This file is indexed.

/usr/share/maxima/5.32.1/src/rpart.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1982 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module rpart)

;;;	Complex variable utilities
;;;
;;; Macsyma functions: $realpart $imagpart $rectform $polarform
;;;		       $cabs $carg
;;; Utility functions: trisplit risplit absarg cabs andmapc andmapcar

(load-macsyma-macros rzmac)

(declare-top (special $%emode $radexpand rp-polylogp $domain $m1pbranch
		      $logarc rischp $keepfloat complexsign))

(defmvar implicit-real nil "If t RPART assumes radicals and logs
	 of real quantities are real and doesn't ask sign questions")

(defmvar generate-atan2 t "Controls whether RPART will generate ATAN's
			or ATAN2's, default is to make ATAN2's")
;; generate-atan2 is set to nil when doing integration to avoid
;; generating discontinuities that defint can't handle.

;;; Realpart gives the real part of an expr.

(defmfun $realpart (xx) (car (trisplit xx)))

(defprop $realpart %realpart verb)
(defprop %realpart $realpart noun)
(defprop %realpart simp-realpart operators)

(defun simp-realpart (expr z simpflag)
  (oneargcheck expr)
  (setq z (simpcheck (cadr expr) simpflag))
  (let ((sgn nil))
    (cond ((mnump z) z)
          ((eq (setq sgn ($csign z)) '$imaginary)
           0)
          ((eq sgn '$complex)
           (cond ((complex-number-p ($expand z) 'bigfloat-or-number-p)
                  ($realpart z))
                 (t 
                  (eqtest (list '(%realpart) z) expr))))
          (t 
           (eqtest (list '(%realpart) z) expr)))))

;;; Imagpart gives the imaginary part of an expr.

(defmfun $imagpart (xx) (cdr (trisplit xx)))

(defprop $imagpart %imagpart verb)
(defprop %imagpart $imagpart noun)
(defprop %imagpart simp-imagpart operators)

(defun simp-imagpart (expr z simpflag)
  (oneargcheck expr)
  (setq z (simpcheck (cadr expr) simpflag))
  (let ((sgn nil))
    (cond ((mnump z) 0)
          ((eq (setq sgn ($csign z)) '$imaginary)
           (mul -1 '$%i z))
          ((eq sgn '$complex)
           (cond ((complex-number-p ($expand z) 'bigfloat-or-number-p)
                  ($imagpart z))
                 (t 
                  (eqtest (list '(%imagpart) z) expr))))
          (t 
           (eqtest (list '(%imagpart) z) expr)))))

;;; Rectform gives a result of the form a+b*%i.

(defmfun $rectform (xx)
  (let ((ris (trisplit xx)))
    (add (car ris) (mul (cdr ris) '$%i))))

;;; Polarform gives a result of the form a*%e^(%i*b).

(defmfun $polarform (xx)
  (cond ((and (not (atom xx)) (member (caar xx) '(mequal mlist $matrix) :test #'eq))
	 (cons (car xx) (mapcar #'$polarform (cdr xx))))
	(t
	 (let ((aas (absarg xx)) ($%emode nil))
	   (mul (car aas) (powers '$%e (mul '$%i (cdr aas))))))))

;;; Cabs gives the complex absolute value.  Nota bene: an expression may
;;; be syntactically real without being real (e.g. sqrt(x), x<0).  Thus
;;; Cabs must lead an independent existence from Abs.

(defmfun $cabs (xx) (cabs xx))

(defprop $cabs %cabs verb)
(defprop %cabs $cabs noun)
(defprop %cabs simp-cabs operators)

(defun simp-cabs (expr z simpflag)
  (oneargcheck expr)
  (setq z (simpcheck (cadr expr) simpflag))
  (let ((sgn nil))
    (cond ((member (setq sgn ($csign z)) '($complex $imaginary))
           (cond ((complex-number-p ($expand z) 'bigfloat-or-number-p)
                  (simplify (list '(mabs) z)))
                 (t
                  (eqtest (list '(mabs) z) expr))))
          ((eq sgn '$zero)
           0)
          ((member sgn '($pos $pz))
           z)
          ((eq sgn '$neg)
            (mul -1 z))
          (t 
           (eqtest (list '(mabs) z) expr)))))

;;; Carg gives the complex argument.

