/usr/share/maxima/5.32.1/src/simp.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module simp)
(declare-top (special rulesw *inv* substp limitp
prods negprods sums negsums
$scalarmatrixp *nounl*
$keepfloat $ratprint
$demoivre $float
bigfloatzero bigfloatone $assumescalar
opers-list *opers-list $dontfactor *n
*out *in varlist genvar $factorflag radcanp
*builtin-numeric-constants*))
;; General purpose simplification and conversion switches.
(defmvar $negdistrib t
"Causes negations to be distributed over sums, e.g. -(A+B) is
simplified to -A-B.")
(defmvar $numer nil
"Causes SOME mathematical functions (including exponentiation)
with numerical arguments to be evaluated in floating point.
It causes variables in an expression which have been given
NUMERVALs to be replaced by their values. It also turns
on the FLOAT switch."
see-also ($numerval $float))
(defmvar $simp t "Enables simplification.")
(defmvar $sumexpand nil
"If TRUE, products of sums and exponentiated sums go into nested
sums.")
(defmvar $numer_pbranch nil)
;; Switches dealing with matrices and non-commutative multiplication.
(defmvar $doscmxplus nil
"Causes SCALAR + MATRIX to return a matrix answer. This switch
is not subsumed under DOALLMXOPS.")
(defmvar $domxexpt t
"Causes SCALAR^MATRIX([1,2],[3,4]) to return
MATRIX([SCALAR,SCALAR^2],[SCALAR^3,SCALAR^4]). In general, this
transformation affects exponentiations where the *print-base* is a
scalar and the power is a matrix or list.")
(defmvar $domxplus nil)
(defmvar $domxtimes nil)
(defmvar $mx0simp t)
;; Switches dealing with expansion.
(defmvar $expop 0
"The largest positive exponent which will be automatically
expanded. (X+1)^3 will be automatically expanded if
EXPOP is greater than or equal to 3."
fixnum
see-also ($expon $maxposex $expand))
(defmvar $expon 0
"The largest negative exponent which will be automatically
expanded. (X+1)^(-3) will be automatically expanded if
EXPON is greater than or equal to 3."
fixnum
see-also ($expop $maxnegex $expand))
(defmvar $maxposex 1000.
"The largest positive exponent which will be expanded by
the EXPAND command."
fixnum
see-also ($maxnegex $expop $expand))
;; Check assignment to be a positive integer
(putprop '$maxposex 'posintegerset 'assign)
(defmvar $maxnegex 1000.
"The largest negative exponent which will be expanded by
the EXPAND command."
fixnum
see-also ($maxposex $expon $expand))
;; Check assignment to be a positive integer
(putprop '$maxnegex 'posintegerset 'assign)
;; Lisp level variables
(defmvar dosimp nil
"Causes SIMP flags to be ignored. $EXPAND works by binding
$EXPOP to $MAXPOSEX, $EXPON to $MAXNEGEX, and DOSIMP to T.")
(defmvar errorsw nil
"Causes a throw to the tag ERRORSW when certain errors occur
rather than the printing of a message. Kludgy MAXIMA-SUBSTITUTE for
MAXIMA-ERROR signalling.")
(defmvar derivsimp t "Hack in `simpderiv' for `rwg'")
(defmvar $rootsepsilon #+gcl (float 1/10000000) #-gcl 1e-7)
(defmvar $grindswitch nil)
(defmvar $algepsilon 100000000)
(defmvar $true t)
(defmvar $false nil)
(defmvar $on t)
(defmvar $off nil)
(defmvar $logabs nil)
(defmvar $limitdomain '$complex)
(defmvar $listarith t)
(defmvar $domain '$real)
(defmvar $m1pbranch nil)
(defmvar $%e_to_numlog nil)
(defmvar $%emode t)
(defmvar $lognegint nil)
(defmvar $ratsimpexpons nil)
(defmvar $logexpand t) ; Possible values are T, $ALL and $SUPER
(defmvar $radexpand t)
(defmvar $subnumsimp nil)
(defmvar $logsimp t)
(defmvar $distribute_over t) ; If T, functions are distributed over bags.
(defvar rischp nil)
(defvar rp-polylogp nil)
(defvar wflag nil)
(defvar expandp nil)
(defvar timesinp nil)
(defvar %e-val (mget '$%e '$numer))
(defvar %pi-val (mget '$%pi '$numer))
(defvar derivflag nil)
(defvar exptrlsw nil)
(defvar expandflag nil)
(defvar *zexptsimp? nil)
(defvar *const* 0)
(defprop mnctimes t associative)
(defprop lambda t lisp-no-simp)
;; Local functions should not be simplified. Various lisps
;; use various names for the list structure defining these:
(eval-when
#+gcl (load)
#-gcl (:load-toplevel)
(eval '(let* ((x 1)
(z #'(lambda () 3)))
(dolist (y (list x z))
(and (consp y)
(symbolp (car y))
(setf (get (car y) 'lisp-no-simp) t))))))
(dolist (x '(mplus mtimes mnctimes mexpt mncexpt %sum))
(setf (get x 'msimpind) (cons x '(simp))))
;; operators properties
(mapc #'(lambda (x) (setf (get (first x) 'operators) (second x)))
'((mplus simplus) (mtimes simptimes) (mncexpt simpncexpt)
(mminus simpmin) (%gamma simpgamma) (mfactorial simpfact)
(mnctimes simpnct) (mquotient simpquot) (mexpt simpexpt)
(%log simpln)
(%derivative simpderiv)
(%signum simpsignum)
(%integrate simpinteg) (%limit simp-limit)
(bigfloat simpbigfloat) (lambda simplambda) (mdefine simpmdef)
(mqapply simpmqapply) (%gamma simpgamma)
($beta simpbeta) (%sum simpsum) (%binomial simpbinocoef)
(%plog simpplog) (%product simpprod) (%genfact simpgfact)
($atan2 simpatan2) ($matrix simpmatrix) (%matrix simpmatrix)
($bern simpbern) ($euler simpeuler)))
(defprop $li lisimp specsimp)
(defprop $psi psisimp specsimp)
(defprop $equal t binary)
(defprop $notequal t binary)
(defun $bfloatp (x)
(and (consp x)
(consp (car x))
(eq (caar x) 'bigfloat)))
(defun zerop1 (x)
(or (and (integerp x) (= 0 x))
(and (floatp x) (= 0.0 x))
(and ($bfloatp x) (= 0 (second x)))))
(defun onep1 (x)
(or (and (integerp x) (= 1 x))
(and (floatp x) (= 1.0 x))
(and ($bfloatp x) (zerop1 (sub x 1)))))
(defmfun mnump (x)
(or (numberp x)
(and (not (atom x)) (not (atom (car x)))
(member (caar x) '(rat bigfloat)))))
;; Does X or a subexpression match PREDICATE?
;;
;; If X is a tree then we recurse depth-first down its arguments. The specrep
;; check is because rat forms are built rather differently from normal Maxima
;; expressions so we need to unpack them for the recursion to work properly.
(defun subexpression-matches-p (predicate x)
(or (funcall predicate x)
(and (consp x)
(if (specrepp x)
(subexpression-matches-p predicate (specdisrep x))
(some (lambda (arg) (subexpression-matches-p predicate arg))
(cdr x))))))
;; Is there a bfloat anywhere in X?
(defun some-bfloatp (x) (subexpression-matches-p '$bfloatp x))
;; Is there a float anywhere in X?
(defun some-floatp (x) (subexpression-matches-p 'floatp x))
;; EVEN works for any arbitrary lisp object since it does an integer
;; check first. In other cases, you may want the Lisp EVENP function
;; which only works for integers.
(defmfun even (a) (and (integerp a) (not (oddp a))))
(defmfun ratnump (x) (and (not (atom x)) (eq (caar x) 'rat)))
(defmfun mplusp (x) (and (not (atom x)) (eq (caar x) 'mplus)))
(defmfun mtimesp (x) (and (not (atom x)) (eq (caar x) 'mtimes)))
(defmfun mexptp (x) (and (not (atom x)) (eq (caar x) 'mexpt)))
(defmfun mnctimesp (x) (and (not (atom x)) (eq (caar x) 'mnctimes)))
(defmfun mncexptp (x) (and (not (atom x)) (eq (caar x) 'mncexpt)))
(defmfun mlogp (x) (and (not (atom x)) (eq (caar x) '%log)))
(defmfun mmminusp (x) (and (not (atom x)) (eq (caar x) 'mminus)))
(defmfun mnegp (x)
(cond ((realp x) (minusp x))
((or (ratnump x) ($bfloatp x)) (minusp (cadr x)))))
(defmfun mqapplyp (e) (and (not (atom e)) (eq (caar e) 'mqapply)))
(defmfun ratdisrep (e) (simplifya ($ratdisrep e) nil))
(defmfun sratsimp (e) (simplifya ($ratsimp e) nil))
(defmfun simpcheck (e flag)
(cond ((specrepp e) (specdisrep e))
(flag e)
(t (let (($%enumer $numer))
;; Switch $%enumer on, when $numer is TRUE to allow
;; simplification of $%e to its numerical value.
(simplifya e nil)))))
(defmfun mratcheck (e) (if ($ratp e) (ratdisrep e) e))
(defmfun $numberp (e) (or ($ratnump e) ($floatnump e) ($bfloatp e)))
(defmfun $integerp (x)
(or (integerp x)
(and ($ratp x)
(not (member 'trunc (car x)))
(integerp (cadr x))
(equal (cddr x) 1))))
;; The call to $INTEGERP in the following two functions checks for a CRE
;; rational number with an integral numerator and a unity denominator.
(defmfun $oddp (x)
(cond ((integerp x) (oddp x))
(($integerp x) (oddp (cadr x)))))
(defmfun $evenp (x)
(cond ((integerp x) (evenp x))
(($integerp x) (not (oddp (cadr x))))))
(defmfun $floatnump (x)
(or (floatp x)
(and ($ratp x) (floatp (cadr x)) (onep1 (cddr x)))))
(defmfun $ratnump (x)
(or (integerp x)
(ratnump x)
(and ($ratp x)
(not (member 'trunc (car x)))
(integerp (cadr x))
(integerp (cddr x)))))
(defmfun $ratp (x)
(and (not (atom x))
(consp (car x))
(eq (caar x) 'mrat)))
(defmfun $taylorp (x)
(and (not (atom x))
(eq (caar x) 'mrat)
(member 'trunc (cdar x) :test #'eq) t))
(defmfun specrepcheck (e) (if (specrepp e) (specdisrep e) e))
;; Note that the following two functions are carefully coupled.
(defmfun specrepp (e)
(and (not (atom e))
(member (caar e) '(mrat mpois) :test #'eq)))
(defmfun specdisrep (e)
(cond ((eq (caar e) 'mrat) (ratdisrep e))
(t ($outofpois e))))
(defmfun $polysign (x)
(setq x (cadr (ratf x)))
(cond ((equal x 0) 0) ((pminusp x) -1) (t 1)))
;; These check for the correct number of operands within Macsyma expressions,
;; not arguments in a procedure call as the name may imply.
(defmfun oneargcheck (l)
(if (or (null (cdr l)) (cddr l)) (wna-err (caar l))))
(defmfun twoargcheck (l)
(if (or (null (cddr l)) (cdddr l)) (wna-err (caar l))))
(defmfun wna-err (op) (merror (intl:gettext "~:@M: wrong number of arguments.") op))
(defmfun improper-arg-err (exp fn)
(merror (intl:gettext "~:M: improper argument: ~M") fn exp))
(defmfun subargcheck (form subsharp argsharp fun)
(if (or (not (= (length (subfunsubs form)) subsharp))
(not (= (length (subfunargs form)) argsharp)))
(merror (intl:gettext "~:@M: wrong number of arguments or subscripts.") fun)))
;; Constructor and extractor primitives for subscripted functions, e.g.
;; F[1,2](X,Y). SUBL is (1 2) and ARGL is (X Y).
;; These will be flushed when NOPERS is finished. They will be macros in
;; NOPERS instead of functions, so we have to be careful that they aren't
;; mapped or applied anyplace. What we really want is open-codable routines.
