt h (1- d)))
	 do (psetq p q
		   q (pquotientchk-safe (prem p q) (ptimes g (ptimes h h^1-d))))
	 if (zerop (pdegree q (p-var p))) return (if (pzerop q) p 1)))

;;*** THIS COMPUTES PSEUDO REMAINDERS

(defun psquorem1 (u v quop)
  (prog (k (m 0) lcu lcv quo lc)
     (declare (special lcu lcv))
     (setq lcv (pt-lc v))
     (setq k (- (pt-le u) (pt-le v)))
     (cond ((minusp k) (return (list 1 '(0 0) u))))
     (if quop (setq lc (pexpt (pt-lc v) (1+ k))))
     a     (setq lcu (pminus (pt-lc u)))
     (if quop (setq quo (cons (ptimes (pt-lc u) (pexpt (pt-lc v) k))
			      (cons k quo))))
     (cond ((null (setq u (pgcd2 (pt-red u) (pt-red v) k)))
	    (return (list lc (nreverse quo) '(0 0))))
	   ((minusp (setq m (- (pt-le u) (pt-le v))))
	    (setq u (cond ((zerop k) u)
			  (t (pctimes1 (pexpt lcv k) u))))
	    (return (list lc (nreverse quo) u)))
	   ((> (1- k) m)
	    (setq u (pctimes1 (pexpt lcv (- (1- k) m)) u))))
     (setq k m)
     (go a)))

(defun prem (p q)
  (cond ((pcoefp p)
         (if (pcoefp q)
             (if (or modulus (floatp p) (floatp q))
                 0
                 (rem p q))
             p))
	((pcoefp q) (pzero))
	(t (psimp (p-var p) (pgcd1 (p-terms p) (p-terms q))))))

(defmfun pgcd1 (u v) (caddr (psquorem1 u v nil)))

(defun pgcd2 (u v k &aux (i 0))
  (declare (special lcu lcv) (fixnum k i))
  (cond ((null u) (pcetimes1 v k lcu))
	((null v) (pctimes1 lcv u))
	((zerop (setq i (+ (pt-le u) (- k) (- (car v)))))
	 (pcoefadd (pt-le u) (pplus (ptimes lcv (pt-lc u))
				    (ptimes lcu (pt-lc v)))
                   (pgcd2 (pt-red u) (pt-red v) k)))
	((minusp i)
         (list* (+ (pt-le v) k) (ptimes lcu (pt-lc v)) (pgcd2 u (pt-red v) k)))
        (t (list* (pt-le u) (ptimes lcv (pt-lc u)) (pgcd2 (pt-red u) v k)))))

;;;*** OLDCONTENT REMOVES ALL BUT MAIN VARIABLE AND PUTS THAT IN CONTENT
;;;***  OLDCONTENT OF 3*A*X IS 3*A (WITH MAINVAR=X)

(defun rcontent (p)			;RETURNS RAT-FORMS
  (let ((q (oldcontenta p)))
    (list (cons q 1) (cond ($algebraic (rquotient p q))
			   (t (cons (pquotient p q) 1))))))

(defun oldcontenta (x)
  (cond ((pcoefp x) x)
	(t (setq x (contsort (cdr x)))
	   (oldcontent2 (cdr x) (car x)))))

(defmfun oldcontent (x)
  (cond ((pcoefp x) (list x 1))
	((null (p-red x))
	 (list (p-lc x) (make-poly (p-var x) (p-le x) 1)))
	(t (let ((u (contsort (cdr x))) v)
	     (setq u (oldcontent2 (cdr u) (car u))
		   v (cond ($algebraic (car (rquotient x u)))
			   (t (pcquotient x u))))
	     (cond ((pminusp v) (list (pminus u) (pminus v)))
		   (t (list u v)))))))

(defun oldcontent1 (x gcd)
  (cond ((equal gcd 1) 1)
	((null x) gcd)
	(t (oldcontent2 (contsort x) gcd))))

(defun oldcontent2 (x gcd)
  (do ((x x (cdr x))
       (gcd gcd (pgcd (car x) gcd)))
      ((or (null x) (equal gcd 1)) gcd)))

