/usr/share/maxima/5.32.1/src/ratout.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module ratout)
;; THIS IS THE OUT-OF-CORE SEGMENT OF THE RATIONAL FUNCTION PACKAGE.
(declare-top (special $algebraic varlist ss *y* f $factorflag modulus
genvar *a* *alpha *var* *x* *p *max *var *res *chk *l $intfaclim
$ratfac u* $ratwtlvl *ratweights $ratweights $keepfloat))
(declare-top (special $gcd xv bigf1 bigf2 nonlindeg $linhack
$intfaclim bigf1tilde bigf2tilde
gcd $factorflag *gcdl* last-good-prime))
;; NEWGCD (X,Y) RETURNS A LIST OF THREE ITEMS,
;; (GCD, X/GCD, Y/GCD)
(defun newgcd (x y modulus)
(set-modulus modulus)
(let ((a (cond ((pcoefp x)
(cond ((zerop x) y)
((pcoefp y) (cgcd x y))
(t (pcontent1 (cdr y) x))))
((pcoefp y) (cond ((zerop y) x) (t (pcontent1 (cdr x) y))))
((pointergp (p-var x) (p-var y)) (oldcontent1 (cdr x) y))
((pointergp (p-var y) (p-var x)) (oldcontent1 (cdr y) x))
(t nil))))
(cond (a (list a (pquotient x a) (pquotient y a)))
(modulus (pgcdp x y modulus))
(t (pgcdm x y)))))
;;;*** PMODCONTENT COMPUTES CONTENT OF
;;; P IN
;; Z [X ] [X , X , ..., X ]
;; P V 1 2 V-1
;; PMODCONTENT OF 3*A*X IS A, IF MAINVAR IS X (=X )
;; V
(defun pmodcontent (p)
(prog (*var *chk *res *max gcd)
(setq *chk (car p))
(setq *max 0)
(setq *var (pnext (cdr p) nil))
(cond ((pointergp xv *chk) (go ret1))
((null *var) (return (list p 1))))
(pgath1 (cdr p))
a (setq *res 0)
(pgath3 (cdr p))
a2 (cond ((pcoefp *res) (cond ((pzerop *res) nil)(t(go ret1))))
((not (eq (car *res) *chk)) (go ret1))
((not (univar (cdr *res)))
(setq *res (car (pmodcontent *res)))
(go a2))
(gcd (setq gcd (pgcdu gcd *res)))
(t (setq gcd *res)))
(cond ((pcoefp gcd) (go ret1))
((minusp (setq *max (1- *max)))
(return (list gcd (pquotient p gcd)))))
(go a)
ret1 (return (list 1 p))))
(defun pgathercoef (p *chk *res)
(if (not (eq (car p) *chk)) 1 (pgath2 (cdr p) nil)))
(defun pgath1 (p)
(prog nil
(cond ((null p) (return *max))
((pcoefp (cadr p)) nil)
((eq (caadr p) *var) (setq *max (max *max (cadadr p)))))
(return (pgath1 (cddr p)))))
(defun pgath2 (p vmax)
(prog (v2)
(cond ((null p) (return *res))
((pcoefp (cadr p)) nil)
((vgreat (setq v2 (pdegreer (cadr p))) vmax)
(setq *res (psimp *chk
(list (car p) (leadcoefficient (cadr p)))))
(setq vmax v2))
((equal vmax v2)
(setq *res
(pplus *res
(psimp *chk
(list (car p) (leadcoefficient (cadr p))))))))
(return (pgath2 (cddr p) vmax))))
(defun pgath3 (p)
(prog (zz)
(cond ((null p) (return *res))
((pcoefp (cadr p))
(cond ((equal *max 0) (setq zz (cadr p)) (go add)) (t (go ret))))
((eq (caadr p) *var) (setq zz (ptterm (cdadr p) *max)) (go add)))
(cond ((equal *max 0) (setq zz (cadr p))) (t (go ret)))
add (cond ((equal zz 0) (go ret)))
(setq *res (pplus *res (psimp *chk (list (car p) zz))))
ret (return (pgath3 (cddr p)))))
(defun pnext (x *l)
(pnext1 x)
(cond ((null *l) nil)
(t (car (sort *l #'pointergp)))))
(defun pnext1 (x)