(defmfun subfunmakes (fun subl argl)
`((mqapply simp) ((,fun simp array) . ,subl) . ,argl))
(defmfun subfunmake (fun subl argl)
`((mqapply) ((,fun simp array) . ,subl) . ,argl))
(defmfun subfunname (exp) (caaadr exp))
(defmfun subfunsubs (exp) (cdadr exp))
(defmfun subfunargs (exp) (cddr exp))
(defmfun $numfactor (x)
(setq x (specrepcheck x))
(cond ((mnump x) x)
((atom x) 1)
((not (eq (caar x) 'mtimes)) 1)
((mnump (cadr x)) (cadr x))
(t 1)))
(defun scalar-or-constant-p (x flag)
(if flag (not ($nonscalarp x)) ($scalarp x)))
(defmfun $constantp (x)
(cond ((atom x) (or ($numberp x) (kindp x '$constant)))
((member (caar x) '(rat bigfloat) :test #'eq) t)
((specrepp x) ($constantp (specdisrep x)))
((or (mopp (caar x)) (kindp (caar x) '$constant))
(do ((x (cdr x) (cdr x))) ((null x) t)
(if (not ($constantp (car x))) (return nil))))))
(defmfun constant (x)
(cond ((symbolp x) (kindp x '$constant))
(($subvarp x)
(and (kindp (caar x) '$constant)
(do ((x (cdr x) (cdr x))) ((null x) t)
(if (not ($constantp (car x))) (return nil)))))))
(defun maxima-constantp (x)
(or (numberp x)
(and (symbolp x) (kindp x '$constant))))
(defun consttermp (x) (and ($constantp x) (not ($nonscalarp x))))
(defmfun $scalarp (x) (or (consttermp x) (eq (scalarclass x) '$scalar)))
(defmfun $nonscalarp (x) (eq (scalarclass x) '$nonscalar))
(defun scalarclass (exp) ; Returns $SCALAR, $NONSCALAR, or NIL (unknown).
(cond ((mnump exp)
;; Maxima numbers are scalar.
'$scalar)
((atom exp)
(cond ((or (mget exp '$nonscalar)
(and (not (mget exp '$scalar))
;; Arrays are nonscalar, but not if declared scalar.
(or (arrayp exp)
($member exp $arrays))))
'$nonscalar)
((or (mget exp '$scalar)
;; Include constant atoms which are not declared nonscalar.
($constantp exp))
'$scalar)))
((member 'array (car exp))
(cond ((mget (caar exp) '$scalar) '$scalar)
((mget (caar exp) '$nonscalar) '$nonscalar)
(t nil)))
((specrepp exp) (scalarclass (specdisrep exp)))
;; If the function is declared scalar or nonscalar, then return. If it
;; isn't explicitly declared, then try to be intelligent by looking at
;; the arguments to the function.
((scalarclass (caar exp)))
;; <number> + <scalar> is SCALARP because that seems to be useful.
;; This should probably only be true if <number> is a member of the
;; field of scalars. <number> * <scalar> is SCALARP since
;; <scalar> + <scalar> is SCALARP. Also, this has to be done to make
;; <scalar> - <scalar> SCALARP.
((member (caar exp) '(mplus mtimes) :test #'eq)
(do ((l (cdr exp) (cdr l))) ((null l) '$scalar)
(if (not (consttermp (car l)))
(return (scalarclass-list l)))))
((and (eq (caar exp) 'mqapply) (scalarclass (cadr exp))))
((mxorlistp exp) '$nonscalar)
;; If we can't find out anything about the operator, then look at the
;; arguments to the operator. I think NIL should be returned at this
;; point. -cwh
(t
(do ((exp (cdr exp) (cdr exp)) (l '(1)))
((null exp) (scalarclass-list l))
(if (not (consttermp (car exp)))
(setq l (cons (car exp) l)))))))
;; Could also do <scalar> +|-|*|/ |^ <declared constant>, but this is not
;; always correct and could screw somebody.
;; SCALARCLASS-LIST takes a list of expressions as its argument. If their
;; scalarclasses all agree, then that scalarclass is returned.
(defun scalarclass-list (llist)
(cond ((null llist) nil)
((null (cdr llist)) (scalarclass (car llist)))
(t (let ((sc-car (scalarclass (car llist)))
(sc-cdr (scalarclass-list (cdr llist))))
(cond ((or (eq sc-car '$nonscalar)
(eq sc-cdr '$nonscalar))
'$nonscalar)
((and (eq sc-car '$scalar) (eq sc-cdr '$scalar))
'$scalar))))))
(defmfun mbagp (x)
(and (not (atom x))
(member (caar x) '(mequal mlist $matrix) :test #'eq)))
(defmfun mequalp (x) (and (not (atom x)) (eq (caar x) 'mequal)))
(defmfun mxorlistp (x)
(and (not (atom x))
(member (caar x) '(mlist $matrix) :test #'eq)))
(defun mxorlistp1 (x)
(and (not (atom x))
(or (eq (caar x) '$matrix)
(and (eq (caar x) 'mlist) $listarith))))
(defmfun constfun (ign)
(declare (ignore ign)) ; Arg ignored. Function used for mapping down lists.
*const*)
(defun constmx (*const* x)
(simplifya (fmapl1 'constfun x) t))
;;; ISINOP returns the complete subexpression with the operator OP, when the
;;; operator OP is found in EXPR.
(defun isinop (expr op) ; OP is assumed to be an atom
(cond ((atom expr) nil)
((and (eq (caar expr) op)
(not (member 'array (cdar expr) :test #'eq)))
expr)
(t
(do ((expr (cdr expr) (cdr expr))
(res nil))
((null expr))
(when (setq res (isinop (car expr) op))
(return res))))))
(defmfun free (exp var)
(cond ((alike1 exp var) nil)
((atom exp) t)
(t
(and (listp (car exp))
(free (caar exp) var)
(freel (cdr exp) var)))))
(defmfun freel (l var)
(do ((l l (cdr l))) ((null l) t)
(cond ((not (free (car l) var)) (return nil)))))
(defmfun freeargs (exp var)
(cond ((alike1 exp var) nil)
((atom exp) t)
(t (do ((l (margs exp) (cdr l))) ((null l) t)
(cond ((not (freeargs (car l) var)) (return nil)))))))
(defmfun simplifya (x y)
(cond ((not $simp) x)
((atom x)
(cond ((and $%enumer $numer (eq x '$%e))
;; Replace $%e with its numerical value,
;; when %enumer and $numer TRUE
(setq x %e-val))
(t x)))
((atom (car x))
(cond ((and (cdr x) (atom (cdr x)))
(merror (intl:gettext "simplifya: malformed expression (atomic cdr).")))
((get (car x) 'lisp-no-simp)
;; this feature is to be used with care. it is meant to be
;; used to implement data objects with minimum of consing.
;; forms must not bash the DISPLA package. Only new forms
;; with carefully chosen names should use this feature.
x)
(t (cons (car x)
(mapcar #'(lambda (x) (simplifya x y)) (cdr x))))))
((eq (caar x) 'rat) (*red1 x))
((and (not dosimp) (member 'simp (cdar x) :test #'eq)) x)
((eq (caar x) 'mrat) x)
((and (member (caar x) '(mplus mtimes mexpt) :test #'eq)
(member (get (caar x) 'operators) '(simplus simpexpt simptimes) :test #'eq)
(not (member 'array (cdar x) :test #'eq)))
(cond ((eq (caar x) 'mplus) (simplus x 1 y))
((eq (caar x) 'mtimes) (simptimes x 1 y))
(t (simpexpt x 1 y))))
((not (atom (caar x)))
(cond ((or (eq (caaar x) 'lambda)
(and (not (atom (caaar x))) (eq (caaaar x) 'lambda)))
(mapply1 (caar x) (cdr x) (caar x) x))
(t (merror (intl:gettext "simplifya: operator is neither an atom nor a lambda expression: ~S") x))))
((and $distribute_over
(get (caar x) 'distribute_over)
;; A function with the property 'distribute_over.
;; Look, if we have a bag as argument to the function.
(distribute-over x)))
((get (caar x) 'opers)
(let ((opers-list *opers-list)) (oper-apply x y)))
((and (eq (caar x) 'mqapply)
(or (atom (cadr x))
(and (eq substp 'mqapply)
(or (eq (car (cadr x)) 'lambda)
(eq (caar (cadr x)) 'lambda)))))
(cond ((or (symbolp (cadr x)) (not (atom (cadr x))))
(simplifya (cons (cons (cadr x) (cdar x)) (cddr x)) y))
((or (not (member 'array (cdar x) :test #'eq)) (not $subnumsimp))
(merror (intl:gettext "simplifya: I don't know how to simplify this operator: ~M") x))
(t (cadr x))))
(t (let ((w (get (caar x) 'operators)))
(cond ((and w
(or (not (member 'array (cdar x) :test #'eq))
(rulechk (caar x))))
(funcall w x 1 y))
(t (simpargs x y)))))))
;; EQTEST returns an expression which is the same as X
;; except that it is marked with SIMP and maybe other flags from CHECK.
;;
;; Following description is inferred from the code. Dunno why the function is named "EQTEST".
;;
;; (1) if X is already marked with SIMP flag or doesn't need it: return X.
;; (2) if X is pretty much the same as CHECK (same operator and same arguments),
;; then return CHECK after marking it with SIMP flag.
;; (3) if operator of X has the MSIMPIND property, replace it
;; with value of MSIMPIND (something like '(MPLUS SIMP)) and return X.
;; (4) if X or CHECK is an array expression, return X after marking it with SIMP and ARRAY flags.
;; (5) otherwise, return X after marking it with SIMP flag.
(defmfun eqtest (x check)
(let ((y nil))
(cond ((or (atom x)
(eq (caar x) 'rat)
(eq (caar x) 'mrat)
(member 'simp (cdar x) :test #'eq))
x)
((and (eq (caar x) (caar check))
(equal (cdr x) (cdr check)))
(cond ((and (null (cdar check))
(setq y (get (caar check) 'msimpind)))
(cons y (cdr check)))
((member 'simp (cdar check) :test #'eq)
check)
(t
(cons (cons (caar check)
(if (cdar check)
(cons 'simp (cdar check))
'(simp)))
(cdr check)))))
((setq y (get (caar x) 'msimpind))
(rplaca x y))
((or (member 'array (cdar x) :test #'eq)
(and (eq (caar x) (caar check))
(member 'array (cdar check) :test #'eq)))
(rplaca x (cons (caar x) '(simp array))))
(t
(rplaca x (cons (caar x) '(simp)))))))
;; A function, which distributes of bags like a list, matrix, or equation.
;; Check, if we have to distribute of one of the bags or any other operator.
(defun distribute-over (expr)
(cond ((= 1 (length (cdr expr)))
;; Distribute over for a function with one argument.
(cond ((and (not (atom (cadr expr)))
(member (caaadr expr) (get (caar expr) 'distribute_over))
;; Distribute over lists only if $listarith is T
(or $listarith (not (eq (caaadr expr) 'mlist))))
(simplify
(cons (caadr expr)
(mapcar #'(lambda (u) (simplify (list (car expr) u)))
(cdadr expr)))))
(t nil)))
(t
;; A function with more than one argument.
(do ((args (cdr expr) (cdr args))
(first-args nil))
((null args) nil)
(when (and (not (atom (car args)))
(member (caar (car args))
(get (caar expr) 'distribute_over))
;; Disribute over lists only if $listarith is T
(or $listarith (not (eq (caar (car args)) 'mlist))))
;; Distribute the function over the arguments and simplify again.
(return
(simplify
(cons (ncons (caar (car args)))
(mapcar #'(lambda (u)
(simplify
(append
(append
(cons (ncons (caar expr))
(reverse first-args))
(ncons u))
(rest args))))
(cdr (car args)))))))
(setq first-args (cons (car args) first-args))))))
(defun rulechk (x) (or (mget x 'oldrules) (get x 'rules)))
(defmfun resimplify (x) (let ((dosimp t)) (simplifya x nil)))
(defun simpargs (x y)
(if (or (eq (get (caar x) 'dimension) 'dimension-infix)
(get (caar x) 'binary))
(twoargcheck x))
(if (and (member 'array (cdar x) :test #'eq) (null (margs x)))
(merror (intl:gettext "SIMPARGS: subscripted variable found with no subscripts.")))
(eqtest (if y x (let ((flag (member (caar x) '(mlist mequal) :test #'eq)))
(cons (ncons (caar x))
(mapcar #'(lambda (u)
(if flag (simplifya u nil)
(simpcheck u nil)))
(cdr x)))))
x))
;;;-----------------------------------------------------------------------------
;;; ADDK (X Y) 27.09.2010/DK
;;;
;;; Arguments and values:
;;; X - a Maxima number
;;; Y - a Maxima number
;;; result - a simplified Maxima number
;;;
;;; Description:
;;; ADDK adds two Maxima numbers and returns a simplified Maxima number.
;;; ADDK can be called in Lisp code, whenever the arguments are valid
;;; Maxima numbers, these are integer, float, Maxima rational, or
;;; Maxima bigfloat numbers. The arguments must not be simplified. The
;;; precision of a bigfloat result depends on the setting of the
;;; global variable $FPPREC. If the option variable $FLOAT is T, a
;;; Maxima rational number as a result is converted to a float number.
