/usr/share/maxima/5.32.1/src/rpart.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module rpart)
;;; Complex variable utilities
;;;
;;; Macsyma functions: $realpart $imagpart $rectform $polarform
;;; $cabs $carg
;;; Utility functions: trisplit risplit absarg cabs andmapc andmapcar
(load-macsyma-macros rzmac)
(declare-top (special $%emode $radexpand rp-polylogp $domain $m1pbranch
$logarc rischp $keepfloat complexsign))
(defmvar implicit-real nil "If t RPART assumes radicals and logs
of real quantities are real and doesn't ask sign questions")
(defmvar generate-atan2 t "Controls whether RPART will generate ATAN's
or ATAN2's, default is to make ATAN2's")
;; generate-atan2 is set to nil when doing integration to avoid
;; generating discontinuities that defint can't handle.
;;; Realpart gives the real part of an expr.
(defmfun $realpart (xx) (car (trisplit xx)))
(defprop $realpart %realpart verb)
(defprop %realpart $realpart noun)
(defprop %realpart simp-realpart operators)
(defun simp-realpart (expr z simpflag)
(oneargcheck expr)
(setq z (simpcheck (cadr expr) simpflag))
(let ((sgn nil))
(cond ((mnump z) z)
((eq (setq sgn ($csign z)) '$imaginary)
0)
((eq sgn '$complex)
(cond ((complex-number-p ($expand z) 'bigfloat-or-number-p)
($realpart z))
(t
(eqtest (list '(%realpart) z) expr))))
(t
(eqtest (list '(%realpart) z) expr)))))
;;; Imagpart gives the imaginary part of an expr.
(defmfun $imagpart (xx) (cdr (trisplit xx)))
(defprop $imagpart %imagpart verb)
(defprop %imagpart $imagpart noun)
(defprop %imagpart simp-imagpart operators)
(defun simp-imagpart (expr z simpflag)
(oneargcheck expr)
(setq z (simpcheck (cadr expr) simpflag))
(let ((sgn nil))
(cond ((mnump z) 0)
((eq (setq sgn ($csign z)) '$imaginary)
(mul -1 '$%i z))
((eq sgn '$complex)
(cond ((complex-number-p ($expand z) 'bigfloat-or-number-p)
($imagpart z))
(t
(eqtest (list '(%imagpart) z) expr))))
(t
(eqtest (list '(%imagpart) z) expr)))))
;;; Rectform gives a result of the form a+b*%i.
(defmfun $rectform (xx)
(let ((ris (trisplit xx)))
(add (car ris) (mul (cdr ris) '$%i))))
;;; Polarform gives a result of the form a*%e^(%i*b).
(defmfun $polarform (xx)
(cond ((and (not (atom xx)) (member (caar xx) '(mequal mlist $matrix) :test #'eq))
(cons (car xx) (mapcar #'$polarform (cdr xx))))
(t
(let ((aas (absarg xx)) ($%emode nil))
(mul (car aas) (powers '$%e (mul '$%i (cdr aas))))))))
;;; Cabs gives the complex absolute value. Nota bene: an expression may
;;; be syntactically real without being real (e.g. sqrt(x), x<0). Thus
;;; Cabs must lead an independent existence from Abs.
(defmfun $cabs (xx) (cabs xx))
(defprop $cabs %cabs verb)
(defprop %cabs $cabs noun)
(defprop %cabs simp-cabs operators)
(defun simp-cabs (expr z simpflag)
(oneargcheck expr)
(setq z (simpcheck (cadr expr) simpflag))
(let ((sgn nil))
(cond ((member (setq sgn ($csign z)) '($complex $imaginary))
(cond ((complex-number-p ($expand z) 'bigfloat-or-number-p)
(simplify (list '(mabs) z)))
(t
(eqtest (list '(mabs) z) expr))))
((eq sgn '$zero)
0)
((member sgn '($pos $pz))
z)
((eq sgn '$neg)
(mul -1 z))
(t
(eqtest (list '(mabs) z) expr)))))
;;; Carg gives the complex argument.