(prog nil
(cond ((null x) (return *l))
((or (pcoefp (cadr x)) (member (caadr x) *l :test #'eq)) nil)
(t (setq *l (cons (caadr x) *l))))
(return (pnext1 (cddr x)))))
(defun vgreat (x y)
(cond ((null x) nil)
((null y) t)
((pointergp (car x)(car y))t)
((not (eq (car x)(car y)))nil)
((> (cadr x)(cadr y)) t)
((equal (cadr x)(cadr y))(vgreat (cddr x)(cddr y)))
(t nil)))
(defun pdegreer (x)
(if (pcoefp x) () (cons (car x) (cons (cadr x) (pdegreer (caddr x))))))
;;*** PGCDP CORRESPONDS TO BROWN'S ALGORITHM P
(defun pgcdp (bigf1 bigf2 modulus)
(prog (c c1 c2 n q
h1tilde h2tilde gstar h1star
h2star xv e b
gbar nubar nu1bar nu2bar
gtilde f1tilde f2tilde biggtilde
degree f1 f1f2)
(set-modulus modulus)
(cond ((and (univar (cdr bigf1)) (univar (cdr bigf2)))
(setq q (pgcdu bigf1 bigf2))
(return (list q (pquotient bigf1 q) (pquotient bigf2 q)))))
(setq xv (car bigf1))
(setq bigf1 (pmodcontent bigf1))
(setq bigf2 (pmodcontent bigf2))
(setq c (pgcdu (setq c1 (car bigf1)) (setq c2 (car bigf2))))
(setq bigf1 (cadr bigf1))
(setq bigf2 (cadr bigf2))
(setq n 0)
(setq e (pdegreer bigf2))
(setq degree (pdegreer bigf1))
(cond ((vgreat e degree) (setq e degree)))
(setq b (ash modulus -1))
(setq gbar
(pgcdu (setq f1 (pgathercoef bigf1 xv 0))
(setq f1f2
(pgathercoef bigf2 xv 0))))
(cond ((equal 0 f1f2) (go step15a)))
(setq nubar (pdegree gbar xv))
(setq nu1bar (+ nubar (pdegree bigf1 xv)))
(setq nu2bar (+ nubar (pdegree bigf2 xv)))
(setq f1f2 (ptimes f1 f1f2))
(setq nubar (max nu1bar nu2bar))
step6(setq b (cplus b 1))
(cond ((equal (pcsubst f1f2 b xv) 0) (go step6)))
;; Step 7
(setq gtilde (pcsubst gbar b xv))
(setq f1tilde (pcsubst bigf1 b xv))
(setq f2tilde (pcsubst bigf2 b xv))
(setq biggtilde
(ptimeschk gtilde
(car (setq h2tilde (newgcd f1tilde f2tilde modulus)))))
(cond ((pcoefp biggtilde) (go step15a)))
(setq h1tilde (cadr h2tilde))
(setq h2tilde (caddr h2tilde))
(setq degree (pdegreer biggtilde))
(cond ((vgreat degree e) (go step6))
((vgreat e degree) (setq n 0) (setq e degree)))
(setq n (1+ n))
(cond ((equal n 1) (setq q (list xv 1 1 0 (cminus b)))
(setq gstar biggtilde)
(setq h1star h1tilde)
(setq h2star h2tilde))
(t (setq gstar (lagrange33 gstar biggtilde q b))
(setq h1star (lagrange33 h1star h1tilde q b))
(setq h2star (lagrange33 h2star h2tilde q b))
(setq q (ptimes q (list xv 1 1 0 (cminus b))))))
;; Step 12
(cond ((not (> n nubar)) (go step6)))
;; Step 13
(cond ((or (not (= nu1bar (+ (setq degree (pdegree gstar xv))
(pdegree h1star xv))))
(not (= nu2bar (+ degree (pdegree h2star xv)))))
(setq n 0)
(go step6)))
(setq gstar (cadr (pmodcontent gstar)))
;; Step 15
(setq q (pgathercoef gstar xv 0))
(return (monicgcd (ptimeschk c gstar)
(ptimeschk (pquotient c1 c) (pquotientchk h1star q))
(ptimeschk (pquotient c2 c) (pquotientchk h2star q))
(leadcoefficient gstar)))
step15a
(return (list c
(ptimeschk (pquotient c1 c) bigf1)