;;;
;;; Examples:
;;; (addk 2 3) -> 5
;;; (addk 2.0 3) -> 5.0
;;; (addk ($bfloat 2) 3)-> ((BIGFLOAT SIMP 56) 45035996273704960 3)
;;; (addk 2 '((rat) 1 2)) -> ((RAT SIMP) 5 2)
;;; (let (($float t)) (addk 2 '((rat) 1 2))) -> 2.5
;;;
;;; Affected by:
;;; The option variables $FLOAT and $FPPREC.
;;;
;;; See also:
;;; TIMESK to multiply and EXPTRL to exponentiate two Maxima numbers.
;;;
;;; Notes:
;;; The routine works for Lisp rational and Lisp complex numbers too.
;;; This feature is not used in Maxima code. If Lisp complex and
;;; rational numbers are mixed with Maxima rational or bigfloat
;;; numbers the result is wrong or a Lisp error is generated.
;;;-----------------------------------------------------------------------------
(defun addk (x y)
(cond ((eql x 0) y)
((eql y 0) x)
((and (numberp x) (numberp y)) (+ x y))
((or ($bfloatp x) ($bfloatp y)) ($bfloat (list '(mplus) x y)))
(t (prog (g a b)
(cond ((numberp x)
(cond ((floatp x) (return (+ x (fpcofrat y))))
(t (setq x (list '(rat) x 1)))))
((numberp y)
(cond ((floatp y) (return (+ y (fpcofrat x))))
(t (setq y (list '(rat) y 1))))))
(setq g (gcd (caddr x) (caddr y)))
(setq a (truncate (caddr x) g)
b (truncate (caddr y) g))
(return (timeskl (list '(rat) 1 g)
(list '(rat)
(+ (* (cadr x) b)
(* (cadr y) a))
(* a b))))))))
;;;-----------------------------------------------------------------------------
;;; *RED1 (X) 27.09.2010/DK
;;; *RED (N D)
;;;
;;; Arguments and values:
;;; X - a Maxima rational number (for *RED1)
;;; N - an integer number representing the numerator of a rational
;;; D - an integer number representing the denominator of a rational
;;; result - a simplified Maxima rational number
;;;
;;; Description:
;;; *RED1 is called from SIMPLIFYA to reduce and simplify a Maxima rational
;;; number. *RED1 checks if the rational number is already simplified. If
;;; the option variable $FLOAT is T, the rational number is converted to a
;;; float number. If the number is not simplified, *RED is called.
;;;
;;; *RED reduces the numerator N and the demoniator D and returns a
;;; simplified Maxima rational number. The result is converted to a float
;;; number, if the option variable $FLOAT is T.
;;;
;;; Affected by:
;;; The option variable $FLOAT.
;;;-----------------------------------------------------------------------------
(defun *red1 (x)
(cond ((member 'simp (cdar x) :test #'eq)
(if $float (fpcofrat x) x))
(t (*red (cadr x) (caddr x)))))
(defun *red (n d)
(cond ((zerop n) 0)
((equal d 1) n)
(t (let ((u (gcd n d)))
(setq n (truncate n u)
d (truncate d u))
(if (minusp d) (setq n (- n) d (- d)))
(cond ((equal d 1) n)
($float (fpcofrat1 n d))
(t (list '(rat simp) n d)))))))
;;;-----------------------------------------------------------------------------
;;; TIMESK (X Y) 27.09.2010/DK
;;;
;;; Arguments and values:
;;; X - a Maxima number
;;; Y - a Maxima number
;;; result - a simplified Maxima number
;;;
;;; Description:
;;; TIMESK Multiplies two Maxima numbers and returns a simplified Maxima
;;; number. TIMESK can be called in Lisp code, whenever the arguments are
;;; valid Maxima numbers, these are integer, float, Maxima rational, or
;;; Maxima bigfloat numbers. The arguments must not be simplified. The
;;; precision of a bigfloat result depends on the setting of the
;;; global variable $FPPREC. If the option variable $FLOAT is T, a
;;; Maxima rational number as a result is converted to a float number.
;;;
;;; TIMESKL is called from TIMESK to multiply two Maxima rational numbers or
;;; a rational number with an integer number.
;;;
;;; Examples:
;;; (timesk 2 3) -> 6
;;; (timesk 2.0 3) -> 6.0
;;; (timesk ($bfloat 2) 3)-> ((BIGFLOAT SIMP 56) 54043195528445952 3)
;;; (timesk 3 '((rat) 1 2)) -> ((RAT SIMP) 3 2)
;;; (let (($float t)) (timesk 3 '((rat) 1 2))) -> 1.5
;;;
;;; Affected by:
;;; The option variables $FLOAT and $FPPREC.
;;;
;;; See also:
;;; ADDK to add and EXPTRL to exponentiate two Maxima numbers.
;;;
;;; Notes:
;;; The routine works for Lisp rational and Lisp complex numbers too.
;;; This feature is not used in Maxima code. If Lisp complex and
;;; rational numbers are mixed with Maxima rational or bigfloat
;;; numbers the result is wrong or a Lisp error is generated.
;;;-----------------------------------------------------------------------------
;; NUM1 and DENOM1 are helper functions for TIMESKL to get the numerator and the
;; denominator of an integer or Maxima rational number. For an integer the
;; denominator is 1. Both functions are used at other places in Maxima code too.
(defun num1 (a)
(if (numberp a) a (cadr a)))
(defun denom1 (a)
(if (numberp a) 1 (caddr a)))
(defun timesk (x y) ; X and Y are assumed to be already reduced
(cond ((equal x 1) y)
((equal y 1) x)
((and (numberp x) (numberp y)) (* x y))
((or ($bfloatp x) ($bfloatp y)) ($bfloat (list '(mtimes) x y)))
((floatp x) (* x (fpcofrat y)))
((floatp y) (* y (fpcofrat x)))
(t (timeskl x y))))
;; TIMESKL takes one or two Maxima rational numbers, one argument can be an
;; integer number. The result is a Maxima rational or an integer number.
;; If the option variable $FLOAT is T, a Maxima rational number in converted
;; to a float value.
(defun timeskl (x y)
(prog (u v g)
(setq u (*red (num1 x) (denom1 y)))
(setq v (*red (num1 y) (denom1 x)))
(setq g (cond ((or (equal u 0) (equal v 0)) 0)
((equal v 1) u)
((and (numberp u) (numberp v)) (* u v))
(t (list '(rat simp)
(* (num1 u) (num1 v))
(* (denom1 u) (denom1 v))))))
(return (cond ((numberp g) g)
((equal (caddr g) 1) (cadr g))
($float (fpcofrat g))
(t g)))))
;;;-----------------------------------------------------------------------------
;;; FPCOFRAT (RATNO) 27.09.2010/DK
;;; FPCOFRT1 (NU D)
;;;
;;; Arguments and values:
;;; RATNO - a Maxima rational number (for FPCOFRAT)
;;; NU - an integer number which represents the numerator of a rational
;;; D - an integer number which represents the denominator of a rational
;;; result - floating point approximation of a rational number
;;;
;;; Description:
;;; Floating Point Conversion OF RATional number routine.
;;; Finds floating point approximation to rational number.
;;;
;;; FPCOFRAT1 computes the quotient of NU/D.
;;;
;;; Exeptional situations:
;;; A Lisp error is generated, if the rational number does not fit into a
;;; float number.
;;;-----------------------------------------------------------------------------
;; This constant is only needed in the file float.lisp.
(eval-when
#+gcl (compile load eval)
#-gcl (:compile-toplevel :load-toplevel :execute)
(defconstant machine-mantissa-precision (float-digits 1.0)))
(defun fpcofrat (ratno)
(fpcofrat1 (cadr ratno) (caddr ratno)))
(defun fpcofrat1 (nu d)
(float (/ nu d)))
;;;-----------------------------------------------------------------------------
;;; EXPTA (X Y) 27.09.2010/DK
;;;
;;; Arguments and values:
;;; X - a Maxima number
;;; Y - an integer number
;;; result - a simplified Maxima number
;;;
;;; Description:
;;; Computes X^Y, where X is Maxima number and Y an integer. The result is
;;; a simplified Maxima number. Y can be a rational Maxima number. For this
;;; case the numerator is taken as the power.
;;;
;;; Affected by:
;;; The option variables $FLOAT and $FPPREC.
;;;
;;; Notes:
;;; This routine is not used within the simplifier. There is only one
;;; call from the file hayat.lisp. This call can be replaced with a
;;; call of the function power.
;;;-----------------------------------------------------------------------------
(defun expta (x y)
(cond ((equal y 1)
x)
((numberp x)
(exptb x (num1 y)))
(($bfloatp x)
($bfloat (list '(mexpt) x y)))
((minusp (num1 y))
(*red (exptb (caddr x) (- (num1 y)))
(exptb (cadr x) (- (num1 y)))))
(t
(*red (exptb (cadr x) (num1 y))
(exptb (caddr x) (num1 y))))))
;;;-----------------------------------------------------------------------------
;;; EXPTB (A B) 27.09.2010/DK
;;;
;;; Arguments and values:
;;; A - a float or integer number
;;; B - an integer number
;;; result - a simplified Maxima number
;;;
;;; Description:
;;; Computes A^B, where A is a float or an integer number and B is an
;;; integer number. The result is an integer, float, or Maxima
;;; rational number.
;;;
;;; Examples:
;;; (exptb 3 2) -> 9
;;; (exptb 3.0 2) -> 9.0
;;; (exptb 3 -2) -> ((RAT SiMP) 1 9)
;;; (let (($float t)) (exptb 3 -2)) -> 0.1111111111111111
;;;
;;; Affected by:
;;; The option variable $FLOAT.
;;;
;;; Notes:
;;; EXPTB calls the Lisp functions EXP or EXPT to compute the result.
;;;-----------------------------------------------------------------------------
(defun exptb (a b)
(cond ((equal a %e-val)
;; Make B a float so we'll get double-precision result.
(exp (float b)))
((or (floatp a) (not (minusp b)))
#+gcl
(if (float-inf-p (setq b (expt a b)))
(merror (intl:gettext "EXPT: floating point overflow."))
b)
#-gcl
(expt a b))
(t
(setq b (expt a (- b)))
(*red 1 b))))
;;;-----------------------------------------------------------------------------
;;; SIMPLUS (X W Z) 27.09.2010/DK
;;;
;;; Arguments and values:
;;; X - a Maxima expression of the form ((mplus) term1 term2 ...)
;;; W - an arbitrary value, the value is ignored
;;; Z - T or NIL, if T the arguments are assumed to be simplified
;;; result - a simplified mplus-expression or an atom
;;;
;;; Description:
;;; Implementation of the simplifier for the "+" operator.
;;; A general description of SIMPLUS can be found in the paper:
;;; http://www.cs.berkeley.edu/~fateman/papers/simplifier.txt
;;;
;;; Affected by:
;;; The addition of matrices and lists is affected by the following option
;;; variables:
;;; $DOALLMXOPS, $DOMXMXOPS, $DOMXPLUS, $DOSCMXOPPS, $DOSCMXPLUS, $LISTARITH
;;;
;;; Notes:
;;; This routine should not be called directely. It is called by SIMPLIFYA.
;;; A save access is to call the function ADD.
;;;-----------------------------------------------------------------------------
(defun simplus (x w z)
(prog (res check eqnflag matrixflag sumflag)
(if (null (cdr x)) (return 0))
(setq check x)
start
(setq x (cdr x))
(if (null x) (go end))
(setq w (if z (car x) (simplifya (car x) nil)))
st1
(cond ((atom w) nil)
((eq (caar w) 'mrat)
(cond ((or eqnflag
matrixflag
(and sumflag
(not (member 'trunc (cdar w) :test #'eq)))
(spsimpcases (cdr x) w))
(setq w (ratdisrep w))
(go st1))
(t
(return
(ratf (cons '(mplus)
(nconc (mapcar #'simplify (cons w (cdr x)))
(cdr res))))))))
((eq (caar w) 'mequal)
(setq eqnflag
(if (not eqnflag)
w
(list (car eqnflag)
(add2 (cadr eqnflag) (cadr w))
(add2 (caddr eqnflag) (caddr w)))))
(go start))
((member (caar w) '(mlist $matrix) :test #'eq)
(setq matrixflag
(cond ((not matrixflag) w)
((and (or $doallmxops $domxmxops $domxplus
(and (eq (caar w) 'mlist)
($listp matrixflag)))
(or (not (eq (caar w) 'mlist)) $listarith))
(addmx matrixflag w))
(t (setq res (pls w res)) matrixflag)))
(go start))
((eq (caar w) '%sum)
(setq sumflag t res (sumpls w res))
(setq w (car res) res (cdr res))))
(setq res (pls w res))
(go start)
end
(setq res (testp res))
(if matrixflag
(setq res
(cond ((and (or ($listp matrixflag)
$doallmxops $doscmxplus $doscmxops)
(or (not ($listp matrixflag)) $listarith))
(mxplusc res matrixflag))
(t (testp (pls matrixflag (pls res nil)))))))
(setq res (eqtest res check))
(return (if eqnflag
(list (car eqnflag)
(add2 (cadr eqnflag) res)
(add2 (caddr eqnflag) res))
res))))
;;;-----------------------------------------------------------------------------
;;; PLS (X OUT) 27.09.2010/DK
;;;
;;; Arguments and values:
;;; X - a Maxima expression or an atom
;;; OUT - a form ((mplus) <number> term1 term2 ...) or NIL
;;; result - a form ((mplus) <number> term1 ...), where x is added in.