(defmfun $carg (xx)
  (cond ((and (not (atom xx)) 
              (member (caar xx) '(mequal mlist $matrix) :test #'eq))
	 (cons (car xx) (mapcar #'$carg (cdr xx))))
	(t (cdr (absarg xx)))))

(defprop $carg %carg verb)
(defprop %carg $carg noun)
(defprop %carg simp-carg operators)

(defun simp-carg (expr z simpflag)
  (oneargcheck expr)
  (setq z (simpcheck (cadr expr) simpflag))
  (let ((sgn nil))
    (cond ((eq z '$%i)
           (div '$%pi 2))
          ((member (setq sgn ($csign z)) '($complex $imaginary))
           (cond ((complex-number-p ($expand z) 'bigfloat-or-number-p)
                  ($carg z))
                 (t 
                  (eqtest (list '(%carg) z) expr))))
          ((member sgn '($pos $pz $zero))
           0)
          ((eq sgn '$neg)
            '$%pi)
          (t 
           (eqtest (list '(%carg) z) expr)))))

;; The internal cabs, used by other Macsyma programs.
(defmfun cabs (xx) (car (absarg xx t)))

;; Some objects can only appear at the top level of a legal simplified
;; expression: CRE forms and equations in particular.

(defun trisplit (el) ; Top level of risplit
  (cond ((atom el) (risplit el))
	((specrepp el) (trisplit (specdisrep el)))
	((eq (caar el) 'mequal) (dot-sp-ri (cdr el) '(mequal simp)))
	(t (risplit el))))

;;; Auxiliaries

;; These are Macsyma equivalents to (mapcar 'trisplit ...).  They must
;; differ from other maps for two reasons: the lists are Macsyma lists,
;; and therefore prefixed with list indicators; and the results must
;; be separated: ((a . b) (c . d)) becomes something like ([a,c].[b,d]).

(defun dsrl (el) (dot-sp-ri (cdr el) '(mlist simp)))

(defun dot-sp-ri (el ind)
  (dot--ri (mapcar #'trisplit el) ind))

;; Dot--ri does the ((a.b)(c.d))->([a,c].[b,d]) transformation with
;; minimal Cons'ing.

(defun dot--ri (el ind)
  (do ((i el (cdr i)) (k))
      ((null i) (cons (cons ind (nreverse k)) (cons ind el)))
    (let ((cdari (cdar i)))
      (setq k (rplacd (car i) k))
      (rplaca i cdari))))

(defun risplit-mplus (l)
  (do ((rpart) (ipart) (m (cdr l) (cdr m)))
      ((null m) (cons (addn rpart t) (addn ipart t)))
    (let ((sp (risplit (car m))))
      (cond ((=0 (car sp)))
	    (t (setq rpart (cons (car sp) rpart))))
      (cond ((=0 (cdr sp)))
	    (t (setq ipart (cons (cdr sp) ipart)))))))

(defun risplit-times (l)
  (let ((risl (do ((purerl nil)
		   (compl nil)
		   (l (cdr l) (cdr l)))
		  ((null l) (cons purerl compl))
		(let ((sp (risplit (car l))))
		  (cond ((=0 (cdr sp))
			 (setq purerl (rplacd sp purerl)))
			((or (atom (car sp)) (atom (cdr sp)))
			 (setq compl (cons sp compl)))
			((and (eq (caaar sp) 'mtimes)
;;;Try risplit z/w and notice denominator.  If this check were not made,
;;; the real and imaginary parts would not each be over a common denominator.
			      (eq (caadr sp) 'mtimes)
			      (let ((nr (nreverse (cdar sp)))
				    (ni (nreverse (cddr sp))))
				(cond ((equal (car nr) (car ni))
				       (push (car nr) purerl)
				       (push (cons (muln (nreverse (cdr nr)) t)
						   (muln (nreverse (cdr ni)) t))
					     compl))
				      (t
				       (setq nr (nreverse nr))
				       (setq ni (nreverse ni))
				       nil)))))
			(t
			 (push sp compl)))))))
    (cond ((null (cdr risl))
	   (cons (muln (car risl) t) 0))
	  (t
	   (do ((rpart 1) (ipart 0) (m (cdr risl) (cdr m)))
	       ((null m)
		(cons (muln (cons rpart (car risl)) t)
		      (muln (cons ipart (car risl)) t)))
	     (psetq rpart (sub (mul rpart (caar m)) (mul ipart (cdar m)))
		    ipart (add (mul ipart (caar m)) (mul rpart (cdar m)))))))))