(ptimeschk (pquotient c2 c) bigf2))) ))
(defun monicgcd (gcd x y lcf)
(cond ((equal lcf 1) (list gcd x y))
(t (list (ptimes (crecip lcf) gcd)
(ptimes lcf x)
(ptimes lcf y) )) ))
;;*** PGCDM CORRESPONDS TO BROWN'S ALGORITHM M
(defun pgcdm
(bigf1 bigf2)
(prog (c c1 c2 f1 f2 n
e degree mubar p
nonlindeg gtilde h1tilde h2tilde
modulus bigf1tilde bigf2tilde
biggtilde q h1star h2star
gstar xv gbar)
(setq p *alpha)
(setq xv (car bigf1))
;; Step 1
(setq f1 (pcontent bigf1))
(setq f2 (pcontent bigf2))
(setq c (cgcd (setq c1 (car f1)) (setq c2 (car f2))))
(setq bigf1 (cadr f1))
(setq bigf2 (cadr f2))
;; Step 3
(setq f1 (leadcoefficient bigf1))
(setq f2 (leadcoefficient bigf2))
(setq gbar (cgcd f1 f2))
;; Step 4
(setq n 0)
(setq degree (pdegreer bigf1))
(setq e (pdegreer bigf2))
(cond ((vgreat e degree) (setq e degree)))
;; Step 5
(setq mubar
(* 2 gbar (max (maxcoefficient bigf1)
(maxcoefficient bigf2))))
(go step6a)
step6(setq p (newprime p))
step6a
(cond ((or (zerop (rem f1 p)) (zerop (rem f2 p)))
(go step6)))
(set-modulus p)
;; Step 7
(setq gtilde (pmod gbar))
;; Step 8
(setq biggtilde
(ptimeschk gtilde
(car (setq h2tilde
(newgcd (pmod bigf1) (pmod bigf2)
modulus)))))
(cond ((pcoefp biggtilde) (setq modulus nil)
(setq gstar 1)
(setq h1star bigf1)
(setq h2star bigf2)
(go step15)))
(cond ((null (cdr h2tilde))
(setq h1tilde (pquotient (pmod bigf1) (car h2tilde)))
(setq h2tilde (pquotient (pmod bigf2) (car h2tilde))))
(t (setq h1tilde (cadr h2tilde))
(setq h2tilde (caddr h2tilde))))
(setq degree (pdegreer biggtilde))
(cond ((vgreat degree e) (go step6))
((vgreat e degree) (setq n 0) (setq e degree)))
(setq n (1+ n))
;; Step 11
(set-modulus nil)
(cond ((equal n 1) (setq q p)
(setq gstar biggtilde)
(setq h1star h1tilde)
(setq h2star h2tilde))
(t (setq gstar (lagrange3 gstar biggtilde p q))
(setq h1star (lagrange3 h1star h1tilde p q))
(setq h2star (lagrange3 h2star h2tilde p q))
(setq q (* p q))))
;; Step 12
(cond ((> mubar q) (go step6)))
(cond ((> (* 2 (max (* (setq gtilde (norm gstar)) (maxcoefficient h1star))
(* gtilde (maxcoefficient h2star))))
q)
(go step6)))
(set-modulus nil)
(setq gstar (cadr (pcontent gstar)))
step15
(setq last-good-prime p)
(setq q (leadcoefficient gstar))
(return (list (ptimeschk c gstar)
(ptimeschk (cquotient c1 c) (pquotientchk h1star q))
(ptimeschk (cquotient c2 c) (pquotientchk h2star q))))))
;; THE FUNCTIONS ON THIS PAGE ARE USED BY KRONECKER FACTORING
(defun pkroneck (p)
(prog (maxexp i l *p factors factor)
(setq maxexp (quotient (cadr p) 2))
(setq i 1)
a (when (> i maxexp) (return (cons p factors)))
(setq l (p1 (reverse (let ((p p) (i i) ($factorflag t))
(pfactor2 p i)))))
b (when (null l) (go d))
(setq *l (car l))
(setq *p (car p))
(ignore-rat-err
(setq factor (errset (pinterpolate *l *p) nil)))
(setq l (cdr l))
(if (atom factor)
(go b)
(setq factor (car factor)))
(when (or (pcoefp factor)