;;;
;;; Description:
;;; Adds the argument X into the form OUT. If OUT is NIL a form
;;; ((mplus) 0 X) is initialized, if X is an expression or a symbol,
;;; or ((mplus) X), if X is a number. Numbers are added to the first
;;; term <number> of the form. Any other symbol or expression is added
;;; into the canonical ordered list of arguments. The result is in a
;;; canonical order, but it is not a valid Maxima expression. To get a
;;; valid Maxima expression the result has to be checked with the
;;; function TESTP. This is done by the calling routine SIMPLUS.
;;;
;;; PLS checks the global flag *PLUSFLAG*, which is set in PLUSIN to T,
;;; if a mplus-expression is part of the result.
;;;
;;; Examples:
;;; (pls 2 nil) -> ((MPLUS) 2)
;;; (pls '$A nil) -> ((MPLUS) 0 $A)
;;; (pls '$B '((mplus) 0 $A)) -> ((MPLUS) 0 $A $B)
;;; (pls '$A '((mplus) 0 $A)) -> ((MPLUS) 0 ((MTIMES SIMP) 2 $A))
;;;
;;; Examples with the option variables $NUMER and $NEGDISTRIB:
;;; (let (($numer t)) (pls '$%e nil)) -> ((MPLUS) 2.718281828459045)
;;; (let (($negdistrib t)) (pls '((mtimes) -1 ((mplus) $A $B)) nil))
;;; -> ((MPLUS) 0 ((MTIMES SIMP) -1 $A) ((MTIMES SIMP) -1 $B))
;;; (let (($negdistrib nil)) (pls '((mtimes) -1 ((mplus) $A $B)) nil))
;;; -> ((MPLUS) 0 ((MTIMES) -1 ((MPLUS) $A $B)))
;;;
;;; Affected by:
;;; The option variables $NUMER and $NEGDISTRIB and the global flag
;;; *PLUSFLAG*, which is set in the routine PLUSIN.
;;;
;;; See also:
;;; PLUSIN and ADDK which are called from PLS and SIMPLUS.
;;;
;;; Notes:
;;; To add an expression into the list (CDR OUT), the list is passed
;;; to the routine PLUSIN as an argument. PLUSIN adds the argument to
;;; the list of terms by modifying the list (CDR OUT) destructively.
;;; The new value of OUT is returned as a result by PLS.
;;;-----------------------------------------------------------------------------
;; Set in PLUSIN to T to indicate a nested mplus expression.
(defvar *plusflag* nil)
;; TESTP checks the result of PLS to get a valid Maxima mplus-expression.
(defun testp (x)
(cond ((atom x) 0)
((null (cddr x)) (cadr x))
((zerop1 (cadr x))
(cond ((null (cdddr x)) (caddr x)) (t (rplacd x (cddr x)))))
(t x)))
(defun pls (x out)
(prog (fm *plusflag*)
(if (mtimesp x) (setq x (testtneg x)))
(when (and $numer (atom x) (eq x '$%e))
;; Replace $%e with its numerical value, when $numer ist TRUE
(setq x %e-val))
(cond ((null out)
;; Initialize a form like ((mplus) <number> expr)
(return
(cons '(mplus)
(cond ((mnump x) (ncons x))
((not (mplusp x))
(list 0 (cond ((atom x) x) (t (copy-list x)))))
((mnump (cadr x)) (copy-list (cdr x) ))
(t (cons 0 (copy-list (cdr x) )))))))
((mnump x)
;; Add a number into the first term of the list out.
(return (cons '(mplus)
(if (mnump (cadr out))
(cons (addk (cadr out) x) (cddr out))
(cons x (cdr out))))))
((not (mplusp x)) (plusin x (cdr out)) (go end)))
;; At this point we have a mplus expression as argument x. The following
;; code assumes that the argument x is already simplified and the terms
;; are in a canonical order.
;; First we add the number to the first term of the list out.
(rplaca (cdr out)
(addk (if (mnump (cadr out)) (cadr out) 0)
(cond ((mnump (cadr x)) (setq x (cdr x)) (car x)) (t 0))))
;; Initialize fm with the list of terms and start the loop to add the
;; terms of an mplus expression into the list out.
(setq fm (cdr out))
start
(if (null (setq x (cdr x))) (go end))
;; The return value of PLUSIN is a list, where the first element is the
;; added argument and the rest are the terms which follow the added
;; argument.
(setq fm (plusin (car x) fm))
(go start)
end
(if (not *plusflag*) (return out))
(setq *plusflag* nil) ; *PLUSFLAG* T handles e.g. a+b+3*(a+b)-2*(a+b)
a
;; *PLUSFLAG* is set by PLUSIN to indicate that a mplus expression is
;; part of the result. For this case go again through the terms of the
;; result and add any term of the mplus expression into the list out.
(setq fm (cdr out))
loop
(when (mplusp (cadr fm))
(setq x (cadr fm))
(rplacd fm (cddr fm))
(pls x out)
(go a))
(setq fm (cdr fm))
(if (null (cdr fm)) (return out))
(go loop)))
;;;-----------------------------------------------------------------------------
;;; PLUSIN (X FM) 27.09.2010/DK
;;;
;;; Arguments and values:
;;; X - a Maxima expression or atom
;;; FM - a list with the terms of an addition
;;; result - part of the list fm, which starts at the inserted expression
;;;
;;; Description:
;;; Adds X into running list of additive terms FM. The routine modifies
;;; the argument FM destructively, but does not return the modified list as
;;; a result. The return value is a part of the list FM, which starts at the
;;; inserted term. PLUSIN can not handle Maxima numbers. PLUSIN is called
;;; only from the routine PLS.
;;;
;;; Examples:
;;; (setq fm '(0))
;;; (plusin '$a fm) -> ($A)
;;; fm -> (0 $A)
;;; (plusin '$b fm) -> ($B)
;;; fm -> (0 $A $B)
;;; (plusin '$a fm) -> (((MTIMES SIMP) 2 $A) $B)
;;; fm -> (0 ((MTIMES SIMP) 2 $A) $B)
;;;
;;; Side effects:
;;; Modifies destructively the argument FM, which contains the result of the
;;; addition of the argument X into the list FM.
;;;
;;; Affected by;
;;; The option variables $doallmxops and $listarith.
;;;
;;; Notes:
;;; The return value is used in PLS to go in parallel through the list of
;;; terms, when adding a complete mplus-expression into the list of terms.
;;; This is triggered by the flag *PLUSFLAG*, which is set in PLUSIN, if
;;; a mplus-expression is added to the result list.
;;;-----------------------------------------------------------------------------
(defun plusin (x fm)
(prog (x1 x2 flag check v w xnew a n m c)
(setq w 1)
(setq v 1)
(cond ((mtimesp x)
(setq check x)
(if (mnump (cadr x)) (setq w (cadr x) x (cddr x))
(setq x (cdr x))))
(t (setq x (ncons x))))
(setq x1 (if (null (cdr x)) (car x) (cons '(mtimes) x))
xnew (list* '(mtimes) w x))
start
(cond ((null (cdr fm)))
((and (alike1 x1 (cadr fm)) (null (cdr x)))
(go equ))
;; Implement the simplification of
;; v*a^(c+n)+w*a^(c+m) -> (v*a^n+w*a^m)*a^c
;; where a, v, w, and (n-m) are integers.
((and (or (and (mexptp (setq x2 (cadr fm)))
(setq v 1))
(and (mtimesp x2)
(not (alike1 x1 x2))
(null (cadddr x2))
(integerp (setq v (cadr x2)))
(mexptp (setq x2 (caddr x2)))))
(integerp (setq a (cadr x2)))
(mexptp x1)
(equal a (cadr x1))
(integerp (sub (caddr x2) (caddr x1))))
(setq n (if (and (mplusp (caddr x2))
(mnump (cadr (caddr x2))))
(cadr (caddr x2))
(if (mnump (caddr x2))
(caddr x2)
0)))
(setq m (if (and (mplusp (caddr x1))
(mnump (cadr (caddr x1))))
(cadr (caddr x1))
(if (mnump (caddr x1))
(caddr x1)
0)))
(setq c (sub (caddr x2) n))
(cond ((integerp n)
;; The simple case:
;; n and m are integers and the result is (v*a^n+w*a^m)*a^c.
(setq x1 (mul (addk (timesk v (exptb a n))
(timesk w (exptb a m)))
(power a c)))
(go equt2))
(t
;; n and m are rational numbers: The difference n-m is an
;; integer. The rational numbers might be improper fractions.
;; The mixed numbers are: n = n1 + d1/r and m = n2 + d2/r,
;; where r is the common denominator. We have two cases:
;; I) d1 = d2: e.g. 2^(1/3+c)+2^(4/3+c)
;; The result is (v*a^n1+w*a^n2)*a^(c+d1/r)
;; II) d1 # d2: e.g. 2^(1/2+c)+2^(-1/2+c)
;; In this case one of the exponents d1 or d2 must
;; be negative. The negative exponent is factored out.
;; This guarantees that the factor (v*a^n1+w*a^n2)
;; is an integer. But the positive exponent has to be
;; adjusted accordingly. E.g. when we factor out
;; a^(d2/r) because d2 is negative, then we have to
;; adjust the positive exponent to n1 -> n1+(d1-d2)/r.
;; Remark:
;; Part of the simplification is done in simptimes. E.g.
;; this algorithm simplifies the sum sqrt(2)+3*sqrt(2)
;; to 4*sqrt(2). In simptimes this is further simplified
;; to 2^(5/2).
(multiple-value-bind (n1 d1)
(truncate (num1 n) (denom1 n))
(multiple-value-bind (n2 d2)
(truncate (num1 m) (denom1 m))
(cond ((equal d1 d2)
;; Case I: -> (v*a^n1+w*a^n2)*a^(c+d1/r)
(setq x1
(mul (addk (timesk v (exptb a n1))
(timesk w (exptb a n2)))
(power a
(add c
(div d1 (denom1 n))))))
(go equt2))
((minusp d2)
;; Case II:: d2 is negative, adjust n1.
(setq n1 (add n1 (div (sub d1 d2) (denom1 n))))
(setq x1
(mul (addk (timesk v (exptb a n1))
(timesk w (exptb a n2)))
(power a
(add c
(div d2 (denom1 n))))))
(go equt2))
((minusp d1)
;; Case II: d1 is negative, adjust n2.
(setq n2 (add n2 (div (sub d2 d1) (denom1 n))))
(setq x1
(mul (addk (timesk v (exptb a n1))
(timesk w (exptb a n2)))
(power a
(add c
(div d1 (denom1 n))))))
(go equt2))
;; This clause should never be reached.
(t (merror "Internal error in simplus."))))))))
((mtimesp (cadr fm))
(cond ((alike1 x1 (cadr fm))
(go equt))
((and (mnump (cadadr fm)) (alike x (cddadr fm)))
(setq flag t) ; found common factor
(go equt))
((great xnew (cadr fm)) (go gr))))
((great x1 (cadr fm)) (go gr)))
(setq xnew (eqtest (testt xnew) (or check '((foo)))))
(return (cdr (rplacd fm (cons xnew (cdr fm)))))
gr
(setq fm (cdr fm))
(go start)
equ
(rplaca (cdr fm)
(if (equal w -1)
(list* '(mtimes simp) 0 x)
;; Call muln to get a simplified product.
(if (mtimesp (setq x1 (muln (cons (addk 1 w) x) t)))
(testtneg x1)
x1)))
del
(cond ((not (mtimesp (cadr fm)))
(go check))
((onep (cadadr fm))
;; Do this simplification for an integer 1, not for 1.0 and 1.0b0
(rplacd (cadr fm) (cddadr fm))
(return (cdr fm)))
((not (zerop1 (cadadr fm)))
(return (cdr fm)))
;; Handle the multiplication with a zero.
((and (or (not $listarith) (not $doallmxops))
(mxorlistp (caddr (cadr fm))))
(return (rplacd fm
(cons (constmx 0 (caddr (cadr fm))) (cddr fm))))))
;; (cadadr fm) is zero. If the first term of fm is a number,
;; add it to preserve the type.
(when (mnump (car fm))
(rplaca fm (addk (car fm) (cadadr fm))))
(return (rplacd fm (cddr fm)))
equt
;; Call muln to get a simplified product.