;; Split L = ((mexpt) BASE POW) into real and imaginary parts.
(defun risplit-expt (l)
  (let* ((base (cadr l)) (pow (caddr l))
         ;; Disable 'simplifications' like sqrt(-x) -> %i*sqrt(x)
         ($radexpand nil)
         (sp (risplit base)))
    (cond
      ((fixnump pow)
       (risplit-expt-fixnum-pow sp pow))

      ((and (ratnump pow)
            (fixnump (cadr pow))
            (not (< (cadr pow) (- $maxnegex)))
            (not (> (cadr pow) $maxposex))
            (or (= (caddr pow) 2) (=0 (cdr sp))))
       (if (=0 (cdr sp))
           (risplit-expt-real^rat base pow)
           (risplit-expt-sqrt-pow base sp pow)))

      ((and (floatp base) (floatp pow))
       (risplit (let (($numer t)) (exptrl base pow))))

      (t
       (destructuring-bind (alpha . beta) (risplit pow)
         (destructuring-bind (r . theta) (absarg1 base)
           (risplit-expt-general-form r theta alpha beta)))))))

;; Split BASE^POWER into real and imaginary parts. POWER is assumed to be a
;; fixnum. SP is (RISPLIT BASE)
(defun risplit-expt-fixnum-pow (sp power)
  ;; We use the squared absolute value of BASE several times
  ;; below. Unfortunately, we can't calculate it at the start, since that causes
  ;; floating point under/overflows in the case mentioned in the comment
  ;; below. Instead, we calculate it when it's needed (a maximum of once).
  (destructuring-bind (real . imag) sp
    (cond
      ((= power -1)
       ;; Handle the case of 1/(x+%i*y) carefully.  This
       ;; is needed if x and y are (Lisp) numbers to
       ;; prevent spurious underflows/overflows. See bug 1908.
       (if (and (or (numberp real) (ratnump real))
                (or (numberp imag) (ratnump imag)))
           (sprecip sp)
           (let ((abs2 (spabs sp)))
             (cons (div real abs2) (mul -1 (div imag abs2))))))

      ((> (abs power) $maxposex)
       (if (=0 imag)
           (cons (powers real power) 0)
           (let ((abs^n (powers (spabs sp) (*red power 2)))
                 (natan (mul power (genatan imag real))))
             (cons (mul abs^n (take '(%cos) natan))
                   (mul abs^n (take '(%sin) natan))))))

      ((> power 0)
       (expanintexpt sp power))

      (t
       (let ((abbas (powers (spabs sp) (- power)))
             (basspli (expanintexpt sp (- power))))
         (cons (div (car basspli) abbas)
               (neg (div (cdr basspli) abbas))))))))

;; Return the "general form" for RISPLIT applied to
;; (r*exp(%i*theta))^(alpha+%i*beta), whose rectform is
;;
;;   pre * cos(post) + %i * pre * sin(post)
;;
;; where pre  = exp(-theta*beta) * r^alpha
;; and   post = beta*log(r) + alpha*theta
(defun risplit-expt-general-form (r theta alpha beta)
  (let ((pre (mul (powers '$%e (mul -1 theta beta))
                  (powers r alpha)))
        (post (add (mul beta (take '(%log) r))
                   (mul alpha theta))))
    (cons (mul pre (take '(%cos) post))
          (mul pre (take '(%sin) post)))))

;; Split BASE^POWER into real and imaginary parts. We assume that BASE is real
;; and that POWER is a rational number.
(defun risplit-expt-real^rat (base power)
  (case (cond ((mnegp base) '$neg)
              (implicit-real '$pos)
              (t ($sign base)))    ; Use $sign not asksign
    ($neg (risplit (mul2 (power -1 power) (power (neg base) power))))
    ($zero (cons (power 0 power) 0))
    ($pos (cons (power base power) 0))
    (t
     (destructuring-bind (r . theta) (absarg1 base)
       (risplit-expt-general-form r theta power 0)))))