(not (equal (car p) (car factor)))
(not (pzerop (prem p factor))))
(go b))
(cond (modulus (pmonicize (cdr factor)))
((pminusp factor) (setq factor (pminus factor))))
(setq p (pquotient p factor))
(setq maxexp (quotient (cadr p) 2))
(setq factors (cons factor factors))
(when (or (equal p 1) (equal p -1)) (return factors))
(go a)
d (incf i)
(go a)))
(defun pfactor2 (p i)
(cond ((< i 0) nil)
(t (cons (pfactor (pcsubst p i (car p)))
(pfactor2 p (1- i))))))
(defun rpowerset (x n)
(cond ((null x) (quote (1 nil)))
((equal x 1) (quote (1)))
(t (cons 1 (ptts1 x n x)))))
(defun allprods (x y)
(cond ((null x) nil)
((null y) nil)
(t (nconc (ap1 (car x) y) (allprods (cdr x) y)))))
(defun al1 (f r len)
(prog (ss)
(cond
((equal len 1)
(return (mapcar #'(lambda (*y*) (cons *y* nil)) f)))
((null r) (return nil))
(t
(mapc #'(lambda (*y*)
(setq ss
(nconc ss
(mapcar #'(lambda (z) (cons z *y*))
f))))
(al1 (car r) (cdr r) (1- len)))
(return ss)))))
(defun ap1 (x l)
(cond ((null l) nil)
(t (cons (ptimes x (car l)) (ap1 x (cdr l))))))
(defun ptts1 (x n y)
(cond ((equal n 1) (list y))
(t (cons y (ptts1 x (1- n) (ptimes x y))))))
(defun p1 (l)
(prog (a)
(setq a (mapcar #'p11 l))
(return (cond ((null l) nil)
(t (cdr (al1 (car a)
(cdr a)
(length a))))))))
(defun p11 (ele)
(cond ((null (cddr ele)) (rpowerset (car ele) (cadr ele)))
(t (allprods (rpowerset (car ele) (cadr ele))
(p11 (cddr ele))))))
(defun pinterpolate (l var)
(psimp var (pinterpolate1 (pinterpolate2 l 1)
(- (length l) 2))))
(defun pinterpolate1 (x n)
(pinterpolate4 (pinterpolate5 (reverse x) 1 n n) (1+ n)))
(defun pinterpolate2 (x n)
(cond ((null (cdr x)) x)
(t (cons (car x)
(pinterpolate2 (pinterpolate3 x n) (1+ n))))))
(defun pinterpolate3 (x n)
(cond ((null (cdr x)) nil)
(t (cons (pquotient (pdifference (cadr x) (car x)) n)
(pinterpolate3 (cdr x) n)))))
(defun pinterpolate4 (x n)
(cond ((null x) nil)
((pzerop (car x)) (pinterpolate4 (cdr x) (1- n)))
(t (cons n (cons (car x)
(pinterpolate4 (cdr x) (1- n)))))))
(defun pinterpolate5 (x i j n)
(cond ((> i n) x)
(t (pinterpolate5 (cons (car x) (pinterpolate6 x i j))
(1+ i)
(1- j)
n))))
(defun pinterpolate6 (x i j)
(cond ((zerop i) (cdr x))
(t (cons (pdifference (cadr x) (pctimes j (car x)))
(pinterpolate6 (cdr x) (1- i) j)))))
;; THE N**(1.585) MULTIPLICATION SCHEME
;;FOLLOWS. IT SHOULD BE USED ONLY WHEN BOTH INPUTS ARE MULTIVARIATE,
;;DENSE, AND OF NEARLY THE SAME SIZE. OR ABSOLUTELY TREMENDOUS.
;;(THE CLASSICAL MULTIPLICATION SCHEME IS N**2 WHERE N IS SIZE OF
;;POLYNOMIAL (OR N*M FOR DIFFERENT SIZES). FOR THIS
;;CASE, N IS APPX. THE SIZE OF LARGER.
(defmfun $fasttimes (x y)
(cond ((and (not (atom x)) (not (atom y))
(equal (car x) (car y)) (equal (caar x) 'mrat)
(equal (cddr x) 1) (equal (cddr y) 1))
(cons (car x)(cons (fptimes (cadr x)(cadr y))1)))
(t (merror (intl:gettext "fasttimes: arguments must be CRE polynomials with same variables.")))))