(defun contsort (x)
  (setq x (coefl x))
  (cond ((member 1 x) '(1))
	((null (cdr x)) x)
	(t (sort x #'contodr))))

(defun coefl (x)
  (do ((x x (cddr x))
       (ans nil (cons (cadr x) ans)))
      ((null x) ans)))

(defun contodr (a b)
  (cond ((pcoefp a) t)
	((pcoefp b) nil)
	((eq (car a) (car b)) (not (> (cadr a) (cadr b))))
	(t (pointergp (car b)(car a)))))

;;;*** PCONTENT COMPUTES INTEGER CONTENT
;;;*** PCONTENT OF 3*A*X IS 3 IF MODULUS = NIL  1 OTHERWISE

(defun pcontent (x)
  (cond ((pcoefp x) (list x 1))
	(t (let ((u (pcontentz x)))
	     (if (equal u 1) (list 1 x)
		 (list u (pcquotient x u)))))))

(defun pcontent1 (x gcd)
  (do ((x x (cddr x))
       (gcd gcd (cgcd gcd (pcontentz (cadr x)))))
      ((or (null x) (equal gcd 1)) gcd)))

(defun pcontentz (p)
  (cond ((pcoefp p) p)
	(t (pcontent1 (p-red p) (pcontentz (p-lc p))))))

(defun ucontent (p)			;CONTENT OF UNIV. POLY
  (cond ((pcoefp p) (abs p))
	(t (setq p (mapcar #'abs (coefl (cdr p))))
	   (let ((m (apply #'min p)))
	     (oldcontent2 (delete m p :test #'equal) m)))))

;;***	PGCDU CORRESPONDS TO BROWN'S ALGORITHM U

;;;PGCDU IS NOT NOW IN RAT;UFACT >

(defmfun pgcdu (p q)
  (do () ((pzerop q) (monize p))
    (psetq p q q (pmodrem p q))))

(defun pmodrem (x y)
  (cond ((null modulus)
	 (merror "PMODREM: null modulus; how did that happen?"))
	((pacoefp y) (if (pzerop y) x 0))
	((pacoefp x) x)
	((eq (p-var x) (p-var y))
	 (psimp (car x) (pgcdu1 (p-terms x) (p-terms y) nil)))
	(t (merror "PMODREM: I can't handle this; x = ~M, y = ~M" x y))))

(defun pmodquo (u v &aux quo)
  (declare (special quo))
  (cond ((null modulus)
	 (merror "PMODQUO: null modulus; how did that happen?"))
	((pcoefp v) (cons (ptimes (crecip v) u) 0))
	((alg v) (cons (ptimes (painvmod v) u) 0))
	((pacoefp u) (cons 0 u))
	((not (eq (p-var u) (p-var v)))
	 (merror "PMODQUO: arguments have different variables; how did that happen?"))
	(t (xcons (psimp (car u) (pgcdu1 (cdr u) (cdr v) t))
		  (psimp (car u) quo)))))


(defun pgcdu1 (u v pquo*)
  (let ((invv (painvmod (pt-lc v))) (k 0) q*)
    (declare (special k quo q*) (fixnum k))
    (loop until (minusp (setq k (- (pt-le u) (pt-le v))))
	   do (setq q* (ptimes invv (pt-lc u)))
	   if pquo* do (setq quo (nconc quo (list k q*)))
	   when (ptzerop (setq u (ptpt-subtract-powered-product
                                  (pt-red u) (pt-red v) q* k)))
	   return (ptzero)
	   finally (return u))))

(defun rtzerl2 (n)
  (cond ((zerop n) 0)
	(t (do ((n n (ash n -2)))
	       ((not (zerop (haipart n -2))) n)))))

(defmfun $jacobi (p q)
  (cond ((null (and (integerp p) (integerp q)))
	 (list '($jacobi) p q))
	((zerop q) (merror (intl:gettext "jacobi: zero denominator.")))
	((minusp q) ($jacobi p (- q)))
	((and (evenp (setq q (rtzerl2 q)))
	      (setq q (ash q -1))
	      (evenp p)) 0)
	((equal q 1) 1)
	((minusp (setq p (rem p q)))
	 (jacobi (rtzerl2 (+ p q)) q))
	(t (jacobi (rtzerl2 p) q))))