;; Split BASE^POWER into real and imaginary parts. SP is (RISPLIT BASE). We
;; assume that POWER is a rational number. Moreover, we assume that the
;; denominator of POWER is 2.
(defun risplit-expt-sqrt-pow (base sp power)
  ;; n = abs(2*power) is a non-negative integer
  (destructuring-bind (real . imag) sp
    (let* ((abs2 (spabs sp)) (abs (power abs2 (1//2)))
           (n (abs (cadr power)))
           (pos? (> (cadr power) -1))
           (imag-sign ($sign imag)))
      (cond
        ((member imag-sign '($neg $pos))
         ;; Here, we use the half-angle formulas for cos and sin. Assuming we
         ;; are always taking the "principal square root" (that with argument
         ;; less than equal to the argument of base), these come out as
         ;;
         ;;   cos(arg/2) = +- sqrt((1+real/abs)/2)
         ;;   sin(arg/2) = +- sqrt((1-real/abs)/2)
         ;;
         ;; We know that real+%i*imag = abs*exp(%i*arg). Taking square roots,
         ;; you get that
         ;;
         ;;   sqrt(real+%i*imag) = sqrt(abs)*exp(%i*arg/2).
         ;;                      = sqrt(abs)*cos(arg/2) +
         ;;                           %i * sqrt(abs)*sin(arg/2)
         ;;                      = (sqrt(abs+real) + %i*sqrt(abs-real))/sqrt(2)
         ;;
         ;; but possibly with signs on the square roots. This function always
         ;; chooses the square root with the non-negative real part. As such, we
         ;; have to switch the sign of the sine term when we are raising to a
         ;; positive power and imag < 0 or if raising to a negative power and
         ;; imag > 0. To see that the first argument of the PORM call below is
         ;; correct, write out the 2x2 truth table...
         (divcarcdr
          (expanintexpt
           (cons (power (add abs real) (1//2))
                 (porm (eq (eq imag-sign '$pos) pos?)
                       (power (sub abs real) (1//2))))
           n)
          (if pos?
              (power 2 (div n 2))
              (power (mul 2 abs2) (div n 2)))))

        (t
         (destructuring-bind (alpha . beta) (risplit power)
           (destructuring-bind (r . theta) (absarg1 base)
             (risplit-expt-general-form r theta alpha beta))))))))

(defun risplit-noun (l)
  (cons (simplify (list '(%realpart) l)) (simplify (list '(%imagpart) l))))


(defun absarg1 (arg)
  (let ((arg1 arg) ($keepfloat t))
    (cond ((and (or (free arg '$%i)
		    (free (setq arg1 (sratsimp arg)) '$%i))
		(not (eq (csign arg1) t)))
	   (setq arg arg1)
	   (if implicit-real
	       (cons arg 0)
	       (unwind-protect
		    (prog2 (assume `(($notequal) ,arg 0))
			(absarg arg))
		 (forget `(($notequal) ,arg 0)))))
	  (t (absarg arg)))))

;;;	Main function
;;; Takes an expression and returns the dotted pair
;;; (<Real part> . <imaginary part>).