(defun fptimes (x y)
(cond ((or (pzerop x) (pzerop y)) (pzero))
((pcoefp x) (pctimes x y))
((pcoefp y) (pctimes y x))
((eq (car x) (car y))
(cond((or(univar(cdr x))(univar(cdr y)))
(cons (car x) (ptimes1 (cdr x) (cdr y))))
(t(cons (car x) (fptimes1 (cdr x)(cdr y))))))
((pointergp (car x) (car y))
(cons (car x) (pctimes1 y (cdr x))))
(t (cons (car y) (pctimes1 x (cdr y))))))
(defun fptimes1 (f g)
(prog (a b c d)
(cond ((or (null f) (null g)) (return nil))
((null (cddr f))
(return (lsft (pctimes1 (cadr f) g) (car f))))
((null (cddr g))
(return (lsft (pctimes1 (cadr g) f) (car g)))))
(setq d (ash (1+ (max (car f) (car g))) -1))
(setq f (halfsplit f d) g (halfsplit g d))
(setq a (fptimes1 (car f) (car g)))
(setq b
(fptimes1 (ptptplus (car f) (cdr f)) (pplus1 (car g) (cdr g))))
(setq c (fptimes1 (cdr f) (cdr g)))
(setq b (ptptdiffer (pdiffer1 b a) c))
(return (ptptplus (lsft a (ash d 1)) (pplus1 (lsft b d) c)))))
(defun halfsplit (p d)
(do ((a) (p p (cddr p)))
((or (null p) (< (car p) d)) (cons (nreverse a) p))
(setq a (cons (cadr p) (cons (- (car p) d) a)))))
(defun lsft (p n)
(do ((q p (cddr (rplaca q (+ (car q) n)))))
((null q)))
p)
(declare-top (special wtsofar xweight $ratwtlvl v *x* *i*))
;;; TO TRUNCATE ON E, DO RATWEIGHT(E,1);
;;;THEN DO RATWTLVL:N. ALL POWERS >N GO TO 0.
(defmfun $ratweight (&rest args)
(when (oddp (length args))
(merror (intl:gettext "ratweight: number of arguments must be a multiple of 2.")))
(do ((l args (cddr l)))
((null l))
(rplacd (or (assoc (first l) *ratweights :test #'equal)
(car (push (list (first l)) *ratweights)))
(second l)))
(setq $ratweights (cons '(mlist simp) (dot2l *ratweights)))
(if (null args)
$ratweights
(cons '(mlist) args)))
(defun pweight (x)
(or (get x '$ratweight) 0))
(defun wtptimes (x y wtsofar)
(cond ((or (pzerop x) (pzerop y) (> wtsofar $ratwtlvl))
(pzero))
((pcoefp x) (wtpctimes x y))
((pcoefp y) (wtpctimes y x))
((eq (car x) (car y))
(palgsimp (car x)
(wtptimes1 (cdr x)
(cdr y)
(pweight (car x)))
(alg x)))
((pointergp (car x) (car y))
(psimp (car x)
(wtpctimes1 y (cdr x) (pweight (car x)))))
(t (psimp (car y)
(wtpctimes1 x (cdr y) (pweight (car y)))))))
(defun wtptimes1 (*x* y xweight)
(prog (u* v)
(declare (special v))
(setq v (setq u* (wtptimes2 y)))
a (setq *x* (cddr *x*))
(cond ((null *x*) (return u*)))
(wtptimes3 y)
(go a)))
(defun wtptimes2 (y)
(if (null y)
nil
(let ((ii (+ (* xweight (+ (car *x*) (car y))) wtsofar)))
(if (> ii $ratwtlvl)
(wtptimes2 (cddr y))
(pcoefadd (+ (car *x*) (car y))
(wtptimes (cadr *x*) (cadr y) ii)
(wtptimes2 (cddr y)))))))
(defun wtptimes3 (y)
(prog ((e 0) u c)
(declare (special v))
a1 (cond ((null y) (return nil)))
(setq e (+ (car *x*) (car y)))
(setq c (wtptimes (cadr y) (cadr *x*) (+ wtsofar (* xweight e))))
