This file is indexed.

/usr/share/maxima/5.32.1/src/result.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1982 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module result)

(declare-top (special varlist genvar $ratfac $keepfloat modulus *alpha xv))

(load-macsyma-macros ratmac)

(defmfun $poly_discriminant (poly var)
  (let* ((varlist (list var))
	 ($ratfac nil)
	 (genvar ())
	 (rform (rform poly))
	 (rvar (car (last genvar)))
	 (n (pdegree (setq poly (car rform)) rvar)))

    (cond ((= n 1) 1)
	  ((or (= n 0) (not (atom  (cdr rform))))
	   (merror (intl:gettext "poly_discriminant: first argument must be a polynomial in ~:M; found: ~M") var poly))
	  (t (pdis (presign
		    (ash (* n (1- n)) -1)
		    (pquotient (resultant poly (pderivative poly rvar))
			       (p-lc poly))))))))

(defmfun $resultant (a b mainvar)
  (prog (varlist formflag $ratfac res ans genvar $keepfloat)
     (setq varlist (list mainvar) $ratfac t ans 1)
     (and ($ratp a)(setq formflag t)(setq a ($ratdisrep a)))
     (and ($ratp b)(setq formflag t)(setq b ($ratdisrep b)))
     (newvar a)
     (newvar b)
     (setq a (lmake2 (cadr (ratrep* a)) nil))
     (setq b (lmake2 (cadr (ratrep* b)) nil))
     (setq mainvar (caadr (ratrep* mainvar)))
     (do ((l1 a (cdr l1))) ((null l1))
       (do ((l2 b (cdr l2))) ((null l2))
	 (setq res (result1 (caar l1) (caar l2) mainvar))
	 (setq ans (ptimes ans (pexpt
				(cond ((zerop (caddr res)) (car res))
				      (t (ptimeschk (car res)
						    (pexpt (makprod (cadr res) nil)
							   (caddr res)))))
				(* (cdar l1) (cdar l2)))))))
     (return (cond (formflag (pdis* ans)) (t (pdis ans))))))

(defun result1 (p1 p2 var)
  (cond ((or (pcoefp p1) (pointergp var (car p1)))
	 (list 1 p1 (pdegree p2 var)))
	((or (pcoefp p2) (pointergp var (car p2)))
	 (list 1 p2 (pdegree p1 var)))
	((null (cdddr p1))
	 (cond ((null (cdddr p2)) (list 0 0 1))
	       (t (list (pexpt (caddr p1) (cadr p2))
			(pcsubsty 0 var p2)
			(cadr p1)))))
	((null (cdddr p2))
	 (list (pexpt (caddr p2) (cadr p1))
	       (pcsubsty 0 var p1)
	       (cadr p2)))
	((> (setq var (gcd (pgcdexpon p1) (pgcdexpon p2))) 1)
	 (list 1 (resultant (pexpon*// p1 var nil)
			    (pexpon*// p2 var nil)) var))
	(t (list 1 (resultant p1 p2) 1))))

(defmvar $resultant '$subres "Designates which resultant algorithm")

(defvar *resultlist '($subres $mod $red))

(defmfun resultant (p1 p2)		;assumes same main var
  (if (> (p-le p2) (p-le p1))
      (presign (* (p-le p1) (p-le p2)) (resultant p2 p1))
      (case $resultant
	($subres (subresult p1 p2))
	#+broken ($mod (modresult p1 p2))
	($red (redresult p1 p2))
	(t (merror (intl:gettext "resultant: no such algorithm: ~M") $resultant)))))

(defun presign (n p)
  (if (oddp n) (pminus p) p))

;;computes resultant using subresultant p.r.s. TOMS Sept. 1978

(defun subresult (p q)
  (loop for g = 1 then (p-lc p)
	 for h = 1 then (pquotient (pexpt g d) h^1-d)
	 for degq = (pdegree q (p-var p))
	 for d = (- (p-le p) degq)
	 for h^1-d = (if (equal h 1) 1 (pexpt h (1- d)))
	 if (zerop degq) return (if (pzerop q) q (pquotient (pexpt q d) h^1-d))
	 do (psetq p q
		   q (presign (1+ d) (pquotient (prem p q)
						 (ptimes g (ptimes h h^1-d)))))))

;;	PACKAGE FOR CALCULATING MULTIVARIATE POLYNOMIAL RESULTANTS
;;	USING MODIFIED REDUCED P.R.S.