(defmfun $carg (xx)
(cond ((and (not (atom xx))
(member (caar xx) '(mequal mlist $matrix) :test #'eq))
(cons (car xx) (mapcar #'$carg (cdr xx))))
(t (cdr (absarg xx)))))
(defprop $carg %carg verb)
(defprop %carg $carg noun)
(defprop %carg simp-carg operators)
(defun simp-carg (expr z simpflag)
(oneargcheck expr)
(setq z (simpcheck (cadr expr) simpflag))
(let ((sgn nil))
(cond ((eq z '$%i)
(div '$%pi 2))
((member (setq sgn ($csign z)) '($complex $imaginary))
(cond ((complex-number-p ($expand z) 'bigfloat-or-number-p)
($carg z))
(t
(eqtest (list '(%carg) z) expr))))
((member sgn '($pos $pz $zero))
0)
((eq sgn '$neg)
'$%pi)
(t
(eqtest (list '(%carg) z) expr)))))
;; The internal cabs, used by other Macsyma programs.
(defmfun cabs (xx) (car (absarg xx t)))
;; Some objects can only appear at the top level of a legal simplified
;; expression: CRE forms and equations in particular.
(defun trisplit (el) ; Top level of risplit
(cond ((atom el) (risplit el))
((specrepp el) (trisplit (specdisrep el)))
((eq (caar el) 'mequal) (dot-sp-ri (cdr el) '(mequal simp)))
(t (risplit el))))
;;; Auxiliaries
;; These are Macsyma equivalents to (mapcar 'trisplit ...). They must
;; differ from other maps for two reasons: the lists are Macsyma lists,
;; and therefore prefixed with list indicators; and the results must
;; be separated: ((a . b) (c . d)) becomes something like ([a,c].[b,d]).
(defun dsrl (el) (dot-sp-ri (cdr el) '(mlist simp)))
(defun dot-sp-ri (el ind)
(dot--ri (mapcar #'trisplit el) ind))
;; Dot--ri does the ((a.b)(c.d))->([a,c].[b,d]) transformation with
;; minimal Cons'ing.
(defun dot--ri (el ind)
(do ((i el (cdr i)) (k))
((null i) (cons (cons ind (nreverse k)) (cons ind el)))
(let ((cdari (cdar i)))
(setq k (rplacd (car i) k))
(rplaca i cdari))))
(defun risplit-mplus (l)
(do ((rpart) (ipart) (m (cdr l) (cdr m)))
((null m) (cons (addn rpart t) (addn ipart t)))
(let ((sp (risplit (car m))))
(cond ((=0 (car sp)))
(t (setq rpart (cons (car sp) rpart))))
(cond ((=0 (cdr sp)))
(t (setq ipart (cons (cdr sp) ipart)))))))
(defun risplit-times (l)
(let ((risl (do ((purerl nil)
(compl nil)
(l (cdr l) (cdr l)))
((null l) (cons purerl compl))
(let ((sp (risplit (car l))))
(cond ((=0 (cdr sp))
(setq purerl (rplacd sp purerl)))
((or (atom (car sp)) (atom (cdr sp)))
(setq compl (cons sp compl)))
((and (eq (caaar sp) 'mtimes)
;;;Try risplit z/w and notice denominator. If this check were not made,
;;; the real and imaginary parts would not each be over a common denominator.
(eq (caadr sp) 'mtimes)
(let ((nr (nreverse (cdar sp)))
(ni (nreverse (cddr sp))))
(cond ((equal (car nr) (car ni))
(push (car nr) purerl)
(push (cons (muln (nreverse (cdr nr)) t)
(muln (nreverse (cdr ni)) t))
compl))
(t
(setq nr (nreverse nr))
(setq ni (nreverse ni))
nil)))))
(t
(push sp compl)))))))
(cond ((null (cdr risl))
(cons (muln (car risl) t) 0))
(t
(do ((rpart 1) (ipart 0) (m (cdr risl) (cdr m)))
((null m)
(cons (muln (cons rpart (car risl)) t)
(muln (cons ipart (car risl)) t)))
(psetq rpart (sub (mul rpart (caar m)) (mul ipart (cdar m)))
ipart (add (mul ipart (caar m)) (mul rpart (cdar m)))))))))
;; Split L = ((mexpt) BASE POW) into real and imaginary parts.