(cond ((pzerop c) (setq y (cddr y)) (go a1))
((or (null v) (> e (car v))) (setq u* (setq v (ptptplus u* (list e c)))) (setq y (cddr y)) (go a1))
((equal e (car v))
(setq c (pplus c (cadr v)))
(cond ((pzerop c) (setq u* (setq v (ptptdiffer u* (list (car v) (cadr v)))))) (t (rplaca (cdr v) c)))
(setq y (cddr y))
(go a1)))
a (cond ((and (cddr v) (> (caddr v) e)) (setq v (cddr v)) (go a)))
(setq u (cdr v))
b (cond ((or (null (cdr u)) (< (cadr u) e)) (rplacd u (cons e (cons c (cdr u)))) (go e)))
(cond ((pzerop (setq c (pplus (caddr u) c))) (rplacd u (cdddr u)) (go d)) (t (rplaca (cddr u) c)))
e (setq u (cddr u))
d (setq y (cddr y))
(cond ((null y) (return nil))
((pzerop
(setq c (wtptimes (cadr *x*) (cadr y)
(+ wtsofar (* xweight
(setq e (+ (car *x*) (car y))))))))
(go d)))
c (cond ((and (cdr u) (> (cadr u) e)) (setq u (cddr u)) (go c)))
(go b)))
(defun wtpctimes (c p)
(cond ((pcoefp p) (ctimes c p))
(t (psimp (car p) (wtpctimes1 c (cdr p) (pweight (car p)))))))
(defun wtpctimes1 (c x xwt)
(prog (cc)
(return
(cond ((null x) nil)
(t (setq cc (wtptimes c
(cadr x)
(+ wtsofar (* xwt (car x)))))
(cond ((pzerop cc) (wtpctimes1 c (cddr x) xwt))
(t (cons (car x)
(cons cc
(wtpctimes1 c
(cddr x)
xwt))))))))))
(defun wtpexpt (x n)
(cond ((= n 0) 1)
((= n 1) x)
((evenp n)
(let ((xn2 (wtpexpt x (/ n 2))))
(wtptimes xn2 xn2 0)))
(t (wtptimes x (wtpexpt x (1- n)) 0))))
(defmfun $horner (e &rest l)
(let (($ratfac nil)
(varlist (cdr $ratvars))
genvar
(x nil)
(arg1 (taychk2rat e)))
(cond ((mbagp arg1)
(cons (car arg1)
(mapcar #'(lambda (u) (apply '$horner (cons u l))) (cdr arg1))))
(t
(setq x (apply #'$rat (cons arg1 l)))
(mapc #'(lambda (y z) (putprop y z 'disrep)) (cadddr (car x)) (caddar x))
(div* (hornrep (cadr x)) (hornrep (cddr x)))))))
(defun hornrep (p)
(if (pcoefp p)
p
(horn+ (cdr p) (get (car p) 'disrep))))
(defun horn+ (l var)
(prog (ans last)
(setq ans (hornrep (cadr l)))
a (setq last (car l) l (cddr l))
(cond ((null l)
(return (cond ((equal last 0) ans)
(t (list '(mtimes)
(list '(mexpt) var last) ans)))))
(t (setq ans (list '(mplus)
(hornrep (cadr l))
(list '(mtimes)
(list '(mexpt) var (- last (car l)))
ans)))))
(go a)))
(declare-top (special y genvar $savefactors checkfactors w
exp var x $factorflag $ratfac
$keepfloat ratform rootfactor
wholepart parnumer varlist n))
(defmfun $partfrac (exp var)
(cond ((and (not (atom exp)) (member (caar exp) '(mequal mlist $matrix) :test #'eq))
(cons (car exp) (mapcar #'(lambda (u) ($partfrac u var)) (cdr exp))))
((and (atom var) (not (among var exp))) exp)
(t (let (($savefactors t) (checkfactors ()) (varlist (list var))
$ratfac $algebraic ratform genvar)
(desetq (ratform . exp) (taychk2rat exp))
(setq var (caadr (ratf var)))
(setq exp (partfrac exp var))
(setq exp (cons (car exp) ;FULL DECOMP?