(defun risplit (l)
  (let (($domain '$complex) ($m1pbranch t) $logarc op)
    (cond ((atom l)
           ;; Symbols are assumed to represent real values, unless they have
           ;; been declared to be complex. If they have been declared to be both
           ;; real and complex, they are taken to be real.
	   (cond ((eq l '$%i) (cons 0 1))
		 ((eq l '$infinity) (cons '$und '$und))
		 ((and (decl-complexp l) (not (decl-realp l))) (risplit-noun l))
		 (t (cons l 0))))
	  ((eq (caar l) 'rat) (cons l 0))
	  ((eq (caar l) 'mplus) (risplit-mplus l))
	  ((eq (caar l) 'mtimes) (risplit-times l))
	  ((eq (caar l) 'mexpt) (risplit-expt l))
	  ((eq (caar l) '%log)
	   (let ((aa (absarg1 (cadr l))))
	     (rplaca aa (take '(%log) (car aa)))))
	  ((eq (caar l) 'bigfloat) (cons l 0)) ;All numbers are real.
	  ((and (member (caar l) '(%integrate %derivative %laplace %sum) :test #'eq)
		(freel (cddr l) '$%i))
	   (let ((ris (risplit (cadr l))))
	     (cons (simplify (list* (ncons (caar l)) (car ris) (cddr l)))
		   (simplify (list* (ncons (caar l)) (cdr ris) (cddr l))))))
          ((eq (caar l) '$conjugate)
           (cons (simplify (list '(%realpart) (cadr l)))
                 (mul -1 (simplify (list '(%imagpart) (cadr l))))))
	  ((let ((ass (assoc (caar l)
			     '((%sin %cosh %cos . %sinh)
			       (%cos %cosh %sin . %sinh)
			       (%sinh %cos %cosh . %sin)
			       (%cosh %cos %sinh . %sin)) :test #'eq)))
;;;This clause handles the very similar trigonometric and hyperbolic functions.
;;; It is driven by the table at the end of the lambda.
	     (and ass
		  (let ((ri (risplit (cadr l))))
		    (cond ((=0 (cdr ri)) ;Pure real case.
			   (cons (take (list (car ass)) (car ri)) 0))
			  (t
			   (cons (mul (take (list (car ass)) (car ri))
				      (take (list (cadr ass)) (cdr ri)))
				 (negate-if (eq (caar l) '%cos)
					    (mul (take (list (caddr ass)) (car ri))
						 (take (list (cdddr ass)) (cdr ri)))))))))))
	  ((member (caar l) '(%tan %tanh) :test #'eq)
	   (let ((sp (risplit (cadr l))))
;;;The similar tan and tanh cases.
	     (cond ((=0 (cdr sp))
		    (cons l 0))
		   (t
		    (let* ((2rl (mul (car sp) 2))
			   (2im (mul (cdr sp) 2))
			   (denom (inv (if (eq (caar l) '%tan)
					   (add (take '(%cosh) 2im) (take '(%cos) 2rl))
					   (add (take '(%cos) 2im) (take '(%cosh) 2rl))))))
		      (if (eq (caar l) '%tan)
			  (cons (mul (take '(%sin) 2rl) denom)
				(mul (take '(%sinh) 2im) denom))
			  (cons (mul (take '(%sinh) 2rl) denom)
				(mul (take '(%sin) 2im) denom))))))))
	  ((and (member (caar l) '(%atan %csc %sec %cot %csch %sech %coth) :test #'eq)
		(=0 (cdr (risplit (cadr l)))))
	   (cons l 0))
          ((and (eq (caar l) '$atan2)
                (not (zerop1 (caddr l)))
                (=0 (cdr (risplit (div (cadr l) (caddr l))))))
           ;; Case atan2(y,x) and y/x a real expression.
           (cons l 0))
	  ((or (arcp (caar l)) (eq (caar l) '$atan2))
	   (let ((ans (risplit (let (($logarc t))
				 (resimplify l)))))
	     (when (eq (caar l) '$atan2)
	       (setq ans (cons (sratsimp (car ans)) (sratsimp (cdr ans)))))
	     (if (and (free l '$%i) (=0 (cdr ans)))
		 (cons l 0)
		 ans)))
	  ((eq (caar l) '%plog)
	   ;;  (princ '|Warning: Principal value not guaranteed for Plog in Rectform/|)
	   (risplit (cons '(%log) (cdr l))))
	  ((member (caar l) '(%realpart %imagpart mabs) :test #'eq) (cons l 0))
	  ((eq (caar l) '%erf)
	   (let ((ris (risplit (cadr l))) orig cc)
	     (setq orig (simplify (list '(%erf) (add (car ris) (mul '$%i (cdr ris))))))
	     (setq cc (simplify (list '(%erf) (sub (car ris) (mul '$%i (cdr ris))))))
	     (cons (div (add orig cc) 2) (div (sub orig cc) (mul 2 '$%i)))))
	  ;; Look for a risplit-function on the property list to handle the
	  ;; realpart and imagpart for this function.
          ((setq op (safe-get (mop l) 'risplit-function))
	   (funcall op l))
;;; ^ All the above are guaranteed pure real.
;;; The handling of lists and matrices below has to be thought through.
	  ((eq (caar l) 'mlist) (dsrl l))
	  ((eq (caar l) '$matrix)
	   (dot--ri (mapcar #'dsrl (cdr l)) '($matrix simp)))
	  ((member (caar l) '(mlessp mleqp mgreaterp mgeqp) :test #'eq)
	   (let ((ris1 (risplit (cadr l))) (ris2 (risplit (caddr l))))
	     (cons (simplify (list (ncons (caar l)) (car ris1) (car ris2)))
		   (simplify (list (ncons (caar l)) (cdr ris1) (cdr ris2))))))
;;;The Coversinemyfoot clause covers functions which can be converted
;;; to functions known by risplit, such as the more useless trigonometrics.
	  ((let ((foot (coversinemyfoot l)))
	     (and foot (risplit foot))))
          ((or (safe-get (mop l) 'real-valued)
               (decl-realp (mop l)))
           ;; Simplification for a real-valued function
           (cons l 0))
          ((or (safe-get (mop l) 'commutes-with-conjugate)
               (safe-get (mop l) 'conjugate-function))
	   ;; A function with Mirror symmetry. The general expressions for
	   ;; the realpart and imagpart simplifies accordingly.
	   (cons (mul (div 1 2)
		      (add (simplify (list '($conjugate) l)) l))
		 (mul (div 1 2) '$%i
		      (sub (simplify (list '($conjugate) l)) l))))
;;; A MAJOR ASSUMPTION:
;;;  All random functions are pure real, regardless of argument.
;;;  This is evidently assumed by some of the integration functions.
;;;  Perhaps the best compromise is to return 'realpart/'imagpart
;;;   under the control of a switch set by the integrators.  First
;;;   all such dependencies must be found in the integ
	  ((and rp-polylogp (mqapplyp l) (eq (subfunname l) '$li)) (cons l 0))
	  ((prog2 (setq op (if (eq (caar l) 'mqapply) (caaadr l) (caar l)))
	       (decl-complexp op))
	   (risplit-noun l))
	  ((and (eq (caar l) '%product) (not (free (cadr l) '$%i)))
	   (risplit-noun l))
          (($subvarp l)
           ;; return a real answer for subscripted variable
           (cons l 0))
          (t
           (cons (list '(%realpart simp) l)
                 (list '(%imagpart simp) l))))))