(defun risplit-expt (l)
(let* ((base (cadr l)) (pow (caddr l))
;; Disable 'simplifications' like sqrt(-x) -> %i*sqrt(x)
($radexpand nil)
(sp (risplit base)))
(cond
((fixnump pow)
(risplit-expt-fixnum-pow sp pow))
((and (ratnump pow)
(fixnump (cadr pow))
(not (< (cadr pow) (- $maxnegex)))
(not (> (cadr pow) $maxposex))
(or (= (caddr pow) 2) (=0 (cdr sp))))
(if (=0 (cdr sp))
(risplit-expt-real^rat base pow)
(risplit-expt-sqrt-pow base sp pow)))
((and (floatp base) (floatp pow))
(risplit (let (($numer t)) (exptrl base pow))))
(t
(destructuring-bind (alpha . beta) (risplit pow)
(destructuring-bind (r . theta) (absarg1 base)
(risplit-expt-general-form r theta alpha beta)))))))
;; Split BASE^POWER into real and imaginary parts. POWER is assumed to be a
;; fixnum. SP is (RISPLIT BASE)
(defun risplit-expt-fixnum-pow (sp power)
;; We use the squared absolute value of BASE several times
;; below. Unfortunately, we can't calculate it at the start, since that causes
;; floating point under/overflows in the case mentioned in the comment
;; below. Instead, we calculate it when it's needed (a maximum of once).
(destructuring-bind (real . imag) sp
(cond
((= power -1)
;; Handle the case of 1/(x+%i*y) carefully. This
;; is needed if x and y are (Lisp) numbers to
;; prevent spurious underflows/overflows. See bug 1908.
(if (and (or (numberp real) (ratnump real))
(or (numberp imag) (ratnump imag)))
(sprecip sp)
(let ((abs2 (spabs sp)))
(cons (div real abs2) (mul -1 (div imag abs2))))))
((> (abs power) $maxposex)
(if (=0 imag)
(cons (powers real power) 0)
(let ((abs^n (powers (spabs sp) (*red power 2)))
(natan (mul power (genatan imag real))))
(cons (mul abs^n (take '(%cos) natan))
(mul abs^n (take '(%sin) natan))))))
((> power 0)
(expanintexpt sp power))
(t
(let ((abbas (powers (spabs sp) (- power)))
(basspli (expanintexpt sp (- power))))
(cons (div (car basspli) abbas)
(neg (div (cdr basspli) abbas))))))))
;; Return the "general form" for RISPLIT applied to
;; (r*exp(%i*theta))^(alpha+%i*beta), whose rectform is
;;
;; pre * cos(post) + %i * pre * sin(post)
;;
;; where pre = exp(-theta*beta) * r^alpha
;; and post = beta*log(r) + alpha*theta
(defun risplit-expt-general-form (r theta alpha beta)
(let ((pre (mul (powers '$%e (mul -1 theta beta))
(powers r alpha)))
(post (add (mul beta (take '(%log) r))
(mul alpha theta))))
(cons (mul pre (take '(%cos) post))
(mul pre (take '(%sin) post)))))
;; Split BASE^POWER into real and imaginary parts. We assume that BASE is real
;; and that POWER is a rational number.
(defun risplit-expt-real^rat (base power)
(case (cond ((mnegp base) '$neg)
(implicit-real '$pos)
(t ($sign base))) ; Use $sign not asksign
($neg (risplit (mul2 (power -1 power) (power (neg base) power))))
($zero (cons (power 0 power) 0))
($pos (cons (power base power) 0))
(t
(destructuring-bind (r . theta) (absarg1 base)
(risplit-expt-general-form r theta power 0)))))
;; Split BASE^POWER into real and imaginary parts. SP is (RISPLIT BASE). We
;; assume that POWER is a rational number. Moreover, we assume that the
;; denominator of POWER is 2.