(defun redresult (u v)
  (prog (a r sigma c)
     (setq a 1)
     (setq sigma 0)
     (setq c 1)
     a    (if (pzerop (setq r (prem u v))) (return (pzero)))
     (setq c (ptimeschk c (pexpt (p-lc v)
				 (* (- (p-le u) (p-le v))
				     (- (p-le v) (pdegree r (p-var u))
					 1)))))
     (setq sigma (+ sigma (* (p-le u) (p-le v))))
     (if (zerop (pdegree r (p-var u)))
	 (return
	   (presign sigma
		    (pquotient (pexpt (pquotientchk r a) (p-le v)) c))))
     (psetq u v
	    v (pquotientchk r a)
	    a (pexpt (p-lc v) (+ (p-le u) 1 (- (p-le v)))))
     (go a)))


;;	PACKAGE FOR CALCULATING MULTIVARIATE POLYNOMIAL RESULTANTS
;;	USING MODULAR AND EVALUATION HOMOMORPHISMS.
;; modresultant fails on the following example
;;RESULTANT(((-4)*Z)^4+(Y+8*Z)^4+(X-5*Z)^4-1,
;;	       ((-4)*Z)^4-(X-5*Z)^3*((-4)*Z)^3+(Y+8*Z)^3*((-4)*Z)^2
;;			 +(-2)*(Y+8*Z)^4+((-4)*Z)^4+1,Z)

#+broken
(progn
  (defun modresult (a b)
    (modresult1 a b (sort (union* (listovars a) (listovars b))
			  (function pointergp))))

  (defun modresult1 (x y varl)
    (cond ((null modulus) (pres x y (car varl) (cdr varl)))
	  (t (cpres x y (car varl) (cdr varl))) ))

  (defun pres (a b xr1 varl)
    (prog (m n f a* b* c* p q c modulus)
       (setq m (cadr a))
       (setq n (cadr b))
       (setq f (coefbound m n (maxnorm (cdr a)) (maxnorm (cdr b)) ))
       (setq q 1)
       (setq c 0)
       (setq p *alpha)
       (go step3)
       step2	(setq p (newprime p))
       step3	(set-modulus p)
       (setq a* (pmod a))
       (setq b* (pmod b))
       (cond ((or (reject a* m xr1) (reject b* n xr1)) (go step2)))
       (setq c* (cpres a* b* xr1 varl))
       (set-modulus nil)
       (setq c (lagrange3 c c* p q))
       (setq q (* p q))
       (cond ((> q f) (return c))
	     (t (go step2)) ) ))

  (defun reject (a m xv)
    (not (eqn (pdegree a xv) m)))

  (defun coefbound (m n d e)
    (* 2 (expt (1+ m) (ash n -1))
	   (expt (1+ n) (ash m -1))
	   (cond ((oddp n) (1+ ($isqrt (1+ m))))
		 (t 1))
	   (cond ((oddp m) (1+ ($isqrt (1+ n))))
		 (t 1))
	   ;; (FACTORIAL (PLUS M N)) USED TO REPLACE PREV. 4 LINES. KNU II P. 375
	   (expt d n)
	   (expt e m) ))

  (defun main2 (a var exp tot)
    (cond ((null a) (cons exp tot))
	  (t (main2 (cddr a) var
		    (max (setq var (pdegree (cadr a) var)) exp)
		    (max (+ (car a) var) tot))) ))