(defun coversinemyfoot (l)
  (prog (recip)
     (cond ((not (member (caar l) '(%csc %sec %cot %csch %sech %coth) :test #'eq)))
	   ((null (setq recip (get (caar l) 'recip))))
	   (t (return (div 1 (cons (list recip) (cdr l))))))))

(defun powers (c d)
  (cond ((=1 d) c)
	((equal d 0) 1)		      ;equal to preclude 0^(pdl 0)->0:
	((=0 c) 0)			; see comment before =0.
	((=1 c) 1)
	(t (power c d))))

(defun spabs (sp)
  ;; SP is a cons of the real part and imaginary part of a complex
  ;; number.  SPABS computes the sum of squares of the real and
  ;; imaginary parts.
  (add (powers (car sp) 2)
       (powers (cdr sp) 2)))

;; Compute 1/(x+%i*y) when both x and y are Lisp numbers or Maxima
;; rationals.  Return a cons of the real and imaginary part of the
;; result.  We count on the underlying Lisp to be able to compute (/
;; (complex x y)) accurately and without unnecessary overflow or
;; underflow..  If not, complain to your Lisp vendor.  Well, it seems
;; that Clisp, CMUCL, and SBCL do a nice job.  But others apparently
;; do not.  (I tested ecl 9.12.3 and ccl 1.4, which both fail.)
;; Workaround those deficiencies.
(defun sprecip (sp)
  (destructuring-bind (x . y)
      sp
    #+(or cmu sbcl)
    (let* ((x (bigfloat:to x))
	   (y (bigfloat:to y))
	   (q (bigfloat:/ (bigfloat:complex x y))))
      (cons (to (bigfloat:realpart q))
	    (to (bigfloat:imagpart q))))
    #-(or cmu sbcl)
    (let ((x (bigfloat:to x))
	  (y (bigfloat:to y)))
      ;; 1/(x+%i*y).
      ;;
      ;; Assume abs(x) > abs(y).  Let r = y/x.  Then
      ;; 1/(x+%i*y) = 1/x/(1+%i*r)
      ;;            = (1-%i*r)/(x*(1+r*r))
      ;;
      ;; The case for abs(x) <= abs(y) is similar with r = x/y:
      ;; 1/(x+%i*y) = 1/y/(r+%i)
      ;;            = (r-%i)/(y*(1+r^2))
      (if (> (bigfloat:abs x) (bigfloat:abs y))
	  (let* ((r (bigfloat:/ y x))
		 (dn (bigfloat:* x (bigfloat:+ 1 (bigfloat:* r r)))))
	    (cons (to (bigfloat:/ dn))
		  (to (bigfloat:/ (bigfloat:- r) dn))))
	  (let* ((r (bigfloat:/ x y))
		 (dn (bigfloat:* y (bigfloat:+ 1 (bigfloat:* r r)))))
	    (cons (to (bigfloat:/ r dn))
		  (to (bigfloat:/ (bigfloat:- dn)))))))))
      
  


(defvar negp* (let ((l (list nil nil t t))) (nconc l l)))

(defun divcarcdr (a b)
  (cons (div (car a) b) (div (cdr a) b)))


;;Expand bas^n, where bas is (<real part> . <imaginary part>)

(defun expanintexpt (bas n)
  (cond ((= n 1) bas)
	(t (do ((rp (car bas))
		(ip (cdr bas))
		(c 1 (quotient (* c ex) i))
		(ex n (1- ex)) (i 1 (1+ i))
		(rori t (not rori)) (negp negp* (cdr negp))
		(rpt nil) (ipt nil))
	       ((< ex 0) (cons (addn rpt t) (addn ipt t)))
	     (declare (fixnum ex i))
	     (set-either rpt ipt
			 rori
			 (cons (negate-if (car negp)
					  (mul c
					       (powers rp ex)
					       (powers ip (1- i))))
			       (cond (rori rpt) (t ipt))))))))



;;;   Subtract out multiples of 2*%pi with a minimum of consing.
;;;   Attempts to reduce to interval (-pi,pi].