(defun risplit-expt-sqrt-pow (base sp power)
;; n = abs(2*power) is a non-negative integer
(destructuring-bind (real . imag) sp
(let* ((abs2 (spabs sp)) (abs (power abs2 (1//2)))
(n (abs (cadr power)))
(pos? (> (cadr power) -1))
(imag-sign ($sign imag)))
(cond
((member imag-sign '($neg $pos))
;; Here, we use the half-angle formulas for cos and sin. Assuming we
;; are always taking the "principal square root" (that with argument
;; less than equal to the argument of base), these come out as
;;
;; cos(arg/2) = +- sqrt((1+real/abs)/2)
;; sin(arg/2) = +- sqrt((1-real/abs)/2)
;;
;; We know that real+%i*imag = abs*exp(%i*arg). Taking square roots,
;; you get that
;;
;; sqrt(real+%i*imag) = sqrt(abs)*exp(%i*arg/2).
;; = sqrt(abs)*cos(arg/2) +
;; %i * sqrt(abs)*sin(arg/2)
;; = (sqrt(abs+real) + %i*sqrt(abs-real))/sqrt(2)
;;
;; but possibly with signs on the square roots. This function always
;; chooses the square root with the non-negative real part. As such, we
;; have to switch the sign of the sine term when we are raising to a
;; positive power and imag < 0 or if raising to a negative power and
;; imag > 0. To see that the first argument of the PORM call below is
;; correct, write out the 2x2 truth table...
(divcarcdr
(expanintexpt
(cons (power (add abs real) (1//2))
(porm (eq (eq imag-sign '$pos) pos?)
(power (sub abs real) (1//2))))
n)
(if pos?
(power 2 (div n 2))
(power (mul 2 abs2) (div n 2)))))
(t
(destructuring-bind (alpha . beta) (risplit power)
(destructuring-bind (r . theta) (absarg1 base)
(risplit-expt-general-form r theta alpha beta))))))))
(defun risplit-noun (l)
(cons (simplify (list '(%realpart) l)) (simplify (list '(%imagpart) l))))
(defun absarg1 (arg)
(let ((arg1 arg) ($keepfloat t))
(cond ((and (or (free arg '$%i)
(free (setq arg1 (sratsimp arg)) '$%i))
(not (eq (csign arg1) t)))
(setq arg arg1)
(if implicit-real
(cons arg 0)
(unwind-protect
(prog2 (assume `(($notequal) ,arg 0))
(absarg arg))
(forget `(($notequal) ,arg 0)))))
(t (absarg arg)))))
;;; Main function
;;; Takes an expression and returns the dotted pair
;;; (<Real part> . <imaginary part>).
(defun risplit (l)
(let (($domain '$complex) ($m1pbranch t) $logarc op)
(cond ((atom l)
;; Symbols are assumed to represent real values, unless they have
;; been declared to be complex. If they have been declared to be both
;; real and complex, they are taken to be real.
(cond ((eq l '$%i) (cons 0 1))
((eq l '$infinity) (cons '$und '$und))
((and (decl-complexp l) (not (decl-realp l))) (risplit-noun l))
(t (cons l 0))))
((eq (caar l) 'rat) (cons l 0))
((eq (caar l) 'mplus) (risplit-mplus l))
((eq (caar l) 'mtimes) (risplit-times l))
((eq (caar l) 'mexpt) (risplit-expt l))
((eq (caar l) '%log)
(let ((aa (absarg1 (cadr l))))
(rplaca aa (take '(%log) (car aa)))))
((eq (caar l) 'bigfloat) (cons l 0)) ;All numbers are real.
((and (member (caar l) '(%integrate %derivative %laplace %sum) :test #'eq)
(freel (cddr l) '$%i))
(let ((ris (risplit (cadr l))))
(cons (simplify (list* (ncons (caar l)) (car ris) (cddr l)))
(simplify (list* (ncons (caar l)) (cdr ris) (cddr l))))))
((eq (caar l) '$conjugate)
(cons (simplify (list '(%realpart) (cadr l)))
(mul -1 (simplify (list '(%imagpart) (cadr l))))))
((let ((ass (assoc (caar l)
'((%sin %cosh %cos . %sinh)
(%cos %cosh %sin . %sinh)
(%sinh %cos %cosh . %sin)
(%cosh %cos %sinh . %sin)) :test #'eq)))
;;;This clause handles the very similar trigonometric and hyperbolic functions.