(setq x1 (muln (cons (addk w (if flag (cadadr fm) 1)) x) t))
;; Make a mplus expression to guarantee that x1 is added again into the sum
(setq x1 (list '(mplus) x1))
equt2
(rplaca (cdr fm)
(if (zerop1 x1)
(list* '(mtimes) x1 x)
(if (mtimesp x1) (testtneg x1) x1)))
(if (not (mtimesp (cadr fm))) (go check))
(when (and (onep (cadadr fm)) flag (null (cdddr (cadr fm))))
;; Do this simplification for an integer 1, not for 1.0 and 1.0b0
(rplaca (cdr fm) (caddr (cadr fm))) (go check))
(go del)
check
(if (mplusp (cadr fm)) (setq *plusflag* t)) ; A nested mplus expression
(return (cdr fm))))
;;;-----------------------------------------------------------------------------
;; Routines to add matrices
(defun mxplusc (sc mx)
(cond ((mplusp sc)
(setq sc (partition-ns (cdr sc)))
(cond ((null (car sc)) (cons '(mplus) (cons mx (cadr sc))))
((not (null (cadr sc)))
(cons '(mplus)
(cons (simplify
(outermap1 'mplus (cons '(mplus) (car sc)) mx))
(cadr sc))))
(t (simplify (outermap1 'mplus (cons '(mplus) (car sc)) mx)))))
((not (scalar-or-constant-p sc $assumescalar))
(testp (pls mx (pls sc nil))))
(t (simplify (outermap1 'mplus sc mx)))))
(defun partition-ns (x)
(let (sp nsp) ; SP = scalar part, NSP = nonscalar part
(mapc #'(lambda (z) (if (scalar-or-constant-p z $assumescalar)
(setq sp (cons z sp))
(setq nsp (cons z nsp))))
x)
(list (nreverse sp) (nreverse nsp))))
(defun addmx (x1 x2)
(let (($doscmxops t) ($domxmxops t) ($listarith t))
(simplify (fmapl1 'mplus x1 x2))))
;;; ----------------------------------------------------------------------------
;;; Simplification of the Log function
;; The log function distributes over lists, matrices, and equations
(defprop %log (mlist $matrix mequal) distribute_over)
(defun simpln (x y z)
(oneargcheck x)
(setq y (simpcheck (cadr x) z))
(cond ((onep1 y) (addk -1 y))
((zerop1 y)
(cond (radcanp (list '(%log simp) 0))
((not errorsw)
(merror (intl:gettext "log: encountered log(0).")))
(t (throw 'errorsw t))))
;; Check evaluation in floating point precision.
((flonum-eval (mop x) y))
;; Check evaluation in bigfloag precision.
((and (not (member 'simp (car x) :test #'eq))
(big-float-eval (mop x) y)))
((eq y '$%e) 1)
((mexptp y)
(cond ((or (and $logexpand (eq $domain '$real))
(member $logexpand '($all $super))
(and (eq ($csign (cadr y)) '$pos)
(not (member ($csign (caddr y))
'($complex $imaginary)))))
;; Simplify log(x^a) -> a*log(x), where x > 0 and a is real
(mul (caddr y) (take '(%log) (cadr y))))
((or (and (ratnump (caddr y))
(or (eql 1 (cadr (caddr y)))
(eql -1 (cadr (caddr y)))))
(maxima-integerp (inv (caddr y))))
;; Simplify log(z^(1/n)) -> log(z)/n, where n is an integer
(mul (caddr y)
(take '(%log) (cadr y))))
((and (eq (cadr y) '$%e)
(or (not (member ($csign (caddr y))
'($complex $imaginary)))
(not (member ($csign (mul '$%i (caddr y)))
'($complex $imaginary)))))
;; Simplify log(exp(x)) and log(exp(%i*x)), where x is a real
(caddr y))
(t (eqtest (list '(%log) y) x))))
((ratnump y)
;; Simplify log(n/d)
(cond ((eql (cadr y) 1)
(mul -1 (take '(%log) (caddr y))))
((eq $logexpand '$super)
(sub (take '(%log) (cadr y)) (take '(%log) (caddr y))))
(t (eqtest (list '(%log) y) x))))
((and (member $logexpand '($all $super) :test #'eq)
(mtimesp y))
(do ((y (cdr y) (cdr y))
(b nil))
((null y) (return (addn b t)))
(setq b (cons (take '(%log) (car y)) b))))
((and (member $logexpand '($all $super))
(consp y)
(member (caar y) '(%product $product)))
(let ((new-op (if (eq (getcharn (caar y) 1) #\%) '%sum '$sum)))
(simplifya `((,new-op) ((%log) ,(cadr y)) ,@(cddr y)) t)))
((and $lognegint
(maxima-integerp y)
(eq ($sign y) '$neg))
(add (mul '$%i '$%pi) (take '(%log) (neg y))))
((taylorize (mop x) (second x)))
(t (eqtest (list '(%log) y) x))))
(defun simpln1 (w)
(simplifya (list '(mtimes) (caddr w)
(simplifya (list '(%log) (cadr w)) t)) t))
;;; ----------------------------------------------------------------------------
;;; Implementation of the Square root function
(defprop $sqrt %sqrt verb)
(defprop $sqrt %sqrt alias)
(defprop %sqrt $sqrt noun)
(defprop %sqrt $sqrt reversealias)
(defprop %sqrt simp-sqrt operators)
(defun $sqrt (z)
(simplify (list '(%sqrt) z)))
(defmfun simp-sqrt (x ignored z)
(declare (ignore ignored))
(oneargcheck x)
(simplifya (list '(mexpt) (cadr x) '((rat simp) 1 2)) z))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Simplification of the "/" operator.
(defmfun simpquot (x y z)
(twoargcheck x)
(cond ((and (integerp (cadr x)) (integerp (caddr x)) (not (zerop (caddr x))))
(*red (cadr x) (caddr x)))
((and (numberp (cadr x)) (numberp (caddr x)) (not (zerop (caddr x))))
(/ (cadr x) (caddr x)))
(t (setq y (simplifya (cadr x) z))
(setq x (simplifya (list '(mexpt) (caddr x) -1) z))
(if (equal y 1) x (simplifya (list '(mtimes) y x) t)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Implementation of the abs function.
;; Put the properties alias, reversealiases, noun and verb on the property list.
(defprop $abs mabs alias)
(defprop $abs mabs verb)
(defprop mabs $abs reversealias)
(defprop mabs $abs noun)
;; The abs function distributes over bags.
(defprop mabs (mlist $matrix mequal) distribute_over)
;; Define a verb function $abs
(defun $abs (x)
(simplify (list '(mabs) x)))
;; The abs function is a simplifying function.
(defprop mabs simpabs operators)
(defmfun simpabs (e y z)
(declare (ignore y))
(oneargcheck e)
(let ((sgn)
(x (simpcheck (second e) z)))
(cond ((complex-number-p x #'(lambda (s) (or (floatp s) ($bfloatp s))))
(maxima::to (bigfloat::abs (bigfloat:to x))))
((complex-number-p x #'mnump)
($cabs x))
;; nounform for arrays...
((or (arrayp x) ($member x $arrays)) `((mabs simp) ,x))
;; taylor polynomials
((taylorize 'mabs x))
;; values for extended real arguments:
((member x '($inf $infinity $minf) :test #'eq) '$inf)
((member x '($ind $und) :test #'eq) x)
;; abs(abs(expr)) --> abs(expr). Since x is simplified, it's OK to return x.
((and (consp x) (consp (car x)) (eq (caar x) 'mabs))
x)
;; abs(conjugate(expr)) = abs(expr).
((and (consp x) (consp (car x)) (eq (caar x) '$conjugate))
(take '(mabs) (cadr x)))
(t
(setq sgn ($csign x))
(cond ((member sgn '($neg $nz) :test #'eq) (mul -1 x))
((eq '$zero sgn) (mul 0 x))
((member sgn '($pos $pz) :test #'eq) x)
;; for complex constant expressions, use $cabs
((and (eq sgn '$complex) ($constantp x))
($cabs x))
;; abs(pos^complex) --> pos^(realpart(complex)).
((and (eq sgn '$complex) (mexptp x) (eq '$pos ($csign (second x))))
(power (second x) ($realpart (third x))))
;; for abs(neg^z), use cabs.
((and (mexptp x) (eq '$neg ($csign (second x))))
($cabs x))
;; When x # 0, we have abs(signum(x)) = 1.
((and (eq '$pn sgn) (consp x) (consp (car x)) (eq (caar x) '%signum)) 1)
;; multiplicative property: abs(x*y) = abs(x) * abs(y). We would like
;; assume(a*b > 0), abs(a*b) --> a*b. Thus the multiplicative property
;; is applied after the sign test.
((mtimesp x)
(muln (mapcar #'(lambda (u) (take '(mabs) u)) (margs x)) t))
;; abs(x^n) = abs(x)^n for integer n. Is the featurep check worthwhile?
;; Again the sign check is done first because we'd like abs(x^2) --> x^2.
((and (mexptp x) ($featurep (caddr x) '$integer))
(power (take '(mabs) (cadr x)) (caddr x)))
;; Reflection rule: abs(-x) --> abs(x)
((great (neg x) x) (take '(mabs) (neg x)))
;; nounform return
(t (eqtest (list '(mabs) x) e)))))))
(defun abs-integral (x)
(mul (div 1 2) x (take '(mabs) x)))
(putprop 'mabs `((x) ,#'abs-integral) 'integral)
;; I (rtoy) think this does some simple optimizations of x * y.
(defun testt (x)
(cond ((mnump x)
x)
((null (cddr x))
;; We have something like ((mtimes) foo). This is the same as foo.
(cadr x))
((eql 1 (cadr x))
;; We have 1*foo. Which is the same as foo. This should not
;; be applied to 1.0 or 1b0!
(cond ((null (cdddr x))
(caddr x))
(t (rplacd x (cddr x)))))
(t
(testtneg x))))
;; This basically converts -(a+b) to -a-b.
(defun testtneg (x)
(cond ((and (equal (cadr x) -1)
(null (cdddr x))
(mplusp (caddr x))
$negdistrib)
;; If x is exactly of the form -1*(sum), and $negdistrib is
;; true, we distribute the -1 across the sum.
(addn (mapcar #'(lambda (z)
(mul2 -1 z))
(cdaddr x))
t))
(t x)))
;; Simplification of the "-" operator
(defun simpmin (x vestigial z)
(declare (ignore vestigial))
(cond ((null (cdr x)) 0)
((null (cddr x))
(mul -1 (simplifya (cadr x) z)))
(t
;; ((mminus) a b ...) -> ((mplus) a ((mtimes) -1 b) ...)