(defun 2pistrip (exp)
  (cond ((atom exp) exp)
	((eq (caar exp) 'mtimes)
	 (cond ((and (mnump (cadr exp))
		     (eq (caddr exp) '$%pi)
		     (null (cdddr exp)))
		(cond ((integerp (cadr exp))	; 5*%pi
		       (mul (mod (cadr exp) 2) '$%pi))
		      ((floatp (cadr exp))	; 1.5*%pi
		       (mul (1- (mod (1+ (cadr exp)) 2))
			    '$%pi))
		      ;; Neither 0 nor 1 appears as a coef
		      ((and (listp (cadr exp))
			    (eq 'rat (caaadr exp))) ;5/2*%pi
		       (mul (list* '(rat simp)
				   (- (mod (+ (cadadr exp) (car (cddadr exp)))
					   (* 2 (car (cddadr exp))))
				      (car (cddadr exp)))
				   (cddadr exp))
			    '$%pi))
		      (t exp)))
	       (t exp)))
	((eq (caar exp) 'mplus)
	 (let ((res (2pirec (cdr exp))))
	   (if (eq res (cdr exp))
	       exp
	       (addn res t))))
	(t exp)))

(defun 2pirec (fm)			;Takes a list of exprs
  (cond ((null (cdr fm))		;If monad, just return.
	 (let ((2pf (2pistrip (car fm))))
	   (cond ((eq 2pf (car fm)) fm)
		 ((=0 2pf) nil)
		 (t (list 2pf)))))
	(t
	 (let ((2pfma (2pistrip (car fm)))
	       (2pfmd (2pirec (cdr fm))))
	   (cond ((or (null 2pfmd) (=0 2pfmd)) 2pfma)
		 ((and (eq 2pfmd (cdr fm)) (eq 2pfma (car fm))) fm)
		 (t (cons 2pfma 2pfmd)))))))

;;;	Rectify into polar form; Arguments similar to risplit

(defun argnum (n)
  (if (minusp n)
      (simplify '$%pi)
      0))


;; absarg
;; returns pair (abs . arg)
;; if absflag is true, arg result is not guaranteed to be correct

;; The function of Absflag is to communicate that only the absolute
;; value part of the result is wanted.  This allows Absarg to avoid asking
;; questions irrelevant to the absolute value.  For instance, Cabs(x) is
;; invariably Abs(x), while the complex phase may be 0 or %pi.  Note also
;; the steps taken in Absarg to assure that Asksign's will happen before Sign's
;; as often as possible, so that, for instance, Abs(x) can be simplified to
;; x or -x if the sign of x must be known for some other reason.  These
;; techniques, however, are not perfect.