;;; It is driven by the table at the end of the lambda.
(and ass
(let ((ri (risplit (cadr l))))
(cond ((=0 (cdr ri)) ;Pure real case.
(cons (take (list (car ass)) (car ri)) 0))
(t
(cons (mul (take (list (car ass)) (car ri))
(take (list (cadr ass)) (cdr ri)))
(negate-if (eq (caar l) '%cos)
(mul (take (list (caddr ass)) (car ri))
(take (list (cdddr ass)) (cdr ri)))))))))))
((member (caar l) '(%tan %tanh) :test #'eq)
(let ((sp (risplit (cadr l))))
;;;The similar tan and tanh cases.
(cond ((=0 (cdr sp))
(cons l 0))
(t
(let* ((2rl (mul (car sp) 2))
(2im (mul (cdr sp) 2))
(denom (inv (if (eq (caar l) '%tan)
(add (take '(%cosh) 2im) (take '(%cos) 2rl))
(add (take '(%cos) 2im) (take '(%cosh) 2rl))))))
(if (eq (caar l) '%tan)
(cons (mul (take '(%sin) 2rl) denom)
(mul (take '(%sinh) 2im) denom))
(cons (mul (take '(%sinh) 2rl) denom)
(mul (take '(%sin) 2im) denom))))))))
((and (member (caar l) '(%atan %csc %sec %cot %csch %sech %coth) :test #'eq)
(=0 (cdr (risplit (cadr l)))))
(cons l 0))
((and (eq (caar l) '$atan2)
(not (zerop1 (caddr l)))
(=0 (cdr (risplit (div (cadr l) (caddr l))))))
;; Case atan2(y,x) and y/x a real expression.
(cons l 0))
((or (arcp (caar l)) (eq (caar l) '$atan2))
(let ((ans (risplit (let (($logarc t))
(resimplify l)))))
(when (eq (caar l) '$atan2)
(setq ans (cons (sratsimp (car ans)) (sratsimp (cdr ans)))))
(if (and (free l '$%i) (=0 (cdr ans)))
(cons l 0)
ans)))
((eq (caar l) '%plog)
;; (princ '|Warning: Principal value not guaranteed for Plog in Rectform/|)
(risplit (cons '(%log) (cdr l))))
((member (caar l) '(%realpart %imagpart mabs) :test #'eq) (cons l 0))
((eq (caar l) '%erf)
(let ((ris (risplit (cadr l))) orig cc)
(setq orig (simplify (list '(%erf) (add (car ris) (mul '$%i (cdr ris))))))
(setq cc (simplify (list '(%erf) (sub (car ris) (mul '$%i (cdr ris))))))
(cons (div (add orig cc) 2) (div (sub orig cc) (mul 2 '$%i)))))
;; Look for a risplit-function on the property list to handle the
;; realpart and imagpart for this function.
((setq op (safe-get (mop l) 'risplit-function))
(funcall op l))
;;; ^ All the above are guaranteed pure real.
;;; The handling of lists and matrices below has to be thought through.
((eq (caar l) 'mlist) (dsrl l))
((eq (caar l) '$matrix)
(dot--ri (mapcar #'dsrl (cdr l)) '($matrix simp)))
((member (caar l) '(mlessp mleqp mgreaterp mgeqp) :test #'eq)
(let ((ris1 (risplit (cadr l))) (ris2 (risplit (caddr l))))
(cons (simplify (list (ncons (caar l)) (car ris1) (car ris2)))
(simplify (list (ncons (caar l)) (cdr ris1) (cdr ris2))))))
;;;The Coversinemyfoot clause covers functions which can be converted
;;; to functions known by risplit, such as the more useless trigonometrics.
((let ((foot (coversinemyfoot l)))
(and foot (risplit foot))))
((or (safe-get (mop l) 'real-valued)
(decl-realp (mop l)))
;; Simplification for a real-valued function
(cons l 0))
((or (safe-get (mop l) 'commutes-with-conjugate)
(safe-get (mop l) 'conjugate-function))
;; A function with Mirror symmetry. The general expressions for
;; the realpart and imagpart simplifies accordingly.