(mapcan #'partfraca (cdr exp))))
(add2* (disrep (car exp))
(cons '(mplus)
(mapcar #'(lambda (l)
(destructuring-let (((coef poly exp) l))
(list '(mtimes)
(disrep coef)
(list '(mexpt)
(disrep poly)
(- exp)))))
(cdr exp))))))))
(defun partfraca (llist)
(destructuring-let (((coef poly exp) llist))
(do ((nc (ratdivide coef poly) (ratdivide (car nc) poly))
(n exp (1- n))
(ans))
((rzerop (car nc)) (cons (list (cdr nc) poly n) ans))
(push (list (cdr nc) poly n) ans))))
(defun partfrac (rat var &optional facdenom)
(destructuring-let* (((wholepart frpart) (pdivide (car rat) (cdr rat)))
((num . denom) (ratqu frpart (cdr rat))))
(cond ((pzerop num) (cons wholepart nil))
((or (pcoefp denom) (pointergp var (car denom))) (cons rat nil))
(t (destructuring-let (((content bpart) (oldcontent denom)))
(do ((factor (or facdenom (pfactor bpart)) (cddr factor))
(apart) (y) (parnumer))
((null factor) (cons wholepart parnumer))
(cond
((zerop (pdegree (car factor) var)))
(t (setq apart (pexpt (car factor) (cadr factor))
bpart (pquotient bpart apart)
y (bprog apart bpart)
frpart (cdr (ratdivide (ratti num (cdr y) t)
apart)))
(push (list (ratqu frpart content)
(car factor)
(cadr factor))
parnumer)
(desetq (num . content)
(cdr (ratdivide (ratqu (ratti num (car y) t)
content)
bpart)))))))))))
(declare-top (unspecial exp f n ss v var w xv y *a* *chk *l *max *p
*res u* *var* *x* *y*))
;; $RATDIFF TAKES DERIVATIVES FAST. IT ASSUMES THAT THE
;; ONLY ENTITY WHICH DEPENDS ON X IS X ITSELF.
;; THAT IS, DEPENDENCIES DECLARED EXPLICITLY OR IMPLICITLY ARE
;; TOTALLY IGNORED. RATDIFF(F(X),X) IS 0. RATDIFF(Y,X) IS 0.
;; ANY OTHER USAGE MUST GO THROUGH $DIFF.
;; FURTHERMORE, X IS ASSUMED TO BE AN ATOM OR A SINGLE ITEM ON
;; VARLIST. E.G. X MIGHT BE SIN(U), BUT NOT 2*SIN(U).
(declare-top (special varlist genvar x))
(defmfun $ratdiff (p x)
(if ($ratp p)
(setq p (minimize-varlist
(if (member 'trunc (cdar p) :test #'eq) ($taytorat p) p))))
(let ((formflag ($ratp p)) (varlist) (genvar))
(newvar x) (newvar p)
(or (every #'(lambda (exp)
(or (alike1 x exp) (free exp x)))
varlist)
(merror (intl:gettext "ratdiff: first argument must be a polynomial in ~M; found: ~M") x p))
(setq p (ratf p))
(setq x (caadr (ratf x)))
(setq p (cons (car p) (ratderivative (cdr p) x)))
(if formflag p ($ratdisrep p))))
(declare-top (unspecial x))
(declare-top (special $pfeformat varlist $factorflag m v dosimp))
(defmfun $pfet (m)
(prog (listov $pfeformat varlist $factorflag)
(setq $pfeformat t)
(newvar m)
(setq listov varlist)
(mapc #'(lambda (r) (setq m (pfet1 m r)))
listov)
(setq m (simplify m))
(setq m (cond ((atom m) m)
((eq (caar m) 'mplus)
(cons '(mplus)
(mapcar #'$ratexpand (cdr m))))
(t ($ratexpand m))))
(return (cond ((atom m) m)
((eq (caar m) 'mplus)
(cons '(mplus)
(mapcar #'sssqfr (cdr m))))
(t (sssqfr m))))))
(defun sssqfr (x)
(let ((dosimp t)) (simplify ($sqfr x))))
(defun pfet1 (m v)
(cond ((atom m) m)
((eq (caar m) 'mplus)
(cons '(mplus)
(mapcar #'(lambda (s) ($partfrac s v))
(cdr m))))
(t ($partfrac m v))))
(declare-top (unspecial m v))
|