(defun absarg (l &optional (absflag nil))
;; Commenting out the the expansion of the expression l. It seems to be not
;; necessary, but can cause expression swelling (DK 01/2010).
;  (setq l ($expand l))
  (cond ((atom l)
	 (cond ((eq l '$%i)
		(cons 1 (simplify '((mtimes) ((rat simp) 1 2) $%pi))))
	       ((numberp l)
		(cons (abs l) (argnum l)))
	       ((member l '($%e $%pi) :test #'eq) (cons l 0))
	       ((eq l '$infinity) (cons '$inf '$ind))
               ((decl-complexp l)
                (cons (list '(mabs simp) l) ; noun form with mabs
                      (list '(%carg simp) l)))
	       (absflag (cons (take '(mabs) l) 0))
	       (t
                ;; At this point l is representing a real value. Try to 
                ;; determine the sign and return a general form when the sign is
                ;; unknown.
		(let ((gs (if (eq rischp l) '$pos ($sign l))))
		  (cond ((member gs '($pos $pz)) (cons l 0))
			((eq gs '$zero) (cons 0 0))
			((eq gs '$neg)
			 (cons (neg l) (simplify '$%pi)))
			(t (cons (take '(mabs) l) (genatan 0 l))))))))
	((eq '$zero (let ((sign-imag-errp nil)) (catch 'sign-imag-err ($sign l))))
	 (cond ((some-bfloatp l)
		(cons bigfloatzero bigfloatzero))	; contagious
	       ((some-floatp l)
		(cons 0.0 0.0))
	       (t (cons 0 0))))
	((member (caar l) '(rat bigfloat) :test #'eq)
	 (cons (list (car l) (abs (cadr l)) (caddr l))
	       (argnum (cadr l))))
	((eq (caar l) 'mtimes)
	 (do ((n (cdr l) (cdr n))
	      (abars)
	      (argl () (cons (cdr abars) argl))
	      (absl () (rplacd abars absl)))
	     (())
	   (unless n
	     (return (cons (muln absl t) (2pistrip (addn argl t)))))
	   (setq abars (absarg (car n) absflag))))
        ((eq (caar l) 'mexpt)
         ;; An expression z^a
         (let ((aa (absarg (cadr l) nil)) ; (abs(z) . arg(z))
               (sp (risplit (caddr l)))   ; (realpart(a) . imagpart(a))
               ($radexpand nil))
           (cond ((and (zerop1 (cdr sp))
                       (eq ($sign (sub 1 (take '(mabs) (car sp)))) '$pos))
                  ;; Special case: a is real and abs(a) < 1.
                  ;; This simplifies e.g. carg(sqrt(z)) -> carg(z)/2
                  (cons (mul (power (car aa) (car sp))
                             (power '$%e (neg (mul (cdr aa) (cdr sp)))))
                        (mul (caddr l) (cdr aa))))
                 (t
                  ;; General case for z and a
                  (let ((arg (add (mul (cdr sp) (take '(%log) (car aa)))
                                  (mul (cdr aa) (car sp)))))
                    (cons (mul (power (car aa) (car sp))
                               (power '$%e (neg (mul (cdr aa) (cdr sp)))))
                          (if generate-atan2
			      (take '($atan2)
				    (take '(%sin) arg)
				    (take '(%cos) arg))
			    (take '(%atan) (take '(%tan) arg)))))))))
	((and (member (caar l) '(%tan %tanh) :test #'eq)
	      (not (=0 (cdr (risplit (cadr l))))))
	 (let* ((sp (risplit (cadr l)))
		(2frst (mul (cdr sp) 2))
		(2scnd (mul (car sp) 2)))
	   (when (eq (caar l) '%tanh)
	     (psetq 2frst 2scnd 2scnd 2frst))
	   (cons (let ((cosh (take '(%cosh) 2frst))
		       (cos (take '(%cos) 2scnd)))
		   (root (div (add cosh (neg cos))
			      (add cosh cos))
			 2))
		 (take '(%atan)
		       (if (eq (caar l) '%tan)
			   (div (take '(%sinh) 2frst) (take '(%sin) 2scnd))
			   (div (take '(%sin) 2frst) (take '(%sinh) 2scnd)))))))
	((specrepp l) (absarg (specdisrep l) absflag))
	((let ((foot (coversinemyfoot l)))
	   (and foot (not (=0 (cdr (risplit (cadr l))))) (absarg foot absflag))))
	(t
	 (let ((ris (trisplit l)))
	   (xcons
;;; Arguments must be in this order so that the side-effect of the Atan2,
;;; that is, determining the Asksign of the argument, can happen before
;;; Take Mabs does its Sign.  Blame JPG for noticing this lossage.
	    (if absflag 0 (genatan (cdr ris) (car ris)))
	    (cond ((equal (car ris) 0) (absarg-mabs (cdr ris)))
		  ((equal (cdr ris) 0) (absarg-mabs (car ris)))
		  (t (powers ($expand (add (powers (car ris) 2)
					   (powers (cdr ris) 2))
				      1 0)
			     (half)))))))))

(defun genatan (num den)
  (let ((arg (take '($atan2) num den)))
    (if (or generate-atan2
            (zerop1 den)
            (free arg '$atan2))
        arg
        (take '(%atan) (div num den)))))

(defun absarg-mabs (l)
  (cond ((eq (csign l) t)
         (if (member (caar l) '(mabs %cabs) :test #'eq) 
             l 
             (list '(mabs simp) l))) ; mabs and not %cabs as noun form
        ((member ($csign l) '($complex $imaginary))
         ;; Do not try to simplify a complex expression at this point,
         ;; this would cause an endless loop. Return a noun form.
         (list '(mabs simp) l))
        (t 
         (take '(mabs) l))))