(cons (mul (div 1 2)
(add (simplify (list '($conjugate) l)) l))
(mul (div 1 2) '$%i
(sub (simplify (list '($conjugate) l)) l))))
;;; A MAJOR ASSUMPTION:
;;; All random functions are pure real, regardless of argument.
;;; This is evidently assumed by some of the integration functions.
;;; Perhaps the best compromise is to return 'realpart/'imagpart
;;; under the control of a switch set by the integrators. First
;;; all such dependencies must be found in the integ
((and rp-polylogp (mqapplyp l) (eq (subfunname l) '$li)) (cons l 0))
((prog2 (setq op (if (eq (caar l) 'mqapply) (caaadr l) (caar l)))
(decl-complexp op))
(risplit-noun l))
((and (eq (caar l) '%product) (not (free (cadr l) '$%i)))
(risplit-noun l))
(($subvarp l)
;; return a real answer for subscripted variable
(cons l 0))
(t
(cons (list '(%realpart simp) l)
(list '(%imagpart simp) l))))))
(defun coversinemyfoot (l)
(prog (recip)
(cond ((not (member (caar l) '(%csc %sec %cot %csch %sech %coth) :test #'eq)))
((null (setq recip (get (caar l) 'recip))))
(t (return (div 1 (cons (list recip) (cdr l))))))))
(defun powers (c d)
(cond ((=1 d) c)
((equal d 0) 1) ;equal to preclude 0^(pdl 0)->0:
((=0 c) 0) ; see comment before =0.
((=1 c) 1)
(t (power c d))))
(defun spabs (sp)
;; SP is a cons of the real part and imaginary part of a complex
;; number. SPABS computes the sum of squares of the real and
;; imaginary parts.
(add (powers (car sp) 2)
(powers (cdr sp) 2)))
;; Compute 1/(x+%i*y) when both x and y are Lisp numbers or Maxima
;; rationals. Return a cons of the real and imaginary part of the
;; result. We count on the underlying Lisp to be able to compute (/
;; (complex x y)) accurately and without unnecessary overflow or
;; underflow.. If not, complain to your Lisp vendor. Well, it seems
;; that Clisp, CMUCL, and SBCL do a nice job. But others apparently
;; do not. (I tested ecl 9.12.3 and ccl 1.4, which both fail.)
;; Workaround those deficiencies.
(defun sprecip (sp)
(destructuring-bind (x . y)
sp
#+(or cmu sbcl)
(let* ((x (bigfloat:to x))
(y (bigfloat:to y))
(q (bigfloat:/ (bigfloat:complex x y))))
(cons (to (bigfloat:realpart q))
(to (bigfloat:imagpart q))))
#-(or cmu sbcl)
(let ((x (bigfloat:to x))
(y (bigfloat:to y)))
;; 1/(x+%i*y).
;;
;; Assume abs(x) > abs(y). Let r = y/x. Then
;; 1/(x+%i*y) = 1/x/(1+%i*r)
;; = (1-%i*r)/(x*(1+r*r))
;;
;; The case for abs(x) <= abs(y) is similar with r = x/y:
;; 1/(x+%i*y) = 1/y/(r+%i)
;; = (r-%i)/(y*(1+r^2))
(if (> (bigfloat:abs x) (bigfloat:abs y))
(let* ((r (bigfloat:/ y x))
(dn (bigfloat:* x (bigfloat:+ 1 (bigfloat:* r r)))))
(cons (to (bigfloat:/ dn))
(to (bigfloat:/ (bigfloat:- r) dn))))
(let* ((r (bigfloat:/ x y))
(dn (bigfloat:* y (bigfloat:+ 1 (bigfloat:* r r)))))
(cons (to (bigfloat:/ r dn))
(to (bigfloat:/ (bigfloat:- dn)))))))))
(defvar negp* (let ((l (list nil nil t t))) (nconc l l)))
(defun divcarcdr (a b)
(cons (div (car a) b) (div (cdr a) b)))
;;Expand bas^n, where bas is (<real part> . <imaginary part>)
(defun expanintexpt (bas n)
(cond ((= n 1) bas)
(t (do ((rp (car bas))
(ip (cdr bas))
(c 1 (quotient (* c ex) i))
(ex n (1- ex)) (i 1 (1+ i))
(rori t (not rori)) (negp negp* (cdr negp))
(rpt nil) (ipt nil))
((< ex 0) (cons (addn rpt t) (addn ipt t)))
(declare (fixnum ex i))
(set-either rpt ipt
rori
(cons (negate-if (car negp)
(mul c
(powers rp ex)
(powers ip (1- i))))
(cond (rori rpt) (t ipt))))))))
;;; Subtract out multiples of 2*%pi with a minimum of consing.