(sub (simplifya (cadr x) z) (addn (cddr x) z)))))
(defmfun simptimes (x w z) ; W must be 1
(prog (res check eqnflag matrixflag sumflag)
(if (null (cdr x)) (return 1))
(setq check x)
start
(setq x (cdr x))
(cond ((zerop1 res)
(cond ($mx0simp
(cond ((and matrixflag (mxorlistp1 matrixflag))
(return (constmx res matrixflag)))
(eqnflag (return (list '(mequal simp)
(mul2 res (cadr eqnflag))
(mul2 res (caddr eqnflag)))))
(t
(dolist (u x)
(cond ((mxorlistp u)
(return (setq res (constmx res u))))
((and (mexptp u)
(mxorlistp1 (cadr u))
($numberp (caddr u)))
(return (setq res (constmx res (cadr u)))))
((mequalp u)
(return
(setq res
(list '(mequal simp)
(mul2 res (cadr u))
(mul2 res (caddr u))))))))))))
(return res))
((null x) (go end)))
(setq w (if z (car x) (simplifya (car x) nil)))
st1
(cond ((atom w) nil)
((eq (caar w) 'mrat)
(cond ((or eqnflag matrixflag
(and sumflag
(not (member 'trunc (cdar w) :test #'eq)))
(spsimpcases (cdr x) w))
(setq w (ratdisrep w))
(go st1))
(t
(return
(ratf (cons '(mtimes)
(nconc (mapcar #'simplify (cons w (cdr x)))
(cdr res))))))))
((eq (caar w) 'mequal)
(setq eqnflag
(if (not eqnflag)
w
(list (car eqnflag)
(mul2 (cadr eqnflag) (cadr w))
(mul2 (caddr eqnflag) (caddr w)))))
(go start))
((member (caar w) '(mlist $matrix) :test #'eq)
(setq matrixflag
(cond ((not matrixflag) w)
((and (or $doallmxops $domxmxops $domxtimes)
(or (not (eq (caar w) 'mlist)) $listarith)
(not (eq *inv* '$detout)))
(stimex matrixflag w))
(t (setq res (tms w 1 res)) matrixflag)))
(go start))
((and (eq (caar w) '%sum) $sumexpand)
(setq sumflag (sumtimes sumflag w))
(go start)))
(setq res (tms w 1 res))
(go start)
end
(cond ((mtimesp res) (setq res (testt res))))
(cond (sumflag (setq res (cond ((or (null res) (equal res 1)) sumflag)
((not (mtimesp res))
(list '(mtimes) res sumflag))
(t (nconc res (list sumflag)))))))
(cond ((or (atom res)
(not (member (caar res) '(mexpt mtimes) :test #'eq))
(and (zerop $expop) (zerop $expon))
expandflag))
((eq (caar res) 'mtimes) (setq res (expandtimes res)))
((and (mplusp (cadr res))
(fixnump (caddr res))
(not (or (> (caddr res) $expop)
(> (- (caddr res)) $expon))))
(setq res (expandexpt (cadr res) (caddr res)))))
(cond (matrixflag
(setq res
(cond ((null res) matrixflag)
((and (or ($listp matrixflag)
$doallmxops
(and $doscmxops
(not (member res '(-1 -1.0) :test #'equal)))
;; RES should only be -1 here (not = 1)
(and $domxmxops
(member res '(-1 -1.0) :test #'equal)))
(or (not ($listp matrixflag)) $listarith))
(mxtimesc res matrixflag))
(t (testt (tms matrixflag 1 (tms res 1 nil))))))))
(if res (setq res (eqtest res check)))
(return (cond (eqnflag
(if (null res) (setq res 1))
(list (car eqnflag)
(mul2 (cadr eqnflag) res)
(mul2 (caddr eqnflag) res)))
(t res)))))
(defun spsimpcases (l e)
(dolist (u l)
(if (or (mbagp u) (and (not (atom u))
(eq (caar u) '%sum)
(not (member 'trunc (cdar e) :test #'eq))))
(return t))))
(defun mxtimesc (sc mx)
(let (sign out)
(and (mtimesp sc) (member (cadr sc) '(-1 -1.0) :test #'equal)
$doscmxops (not (or $doallmxops $domxmxops $domxtimes))
(setq sign (cadr sc)) (rplaca (cdr sc) nil))
(setq out (let ((scp* (cond ((mtimesp sc) (partition-ns (cdr sc)))
((not (scalar-or-constant-p sc $assumescalar))
nil)
(t sc))))
(cond ((null scp*) (list '(mtimes simp) sc mx))
((and (not (atom scp*)) (null (car scp*)))
(append '((mtimes)) (cadr scp*) (list mx)))
((or (atom scp*) (and (null (cdr scp*))
(not (null (cdr sc)))
(setq scp* (cons '(mtimes) (car scp*))))
(not (mtimesp sc)))
(simplifya (outermap1 'mtimes scp* mx) nil))
(t (append '((mtimes))
(list (simplifya
(outermap1 'mtimes
(cons '(mtimes) (car scp*)) mx)
t))
(cadr scp*))))))
(cond (sign (if (mtimesp out)
(rplacd out (cons sign (cdr out)))
(list '(mtimes) sign out)))
((mtimesp out) (testt out))
(t out))))
(defun stimex (x y)
(let (($doscmxops t) ($domxmxops t) ($listarith t))
(simplify (fmapl1 'mtimes x y))))
;; TMS takes a simplified expression FACTOR and a cumulative
;; PRODUCT as arguments and modifies the cumulative product so
;; that the expression is now one of its factors. The
;; exception to this occurs when a tellsimp rule is triggered.
;; The second argument is the POWER to which the expression is
;; to be raised within the product.
(defun tms (factor power product &aux tem)
(let ((rulesw nil)
(z nil))
(when (mplusp product) (setq product (list '(mtimes simp) product)))
(cond ((zerop1 factor)
(cond ((mnegp power)
(if errorsw
(throw 'errorsw t)
(merror (intl:gettext "Division by 0"))))
(t factor)))
((and (null product)
(or (and (mtimesp factor) (equal power 1))
(and (setq product (list '(mtimes) 1)) nil)))
(setq tem (append '((mtimes)) (if (mnump (cadr factor)) nil '(1))
(cdr factor) nil))
(if (= (length tem) 1)
(setq tem (copy-list tem))
tem))
((mtimesp factor)
(do ((factor-list (cdr factor) (cdr factor-list)))
((or (null factor-list) (zerop1 product)) product)
(setq z (timesin (car factor-list) (cdr product) power))
(when rulesw
(setq rulesw nil)
(setq product (tms-format-product z)))))
(t
(setq z (timesin factor (cdr product) power))
(if rulesw
(tms-format-product z)
product)))))
(defun tms-format-product (x)
(cond ((zerop1 x) x)
((mnump x) (list '(mtimes) x))
((not (mtimesp x)) (list '(mtimes) 1 x))
((not (mnump (cadr x))) (cons '(mtimes) (cons 1 (cdr x))))
(t x)))
(defun plsk (x y)
(cond ($ratsimpexpons (sratsimp (list '(mplus) x y)))
((and (mnump x) (mnump y)) (addk x y))
(t (add2 x y))))
(defun mult (x y)
(if (and (mnump x) (mnump y))
(timesk x y)
(mul2 x y)))
(defmfun simp-limit (x vestigial z)
(declare (ignore vestigial))
(let ((l1 (length x))
y)
(unless (or (= l1 2) (= l1 4) (= l1 5))
(merror (intl:gettext "limit: wrong number of arguments.")))
(setq y (simpmap (cdr x) z))
(cond ((and (= l1 5) (not (member (cadddr y) '($plus $minus) :test #'eq)))
(merror (intl:gettext "limit: direction must be either 'plus' or 'minus': ~M") (cadddr y)))
((mnump (cadr y))
(merror (intl:gettext "limit: variable must not be a number; found: ~M") (cadr y)))
((equal (car y) 1)
1)
(t
(eqtest (cons '(%limit) y) x)))))
(defmfun simpinteg (x vestigial z)
(declare (ignore vestigial))
(let ((l1 (length x))
y)
(unless (or (= l1 3) (= l1 5))
(merror (intl:gettext "integrate: wrong number of arguments.")))
(setq y (simpmap (cdr x) z))
(cond ((mnump (cadr y))
(merror (intl:gettext "integrate: variable must not be a number; found: ~M") (cadr y)))
((and (= l1 5) (alike1 (caddr y) (cadddr y)))
0)
((and (= l1 5)
(free (setq z (sub (cadddr y) (caddr y))) '$%i)
(eq ($sign z) '$neg))
(neg (simplifya (list '(%integrate) (car y) (cadr y) (cadddr y) (caddr y)) t)))
((equal (car y) 1)
(if (= l1 3)
(cadr y)
(if (or (among '$inf z) (among '$minf z))
(infsimp z)
z)))
(t
(eqtest (cons '(%integrate) y) x)))))
(defmfun simpbigfloat (x vestigial simp-flag)
(declare (ignore vestigial simp-flag))
(bigfloatm* x))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Implementation of the Exp function.
(defprop $exp %exp verb)
(defprop $exp %exp alias)
(defprop %exp $exp noun)
(defprop %exp $exp reversealias)
(defprop %exp simp-exp operators)
(defun $exp (z)
(simplify (list '(%exp) z)))
;; Support a function for code,
;; which depends on an unsimplified noun form.
(defun $exp-form (z)
(list '(mexpt) '$%e z))
(defun simp-exp (x ignored z)
(declare (ignore ignored))
(oneargcheck x)
(simplifya (list '(mexpt) '$%e (cadr x)) z))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defmfun simplambda (x vestigial simp-flag)
(declare (ignore vestigial simp-flag))
(cons '(lambda simp) (cdr x)))
(defmfun simpmdef (x vestigial simp-flag)
(declare (ignore vestigial simp-flag))
(twoargcheck x)
(cons '(mdefine simp) (cdr x)))
(defun simpmap (e z)
(mapcar #'(lambda (u) (simpcheck u z)) e))
(defmfun infsimp (e)
(let ((x ($expand e 1 1)))
(cond ((or (not (free x '$ind)) (not (free x '$und))
(not (free x '$zeroa)) (not (free x '$zerob))
(not (free x '$infinity))
(mbagp x))
(infsimp2 x e))
((and (free x '$inf) (free x '$minf)) x)
(t (infsimp1 x e)))))
(defun infsimp1 (x e)
(let ((minf-coef (coeff x '$minf 1))
(inf-coef (coeff x '$inf 1)))
(cond ((or (and (equal minf-coef 0)
(equal inf-coef 0))
(and (not (free minf-coef '$inf))
(not (free inf-coef '$minf)))
(let ((new-exp (sub (add2 (mul2 minf-coef '$minf)
(mul2 inf-coef '$inf))
x)))
(and (not (free new-exp '$inf))
(not (free new-exp '$minf)))))
(infsimp2 x e))
(t (let ((sign-minf-coef ($asksign minf-coef))
(sign-inf-coef ($asksign inf-coef)))
(cond ((or (and (eq sign-inf-coef '$zero)
(eq sign-minf-coef '$neg))
(and (eq sign-inf-coef '$pos)
(eq sign-minf-coef '$zero))
(and (eq sign-inf-coef '$pos)
(eq sign-minf-coef '$neg))) '$inf)
((or (and (eq sign-inf-coef '$zero)
(eq sign-minf-coef '$pos))
(and (eq sign-inf-coef '$neg)
(eq sign-minf-coef '$zero))
(and (eq sign-inf-coef '$neg)
(eq sign-minf-coef '$pos))) '$minf)
((or (and (eq sign-inf-coef '$pos)
(eq sign-minf-coef '$pos))
(and (eq sign-inf-coef '$neg)
(eq sign-minf-coef '$neg))) '$und)))))))
(defun infsimp2 (x e)
(setq x ($limit x))
(if (isinop x '%limit) e x))
(defmfun simpderiv (x y z)
(prog (flag w u)
(cond ((not (even (length x)))
(cond ((and (cdr x) (null (cdddr x))) (nconc x '(1)))
(t (wna-err '%derivative)))))
(setq w (cons '(%derivative) (simpmap (cdr x) z)))
(setq y (cadr w))
(do ((u (cddr w) (cddr u))) ((null u))
(cond ((mnump (car u))
(merror (intl:gettext "diff: variable must not be a number; found: ~M") (car u)))))
(cond ((or (zerop1 y)
(and (or (mnump y) (and (atom y) (constant y)))
(or (null (cddr w))
(and (not (alike1 y (caddr w)))
(do ((u (cddr w) (cddr u))) ((null u))
(cond ((and (numberp (cadr u))
(not (zerop (cadr u))))
(return t))))))))
(return 0))
((and (not (atom y)) (eq (caar y) '%derivative) derivsimp)
(rplacd w (append (cdr y) (cddr w)))))
(if (null (cddr w))
(return (if (null derivflag) (list '(%del simp) y) (deriv (cdr w)))))
(setq u (cdr w))
ztest
(cond ((null u) (go next))
((zerop1 (caddr u)) (rplacd u (cdddr u)))
(t (setq u (cddr u))))
(go ztest)
next
(cond ((null (cddr w)) (return y))
((and (null (cddddr w))
(onep (cadddr w))
(alike1 (cadr w) (caddr w)))
(return 1)))
again
(setq z (cddr w))
sort
(cond ((null (cddr z)) (go loop))
((alike1 (car z) (caddr z))
(rplaca (cdddr z) (add2 (cadr z) (cadddr z)))
(rplacd z (cdddr z)))
((great (car z) (caddr z))
(let ((u1 (car z)) (u2 (cadr z)) (v1 (caddr z)) (v2 (cadddr z)))
(setq flag t)
(rplaca z v1)
(rplacd z (cons v2 (cons u1 (cons u2 (cddddr z))))))))
(cond ((setq z (cddr z)) (go sort)))
loop
(cond ((null flag) (return (cond ((null derivflag) (eqtest w x))
(t (deriv (cdr w)))))))
(setq flag nil)
(go again)))
(defmfun signum1 (x)
(cond ((mnump x)
(setq x (num1 x)) (cond ((plusp x) 1) ((minusp x) -1) (t 0)))
((atom x) 1)
((mplusp x) (if expandp 1 (signum1 (car (last x)))))
((mtimesp x) (if (mplusp (cadr x)) 1 (signum1 (cadr x))))
(t 1)))
(defprop %signum (mlist $matrix mequal) distribute_over)
(defmfun simpsignum (e y z)
(declare (ignore y))
(oneargcheck e)
(let ((x (simpcheck (second e) z)) (sgn))
(cond ((complex-number-p x #'mnump)
(if (complex-number-p x #'$ratnump) ;; nonfloat complex
(if (zerop1 x) 0 ($rectform (div x ($cabs x))))
(maxima::to (bigfloat::signum (bigfloat::to x)))))
;; idempotent: signum(signum(z)) = signum(z).