(defun jacobi (p q)
  (do ((r1 p (rtzerl2 (rem r2 r1)))
       (r2 q r1)
       (bit2 (haipart q -2))
       (odd 0 (boole boole-xor odd (boole boole-and bit2 (setq bit2 (haipart r1 -2))))))
      ((zerop r1) 0)
    (cond ((evenp r1)
	   (setq r1 (ash r1 -1))
	   (setq odd (boole boole-xor odd (ash (expt (haipart r2 -4) 2) -2)))))
    (and (equal r1 1) (return (expt -1 (boole  boole-and 1 (ash odd -1)))))))

;; it is convenient to have the *bigprimes* be actually less than
;; half the size of the most positive fixnum, so that arithmetic is easier

(defvar *bigprimes* (loop with p = (ash most-positive-fixnum -1) repeat 20 do
			 (setq p (next-prime (1- p) -1))
		       collect p))

(defmvar *alpha (car *bigprimes*))

(defun newprime (p)
  (do ((pl *bigprimes* (cdr pl)))
      ((null pl)
       (setq p (next-prime (1- p) -1))
       (setq *bigprimes* (nconc *bigprimes* (list p)))
       p)
    (when (< (car pl) p)
      (return (car pl)))))

(defun leadcoefficient (p)
  (if (pcoefp p) p (leadcoefficient (caddr p))))

(defun maxcoefficient (p)
  (if (pcoefp p) (abs p) (maxcoef1 (cdr p))))

(defun maxcoef1 (p)
  (if (null p) 0 (max (maxcoefficient (cadr p)) (maxcoef1 (cddr p)))))

(defun maxnorm (poly)
  (if (null poly) 0 (max (norm (cadr poly)) (maxnorm (cddr poly)))))

(defun norm (poly)
  (cond ((null poly) 0)
	((pcoefp poly) (abs poly))
	(t (+ (norm (caddr poly)) (norm1 (cdddr poly)) )) ))

(defun norm1 (poly)
  (if (null poly) 0 (+ (norm (cadr poly)) (norm1 (cddr poly)) )) )

(defmfun pdegree (p var)
  (cond ((pcoefp p) 0)
	((eq var (p-var p)) (p-le p))
	((pointergp var (p-var p)) 0)
	(t (do ((l (p-red p) (pt-red l))
		(e (pdegree (p-lc p) var) (max e (pdegree (pt-lc l) var))))
	       ((null l) e)))))

(defun poly-in-var (p v)
  (cond ((or (pcoefp p) (pointergp v (p-var p))) (list 0 p))
	((eq (p-var p) v) (p-terms p))
	((loop with ans
		for (exp coef) on (p-terms p) by #'cddr
		do (setq ans (ptptplus ans
                                       (everysubst2 (poly-in-var coef v)
                                                    (list (p-var p) exp 1))))
		finally (return ans)))))

(defun univar (x)
  (or (null x) (and (pcoefp (pt-lc x)) (univar (pt-red x)))))

;;**THE CHINESE REMAINDER ALGORITHM IS A SPECIAL CASE OF LAGRANGE INTERPOLATION

(defun lagrange3 (u uk p qk)
  (set-modulus p)
  (setq uk (pdifference uk (pmod u)))
  (cond ((pzerop uk) (setq modulus nil) u)
	(t (setq uk (pctimes (crecip (cmod qk)) uk))
	   (setq modulus nil)
	   (pplus u (pctimes qk uk)))))


(defun lagrange33 (u uk qk xk)
  (declare (special xv))
  (setq uk (pdifference uk (pcsubst u xk xv)))
  (cond ((pzerop uk) u)
	(t (pplus u (ptimes
		     (pctimes (crecip (pcsubst qk xk xv)) uk)
		     qk)))))


;;;*************************************************************

;;	THIS IS THE END OF THE NEW RATIONAL FUNCTION PACKAGE PART 3.
;;	IT INCLUDES THE GCD ROUTINES AND THEIR SUPPORTING FUNCTIONS