;;; Attempts to reduce to interval (-pi,pi].
(defun 2pistrip (exp)
(cond ((atom exp) exp)
((eq (caar exp) 'mtimes)
(cond ((and (mnump (cadr exp))
(eq (caddr exp) '$%pi)
(null (cdddr exp)))
(cond ((integerp (cadr exp)) ; 5*%pi
(mul (mod (cadr exp) 2) '$%pi))
((floatp (cadr exp)) ; 1.5*%pi
(mul (1- (mod (1+ (cadr exp)) 2))
'$%pi))
;; Neither 0 nor 1 appears as a coef
((and (listp (cadr exp))
(eq 'rat (caaadr exp))) ;5/2*%pi
(mul (list* '(rat simp)
(- (mod (+ (cadadr exp) (car (cddadr exp)))
(* 2 (car (cddadr exp))))
(car (cddadr exp)))
(cddadr exp))
'$%pi))
(t exp)))
(t exp)))
((eq (caar exp) 'mplus)
(let ((res (2pirec (cdr exp))))
(if (eq res (cdr exp))
exp
(addn res t))))
(t exp)))
(defun 2pirec (fm) ;Takes a list of exprs
(cond ((null (cdr fm)) ;If monad, just return.
(let ((2pf (2pistrip (car fm))))
(cond ((eq 2pf (car fm)) fm)
((=0 2pf) nil)
(t (list 2pf)))))
(t
(let ((2pfma (2pistrip (car fm)))
(2pfmd (2pirec (cdr fm))))
(cond ((or (null 2pfmd) (=0 2pfmd)) 2pfma)
((and (eq 2pfmd (cdr fm)) (eq 2pfma (car fm))) fm)
(t (cons 2pfma 2pfmd)))))))
;;; Rectify into polar form; Arguments similar to risplit
(defun argnum (n)
(if (minusp n)
(simplify '$%pi)
0))
;; absarg
;; returns pair (abs . arg)
;; if absflag is true, arg result is not guaranteed to be correct
;; The function of Absflag is to communicate that only the absolute
;; value part of the result is wanted. This allows Absarg to avoid asking
;; questions irrelevant to the absolute value. For instance, Cabs(x) is
;; invariably Abs(x), while the complex phase may be 0 or %pi. Note also
;; the steps taken in Absarg to assure that Asksign's will happen before Sign's
;; as often as possible, so that, for instance, Abs(x) can be simplified to
;; x or -x if the sign of x must be known for some other reason. These
;; techniques, however, are not perfect.
(defun absarg (l &optional (absflag nil))
;; Commenting out the the expansion of the expression l. It seems to be not
;; necessary, but can cause expression swelling (DK 01/2010).
; (setq l ($expand l))
(cond ((atom l)
(cond ((eq l '$%i)
(cons 1 (simplify '((mtimes) ((rat simp) 1 2) $%pi))))
((numberp l)
(cons (abs l) (argnum l)))
((member l '($%e $%pi) :test #'eq) (cons l 0))
((eq l '$infinity) (cons '$inf '$ind))
((decl-complexp l)
(cons (list '(mabs simp) l) ; noun form with mabs
(list '(%carg simp) l)))
(absflag (cons (take '(mabs) l) 0))
(t
;; At this point l is representing a real value. Try to
;; determine the sign and return a general form when the sign is
;; unknown.