  (defun cpres (a b xr1 varl)		;XR1 IS MAIN VAR WHICH
    (cond ((null varl) (cpres1 (cdr a) (cdr b))) ;RESULTANT ELIMINATES
	  (t	(prog (  m2 		  ( m1 (cadr a))
		       ( n1 (cadr b))  n2 (k 0) c d a* b* c* bp xv) ;XV IS INTERPOLATED VAR
		   (declare (fixnum m1 n1 k))

		   step2
		   (setq xv (car varl))
		   (setq varl (cdr varl))
		   (setq m2 (main2 (cdr a) xv 0 0)) ;<XV DEG . TOTAL DEG>
		   (setq n2 (main2 (cdr b) xv 0 0))
		   (cond ((zerop (+ (car m2) (car n2)))
			  (cond ((null varl) (return (cpres1 (cdr a) (cdr b))))
				(t (go step2)) ) ))
		   (setq k (1+ (min (+ (* m1 (car n2)) (* n1 (car m2)))
				     (+ (* m1 (cdr n2)) (* n1 (cdr m2))
					 (- (* m1 n1))) )))
		   (setq c 0)
		   (setq d 1)
		   (setq m2 (car m2) n2 (car n2))
		   (setq bp (- 1))
		   step3
		   (cond ((equal (setq bp (1+ bp)) modulus)
			  (merror "CPRES: resultant primes too small."))
			 ((zerop m2) (setq a* a))
			 (t (setq a* (pcsubst a bp xv))
			    (cond ((reject a* m1 xr1)(go step3)) )) )
		   (cond ((zerop n2) (setq b* b))
			 (t (setq b* (pcsubst b bp xv))
			    (cond ((reject b* n1 xr1) (go step3))) ))
		   (setq c* (cpres a* b* xr1 varl))
		   (setq c (lagrange33 c c* d bp))
		   (setq d (ptimeschk d (list xv 1 1 0 (cminus bp))))
		   (cond ((> (cadr d) k) (return c))
			 (t (go step3))))))))


;; *** NOTE THAT MATRIX PRODUCED IS ALWAYS SYMETRIC
;; *** ABOUT THE MINOR DIAGONAL.

(defmfun $bezout (p q var)
  (let ((varlist (list var)) genvar)
    (newvar p)
    (newvar q)
    (setq p (cadr (ratrep* p))
	  q (cadr (ratrep* q)))
    (setq p (cond ((> (cadr q) (cadr p)) (bezout q p))
		  (t (bezout p q))))
    (cons '($matrix)
	  (mapcar #'(lambda (l) (cons '(mlist) (mapcar 'pdis l)))
		  p))))

(defun vmake (poly n *l)
  (do ((i (1- n) (1- i))) ((minusp i))
    (cond ((or (null poly) (< (car poly) i))
	   (setq *l (cons 0 *l)))
	  (t (setq *l (cons (cadr poly) *l))
	     (setq poly (cddr poly)))))
  (nreverse *l))

(defun bezout (p q)
  (let* ((n (1+ (p-le p)))
	 (n2 (- n (p-le q)))
	 (a (vmake (p-terms p) n nil))
	 (b (vmake (p-terms q) n nil))
	 (ar (reverse (nthcdr n2 a)))
	 (br (reverse (nthcdr n2 b)))
	 (l (make-list n :initial-element 0)))
    (rplacd (nthcdr (1- (p-le p)) a) nil)
    (rplacd (nthcdr (1- (p-le p)) b) nil)
    (nconc
     (mapcar
      #'(lambda (ar br)
	  (setq l (mapcar #'(lambda (a b l)
			      (ppluschk l (pdifference
					   (ptimes br a) (ptimes ar b))))
			  a b (cons 0 l))))
      ar br)
     (and (pzerop (car b))
	  (do ((b (vmake (cdr q) (cadr p) nil) (rot* b))
	       (m nil (cons b m)))
	      ((not (pzerop (car b))) (cons b m))))) ))

(defun rot* (b)
  (setq b (copy-list b))
  (prog2
      (nconc b b)
      (cdr b)
    (rplacd b nil)))


(defun ppluschk (p q)
  (cond ((pzerop p) q)
	(t (pplus p q))))