((and (consp x) (consp (car x)) (eq '%signum (mop x))) x)
(t
(setq sgn ($csign x))
(cond ((eq sgn '$neg) -1)
((eq sgn '$zero) 0)
((eq sgn '$pos) 1)
;; multiplicative: signum(ab) = signum(a) * signum(b).
((mtimesp x)
(muln (mapcar #'(lambda (s) (take '(%signum) s)) (margs x)) t))
;; Reflection rule: signum(-x) --> -signum(x).
((great (neg x) x) (neg (take '(%signum) (neg x))))
;; nounform return
(t (eqtest (list '(%signum) x) e)))))))
(defmfun exptrl (r1 r2)
(cond ((equal r2 1) r1)
((equal r2 1.0)
(cond ((mnump r1) (addk 0.0 r1))
;; Do not simplify the type of the number away.
(t (list '(mexpt simp) r1 1.0))))
((equal r2 bigfloatone)
(cond ((mnump r1) ($bfloat r1))
;; Do not simplify the type of the number away.
(t (list '(mexpt simp) r1 bigfloatone))))
((zerop1 r1)
(cond ((or (zerop1 r2) (mnegp r2))
(if (not errorsw)
(merror (intl:gettext "expt: undefined: ~M") (list '(mexpt) r1 r2))
(throw 'errorsw t)))
(t (zerores r1 r2))))
((or (zerop1 r2) (onep1 r1))
(cond ((or ($bfloatp r1) ($bfloatp r2)) bigfloatone)
((or (floatp r1) (floatp r2)) 1.0)
(t 1)))
((or ($bfloatp r1) ($bfloatp r2)) ($bfloat (list '(mexpt) r1 r2)))
((and (numberp r1) (integerp r2)) (exptb r1 r2))
((and (numberp r1) (floatp r2) (equal r2 (float (floor r2))))
(exptb (float r1) (floor r2)))
((or $numer (and (floatp r2) (or (plusp (num1 r1)) $numer_pbranch)))
(let (y #+kcl(r1 r1) #+kcl(r2 r2))
(cond ((minusp (setq r1 (addk 0.0 r1)))
(cond ((or $numer_pbranch (eq $domain '$complex))
;; for R1<0:
;; R1^R2 = (-R1)^R2*cos(pi*R2) + i*(-R1)^R2*sin(pi*R2)
(setq r2 (addk 0.0 r2))
(setq y (exptrl (- r1) r2) r2 (* %pi-val r2))
(add2 (* y (cos r2))
(list '(mtimes simp) (* y (sin r2)) '$%i)))
(t (setq y (let ($numer $float $keepfloat $ratprint)
(power -1 r2)))
(mul2 y (exptrl (- r1) r2)))))
((equal (setq r2 (addk 0.0 r2)) (float (floor r2)))
(exptb r1 (floor r2)))
((and (equal (setq y (* 2.0 r2)) (float (floor y)))
(not (equal r1 %e-val)))
(exptb (sqrt r1) (floor y)))
(t (exp (* r2 (log r1)))))))
((floatp r2) (list '(mexpt simp) r1 r2))
((integerp r2)
(cond ((minusp r2)
(exptrl (cond ((equal (abs (cadr r1)) 1)
(* (cadr r1) (caddr r1)))
;; We set the simp flag at this place. This
;; changes nothing for an exponent r2 # -1.
;; exptrl is called again and does not look at
;; the simp flag. For the case r2 = -1 exptrl
;; is called with an exponent 1. For this case
;; the base is immediately returned. Now the
;; base has the correct simp flag. (DK 02/2010)
((minusp (cadr r1))
(list '(rat simp) (- (caddr r1)) (- (cadr r1))))
(t (list '(rat simp) (caddr r1) (cadr r1))))
(- r2)))
(t (list '(rat simp) (exptb (cadr r1) r2) (exptb (caddr r1) r2)))))
((and (floatp r1) (alike1 r2 '((rat) 1 2)))
(if (minusp r1)
(list '(mtimes simp) (sqrt (- r1)) '$%i)
(sqrt r1)))
((and (floatp r1) (alike1 r2 '((rat) -1 2)))
(if (minusp r1)
(list '(mtimes simp) (/ -1.0 (sqrt (- r1))) '$%i)
(/ (sqrt r1))))
((floatp r1)
(if (plusp r1)
(exptrl r1 (fpcofrat r2))
(mul2 (exptrl -1 r2) ;; (-4.5)^(1/4) -> (4.5)^(1/4) * (-1)^(1/4)
(exptrl (- r1) r2))))
(exptrlsw (list '(mexpt simp) r1 r2))
(t
(let ((exptrlsw t))
(simptimes (list '(mtimes)
(exptrl r1 (truncate (cadr r2) (caddr r2)))
(let ((y (let ($keepfloat $ratprint)
(simpnrt r1 (caddr r2))))
(z (rem (cadr r2) (caddr r2))))
(if (mexptp y)
(list (car y) (cadr y) (mul2 (caddr y) z))
(power y z))))
1 t)))))
(defmfun simpexpt (x y z)
(prog (gr pot check res rulesw w mlpgr mlppot)
(setq check x)
(cond (z (setq gr (cadr x) pot (caddr x)) (go cont)))
(twoargcheck x)
(setq gr (simplifya (cadr x) nil))
(setq pot
(let (($%enumer $numer))
;; Switch $%enumer on, when $numer is TRUE to allow
;; simplification of $%e to its numerical value.
(simplifya (if $ratsimpexpons ($ratsimp (caddr x)) (caddr x))
nil)))
cont
(cond (($ratp pot)
(setq pot (ratdisrep pot))
(go cont))
(($ratp gr)
(cond ((member 'trunc (car gr) :test #'eq)
(return (srf (list '(mexpt) gr pot))))
((integerp pot)
(let ((varlist (caddar gr)) (genvar (cadddr (car gr))))
(return (ratrep* (list '(mexpt) gr pot)))))
(t
(setq gr (ratdisrep gr))
(go cont))))
((or (setq mlpgr (mxorlistp gr))
(setq mlppot (mxorlistp pot)))
(go matrix))
((onep1 pot) (go atgr))
((or (zerop1 pot) (onep1 gr)) (go retno))
;; This code tries to handle 0^a more complete.
;; If the sign of realpart(a) is not known return an unsimplified
;; expression. The handling of the flag *zexptsimp? is not changed.
;; Reverting the return of an unsimplified 0^a, because timesin
;; can not handle such expressions. (DK 02/2010)
((zerop1 gr)
(cond ((or (member (setq z ($csign pot)) '($neg $nz))
(and *zexptsimp? (eq ($asksign pot) '$neg)))
;; A negative exponent. Maxima error.
(cond ((not errorsw) (merror (intl:gettext "expt: undefined: 0 to a negative exponent.")))
(t (throw 'errorsw t))))
((and (member z '($complex $imaginary))
;; A complex exponent. Look at the sign of the realpart.
(member (setq z ($sign ($realpart pot)))
'($neg $nz $zero)))
(cond ((not errorsw)
(merror (intl:gettext "expt: undefined: 0 to a complex exponent.")))
(t (throw 'errorsw t))))
((and *zexptsimp? (eq ($asksign pot) '$zero))
(cond ((not errorsw)
(merror (intl:gettext "expt: undefined: 0^0")))
(t (throw 'errorsw t))))
((not (member z '($pos $pz)))
;; The sign of realpart(pot) is not known. We can not return
;; an unsimplified 0^a expression, because timesin can not
;; handle it. We return ZERO. That is the old behavior.
;; Look for the imaginary symbol to be consistent with
;; old code.
(cond ((not (free pot '$%i))
(cond ((not errorsw)
(merror (intl:gettext "expt: undefined: 0 to a complex exponent.")))
(t (throw 'errorsw t))))
(t
;; Return ZERO and not an unsimplified expression.
(return (zerores gr pot)))))
(t (return (zerores gr pot)))))
((and (mnump gr)
(mnump pot)
(or (not (ratnump gr)) (not (ratnump pot))))
(return (eqtest (exptrl gr pot) check)))
;; Check for numerical evaluation of the sqrt.
((and (alike1 pot '((rat) 1 2))
(or (setq res (flonum-eval '%sqrt gr))
(and (not (member 'simp (car x) :test #'eq))
(setq res (big-float-eval '%sqrt gr)))))
(return res))
((eq gr '$%i)
(return (%itopot pot)))
((and (realp gr) (minusp gr) (mevenp pot))
(setq gr (- gr))
(go cont))
((and (realp gr) (minusp gr) (moddp pot))
(return (mul2 -1 (power (- gr) pot))))
((and (equal gr -1) (maxima-integerp pot) (mminusp pot))
(setq pot (neg pot))
(go cont))
((and (equal gr -1)
(maxima-integerp pot)
(mtimesp pot)
(= (length pot) 3)
(fixnump (cadr pot))
(oddp (cadr pot))
(maxima-integerp (caddr pot)))
(setq pot (caddr pot))
(go cont))
((atom gr) (go atgr))
((and (eq (caar gr) 'mabs)
(evnump pot)
(or (and (eq $domain '$real) (not (decl-complexp (cadr gr))))
(and (eq $domain '$complex) (decl-realp (cadr gr)))))
(return (power (cadr gr) pot)))
((and (eq (caar gr) 'mabs)
(integerp pot)
(oddp pot)
(not (equal pot -1))
(or (and (eq $domain '$real) (not (decl-complexp (cadr gr))))
(and (eq $domain '$complex) (decl-realp (cadr gr)))))
;; abs(x)^(2*n+1) -> abs(x)*x^(2*n), n an integer number
(if (plusp pot)
(return (mul (power (cadr gr) (add pot -1))
gr))
(return (mul (power (cadr gr) (add pot 1))
(inv gr)))))
((eq (caar gr) 'mequal)
(return (eqtest (list (ncons (caar gr))
(power (cadr gr) pot)
(power (caddr gr) pot))
gr)))
((symbolp pot) (go opp))
((eq (caar gr) 'mexpt) (go e1))
((and (eq (caar gr) '%sum)
$sumexpand
(integerp pot)
(signp g pot)
(< pot $maxposex))
(return (do ((i (1- pot) (1- i))
(an gr (simptimes (list '(mtimes) an gr) 1 t)))
((signp e i) an))))
((equal pot -1)
(return (eqtest (testt (tms gr pot nil)) check)))
((fixnump pot)
(return (eqtest (cond ((and (mplusp gr)
(not (or (> pot $expop)
(> (- pot) $expon))))
(expandexpt gr pot))
(t (simplifya (tms gr pot nil) t)))
check))))
opp
(cond ((eq (caar gr) 'mexpt) (go e1))
((eq (caar gr) 'rat)
(return (mul2 (power (cadr gr) pot)
(power (caddr gr) (mul2 -1 pot)))))
((not (eq (caar gr) 'mtimes)) (go up))
((or (eq $radexpand '$all) (and $radexpand (simplexpon pot)))
(setq res (list 1))
(go start))
((and (or (not (numberp (cadr gr)))
(equal (cadr gr) -1))
(equal -1 ($num gr)) ; only for -1
;; Do not simplify for a complex base.
(not (member ($csign gr) '($complex $imaginary)))
(and (eq $domain '$real) $radexpand))
;; (-1/x)^a -> 1/(-x)^a for x negative
;; For all other cases (-1)^a/x^a
(if (eq ($csign (setq w ($denom gr))) '$neg)
(return (inv (power (neg w) pot)))
(return (div (power -1 pot)
(power w pot)))))
((or (eq $domain '$complex) (not $radexpand)) (go up)))
(return (do ((l (cdr gr) (cdr l)) (res (ncons 1)) (rad))
((null l)
(cond ((equal res '(1))
(eqtest (list '(mexpt) gr pot) check))
((null rad)
(testt (cons '(mtimes simp) res)))
(t
(setq rad (power* ; RADEXPAND=()?
(cons '(mtimes) (nreverse rad)) pot))
(cond ((not (onep1 rad))
(setq rad
(testt (tms rad 1 (cons '(mtimes) res))))
(cond (rulesw
(setq rulesw nil res (cdr rad))))))
(eqtest (testt (cons '(mtimes) res)) check))))
;; Check with $csign to be more complete. This prevents wrong
;; simplifications like sqrt(-z^2)->%i*sqrt(z^2) for z complex.