(let ((gs (if (eq rischp l) '$pos ($sign l))))
(cond ((member gs '($pos $pz)) (cons l 0))
((eq gs '$zero) (cons 0 0))
((eq gs '$neg)
(cons (neg l) (simplify '$%pi)))
(t (cons (take '(mabs) l) (genatan 0 l))))))))
((eq '$zero (let ((sign-imag-errp nil)) (catch 'sign-imag-err ($sign l))))
(cond ((some-bfloatp l)
(cons bigfloatzero bigfloatzero)) ; contagious
((some-floatp l)
(cons 0.0 0.0))
(t (cons 0 0))))
((member (caar l) '(rat bigfloat) :test #'eq)
(cons (list (car l) (abs (cadr l)) (caddr l))
(argnum (cadr l))))
((eq (caar l) 'mtimes)
(do ((n (cdr l) (cdr n))
(abars)
(argl () (cons (cdr abars) argl))
(absl () (rplacd abars absl)))
(())
(unless n
(return (cons (muln absl t) (2pistrip (addn argl t)))))
(setq abars (absarg (car n) absflag))))
((eq (caar l) 'mexpt)
;; An expression z^a
(let ((aa (absarg (cadr l) nil)) ; (abs(z) . arg(z))
(sp (risplit (caddr l))) ; (realpart(a) . imagpart(a))
($radexpand nil))
(cond ((and (zerop1 (cdr sp))
(eq ($sign (sub 1 (take '(mabs) (car sp)))) '$pos))
;; Special case: a is real and abs(a) < 1.
;; This simplifies e.g. carg(sqrt(z)) -> carg(z)/2
(cons (mul (power (car aa) (car sp))
(power '$%e (neg (mul (cdr aa) (cdr sp)))))
(mul (caddr l) (cdr aa))))
(t
;; General case for z and a
(let ((arg (add (mul (cdr sp) (take '(%log) (car aa)))
(mul (cdr aa) (car sp)))))
(cons (mul (power (car aa) (car sp))
(power '$%e (neg (mul (cdr aa) (cdr sp)))))
(if generate-atan2
(take '($atan2)
(take '(%sin) arg)
(take '(%cos) arg))
(take '(%atan) (take '(%tan) arg)))))))))
((and (member (caar l) '(%tan %tanh) :test #'eq)
(not (=0 (cdr (risplit (cadr l))))))
(let* ((sp (risplit (cadr l)))
(2frst (mul (cdr sp) 2))
(2scnd (mul (car sp) 2)))
(when (eq (caar l) '%tanh)
(psetq 2frst 2scnd 2scnd 2frst))
(cons (let ((cosh (take '(%cosh) 2frst))
(cos (take '(%cos) 2scnd)))
(root (div (add cosh (neg cos))
(add cosh cos))
2))
(take '(%atan)
(if (eq (caar l) '%tan)
(div (take '(%sinh) 2frst) (take '(%sin) 2scnd))
(div (take '(%sin) 2frst) (take '(%sinh) 2scnd)))))))
((specrepp l) (absarg (specdisrep l) absflag))
((let ((foot (coversinemyfoot l)))
(and foot (not (=0 (cdr (risplit (cadr l))))) (absarg foot absflag))))
(t
(let ((ris (trisplit l)))
(xcons
;;; Arguments must be in this order so that the side-effect of the Atan2,
;;; that is, determining the Asksign of the argument, can happen before
;;; Take Mabs does its Sign. Blame JPG for noticing this lossage.
(if absflag 0 (genatan (cdr ris) (car ris)))
(cond ((equal (car ris) 0) (absarg-mabs (cdr ris)))
((equal (cdr ris) 0) (absarg-mabs (car ris)))
(t (powers ($expand (add (powers (car ris) 2)
(powers (cdr ris) 2))
1 0)
(half)))))))))
(defun genatan (num den)
(let ((arg (take '($atan2) num den)))
(if (or generate-atan2
(zerop1 den)
(free arg '$atan2))
arg
(take '(%atan) (div num den)))))
(defun absarg-mabs (l)
(cond ((eq (csign l) t)
(if (member (caar l) '(mabs %cabs) :test #'eq)
l
(list '(mabs simp) l))) ; mabs and not %cabs as noun form
((member ($csign l) '($complex $imaginary))
;; Do not try to simplify a complex expression at this point,
;; this would cause an endless loop. Return a noun form.
(list '(mabs simp) l))
(t
(take '(mabs) l))))
|