(setq z ($csign (car l)))
(if (member z '($complex $imaginary))
(setq z '$pnz)) ; if appears complex, unknown sign
(setq w (cond ((member z '($neg $nz) :test #'eq)
(setq rad (cons -1 rad))
(mult -1 (car l)))
(t (car l))))
(cond ((onep1 w))
((alike1 w gr) (return (list '(mexpt simp) gr pot)))
((member z '($pn $pnz) :test #'eq)
(setq rad (cons w rad)))
(t
(setq w (testt (tms (simplifya (list '(mexpt) w pot) t)
1 (cons '(mtimes) res))))))
(cond (rulesw (setq rulesw nil res (cdr w))))))
start
(cond ((and (cdr res) (onep1 (car res)) (ratnump (cadr res)))
(setq res (cdr res))))
(cond ((null (setq gr (cdr gr)))
(return (eqtest (testt (cons '(mtimes) res)) check)))
((mexptp (car gr))
(setq y (list (caar gr) (cadar gr) (mult (caddar gr) pot))))
((eq (car gr) '$%i)
(setq y (%itopot pot)))
((mnump (car gr))
(setq y (list '(mexpt) (car gr) pot)))
(t (setq y (list '(mexpt simp) (car gr) pot))))
(setq w (testt (tms (simplifya y t) 1 (cons '(mtimes) res))))
(cond (rulesw (setq rulesw nil res (cdr w))))
(go start)
retno
(return (exptrl gr pot))
atgr
(cond ((zerop1 pot) (go retno))
((onep1 pot)
(let ((y (mget gr '$numer)))
(if (and y (floatp y) (or $numer (not (equal pot 1))))
;; A numeric constant like %e, %pi, ... and
;; exponent is a float or bigfloat value.
(return (if (and (member gr *builtin-numeric-constants*)
(equal pot bigfloatone))
;; Return a bigfloat value.
($bfloat gr)
;; Return a float value.
y))
;; In all other cases exptrl simplifies accordingly.
(return (exptrl gr pot)))))
((eq gr '$%e)
;; Numerically evaluate if the power is a flonum.
(when $%emode
(let ((val (flonum-eval '%exp pot)))
(when val
(return val)))
;; Numerically evaluate if the power is a (complex)
;; big-float. (This is basically the guts of
;; big-float-eval, but we can't use big-float-eval.)
(when (and (not (member 'simp (car x) :test #'eq))
(complex-number-p pot 'bigfloat-or-number-p))
(let ((x ($realpart pot))
(y ($imagpart pot)))
(cond ((and ($bfloatp x) (like 0 y))
(return ($bfloat `((mexpt simp) $%e ,pot))))
((or ($bfloatp x) ($bfloatp y))
(let ((z (add ($bfloat x) (mul '$%i ($bfloat y)))))
(setq z ($rectform `((mexpt simp) $%e ,z)))
(return ($bfloat z))))))))
(cond ((and $logsimp (among '%log pot)) (return (%etolog pot)))
((and $demoivre (setq z (demoivre pot))) (return z))
((and $%emode
(among '$%i pot)
(among '$%pi pot)
;; Exponent contains %i and %pi and %emode is TRUE:
;; Check simplification of exp(%i*%pi*p/q*x)
(setq z (%especial pot)))
(return z))
(($taylorp (third x))
;; taylorize %e^taylor(...)
(return ($taylor x)))))
(t
(let ((y (mget gr '$numer)))
;; Check for a numeric constant.
(and y
(floatp y)
(or (floatp pot)
;; The exponent is a bigfloat. Convert base to bigfloat.
(and ($bfloatp pot)
(member gr *builtin-numeric-constants*)
(setq y ($bfloat gr)))
(and $numer (integerp pot)))
(return (exptrl y pot))))))
up
(return (eqtest (list '(mexpt) gr pot) check))
matrix
(cond ((zerop1 pot)
(cond ((mxorlistp1 gr) (return (constmx (addk 1 pot) gr)))
(t (go retno))))
((onep1 pot) (return gr))
((or $doallmxops $doscmxops $domxexpt)
(cond ((or (and mlpgr
(or (not ($listp gr)) $listarith)
(scalar-or-constant-p pot $assumescalar))
(and $domxexpt
mlppot
(or (not ($listp pot)) $listarith)
(scalar-or-constant-p gr $assumescalar)))
(return (simplifya (outermap1 'mexpt gr pot) t)))
(t (go up))))
((and $domxmxops (member pot '(-1 -1.0) :test #'equal))
(return (simplifya (outermap1 'mexpt gr pot) t)))
(t (go up)))
e1
;; At this point we have an expression: (z^a)^b with gr = z^a and pot = b
(cond ((or (eq $radexpand '$all)
;; b is an integer or an odd rational
(simplexpon pot)
(and (eq $domain '$complex)
(not (member ($csign (caddr gr)) '($complex $imaginary)))
;; z >= 0 and a not a complex
(or (member ($csign (cadr gr)) '($pos $pz $zero))
;; -1 < a <= 1
(and (mnump (caddr gr))
(eq ($sign (sub 1 (take '(mabs) (caddr gr))))
'$pos))))
(and (eq $domain '$real)
(member ($csign (cadr gr)) '($pos $pz $zero)))
;; (1/z)^a -> 1/z^a when z a constant complex
(and (eql (caddr gr) -1)
(or (and $radexpand
(eq $domain '$real))
(and (eq ($csign (cadr gr)) '$complex)
($constantp (cadr gr)))))
;; This does (1/z)^a -> 1/z^a. This is in general wrong.
;; We switch this type of simplification on, when
;; $ratsimpexpons is T. E.g. radcan sets this flag to T.
;; radcan hangs for expressions like sqrt(1/(1+x)) without
;; this simplification.
(and $ratsimpexpons
(equal (caddr gr) -1))
(and $radexpand
(eq $domain '$real)
(odnump (caddr gr))))
;; Simplify (z^a)^b -> z^(a*b)
(setq pot (mul pot (caddr gr))
gr (cadr gr)))
((and (eq $domain '$real)
(free gr '$%i)
$radexpand
(not (decl-complexp (cadr gr)))
(evnump (caddr gr)))
;; Simplify (x^a)^b -> abs(x)^(a*b)
(setq pot (mul pot (caddr gr))
gr (radmabs (cadr gr))))
((and $radexpand
(eq $domain '$real)
(mminusp (caddr gr)))
;; Simplify (1/z^a)^b -> 1/(z^a)^b
(setq pot (neg pot)
gr (power (cadr gr) (neg (caddr gr)))))
(t (go up)))
(go cont)))
;; Basically computes log of m base b. Except if m is not a power
;; of b, we return nil. m is a positive integer and base an integer
;; not equal to +/-1.
(defun exponent-of (m base)
;; Just compute base^k until base^k >= m. Then check if they're equal.
;; If so, we have the exponent. Otherwise, give up.
(let ((expo 0))
(loop
(multiple-value-bind (q r)
(floor m base)
(cond ((zerop r)
(setf m q)
(incf expo))
(t (return nil)))))
(if (zerop expo) nil expo)))
(defun timesin (x y w) ; Multiply X^W into Y
(prog (fm temp z check u expo)
(if (mexptp x) (setq check x))
top
;; Prepare the factor x^w and initialize the work of timesin
(cond ((equal w 1)
(setq temp x))
(t
(setq temp (cons '(mexpt) (if check
(list (cadr x) (mult (caddr x) w))
(list x w))))
(if (and (not timesinp) (not (eq x '$%i)))
(let ((timesinp t))
(setq temp (simplifya temp t))))))
(setq x (if (mexptp temp)
(cdr temp)
(list temp 1)))
(setq w (cadr x)
fm y)
start
;; Go through the list of terms in fm and look what is to do.
(cond ((null (cdr fm))
;; The list of terms is empty. The loop is finshed.
(go less))
((or (and (mnump temp)
(not (or (integerp temp)
(ratnump temp))))
(and (integerp temp)
(equal temp -1)))
;; Stop the loop for a float or bigfloat number, or number -1.
(go less))
((mexptp (cadr fm))
(cond ((alike1 (car x) (cadadr fm))
(cond ((zerop1 (setq w (plsk (caddr (cadr fm)) w)))
(go del))
((and (mnump w)
(or (mnump (car x))
(eq (car x) '$%i)))
(rplacd fm (cddr fm))
(cond ((mnump (setq x (if (mnump (car x))
(exptrl (car x) w)
(power (car x) w))))
(return (rplaca y (timesk (car y) x))))
((mtimesp x)
(go times))
(t
(setq temp x
x (if (mexptp x) (cdr x) (list x 1)))
(setq w (cadr x)
fm y)
(go start))))
((maxima-constantp (car x))
(go const))
((onep1 w)
(cond ((mtimesp (car x))
;; A base which is a mtimes expression. Remove
;; the factor from the lists of products.
(rplacd fm (cddr fm))
;; Multiply the factors of the base with
;; the list of all remaining products.
(setq rulesw t)
(return (muln (nconc y (cdar x)) t)))
(t (return (rplaca (cdr fm) (car x))))))
(t
(go spcheck))))
;; At this place we have to add code for a rational number
;; as a factor to the list of products.
((and (onep1 w)
(or (ratnump (car x))
(and (integerp (car x))
(not (onep (car x))))))
;; Multiplying bas^k * num/den
(let ((num (num1 (car x)))
(den (denom1 (car x)))
(bas (second (cadr fm))))
(cond ((and (integerp bas)
(not (eql 1 (abs bas)))
(setq expo (exponent-of (abs num) bas)))
;; We have bas^m*bas^k = bas^(k+m).
(setq temp (power bas
(add (third (cadr fm)) expo)))
;; Set fm to have 1/denom term.
(setq x (mul (car y)
(div (div num
(exptrl bas expo))
den))))
((and (integerp bas)
(not (eql 1 (abs bas)))
(setq expo (exponent-of den bas)))
(setq expo (- expo))
;; We have bas^(-m)*bas^k = bas^(k-m).
(setq temp (power bas
(add (third (cadr fm)) expo)))
;; Set fm to have the numerator term.
(setq x (mul (car y)
(div num
(div den
(exptrl bas (- expo)))))))
(t
;; Next term in list of products.
(setq fm (cdr fm))
(go start)))
;; Add in the bas^(k+m) term or bas^(k-m)
(setf y (rplaca y 1))
(rplacd fm (cddr fm))
(rplacd fm (cons temp (cdr fm)))
(setq temp x
x (list x 1)
w 1
fm y)
(go start)))
((and (not (atom (car x)))
(eq (caar (car x)) 'mabs)
(equal (cadr x) 1)
(integerp (caddr (cadr fm)))
(< (caddr (cadr fm)) -1)
(alike1 (cadr (car x)) (cadr (cadr fm)))
(not (member ($csign (cadr (car x)))
'($complex imaginary))))
;; 1/x^n*abs(x) -> 1/(x^(n-2)*abs(x)), where n an integer
;; Replace 1/x^n -> 1/x^(n-2)
(setq temp (power (cadr (cadr fm))
(add (caddr (cadr fm)) 2)))
(rplacd fm (cddr fm))
(if (not (equal temp 1))
(rplacd fm (cons temp (cdr fm))))
;; Multiply factor 1/abs(x) into list of products.
(setq x (list (car x) -1))
(setq temp (power (car x) (cadr x)))
(setq w (cadr x))
(go start))
((and (not (atom (car x)))
(eq (caar (car x)) 'mabs)
(equal (cadr x) -1)
(integerp (caddr (cadr fm)))
(> (caddr (cadr fm)) 1)
(alike1 (cadr (car x)) (cadr (cadr fm)))
(not (member ($csign (cadr (car x)))
'($complex imaginary))))
;; x^n/abs(x) -> x^(n-2)*abs(x), where n an integer.
;; Replace x^n -> x^(n-2)
(setq temp (power (cadr (cadr fm))
(add (caddr (cadr fm)) -2)))
(rplacd fm (cddr fm))
(if (not (equal temp 1))
(rplacd fm (cons temp (cdr fm))))
;; Multiply factor abs(x) into list of products.
(setq x (list (car x) 1))
(setq temp (power (car x) (cadr x)))
(setq w (cadr x))
(go start))
((and (not (atom (cadr fm)))
(not (atom (cadr (cadr fm))))
(eq (caaadr (cadr fm)) 'mabs)
(equal (caddr (cadr fm)) -1)
(integerp (cadr x))
(> (cadr x) 1)
(alike1 (cadadr (cadr fm)) (car x))
(not (member ($csign (cadadr (cadr fm)))
'($complex imaginary))))
;; 1/abs(x)*x^n -> x^(n-2)*abs(x), where n an integer.
;; Replace 1/abs(x) -> abs(x)
(setq temp (cadr (cadr fm)))
(rplacd fm (cddr fm))
(rplacd fm (cons temp (cdr fm)))
;; Multiply factor x^(n-2) into list of products.
(setq x (list (car x) (add (cadr x) -2)))
(setq temp (power (car x) (cadr x)))
(setq w (cadr x))
(go start))
((or (maxima-constantp (car x))
(maxima-constantp (cadadr fm)))
(if (great temp (cadr fm))
(go gr)))
((great (car x) (cadadr fm))
(go gr)))
(go less))
((alike1 (car x) (cadr fm))
(go equ))
((mnump temp)
;; When a number goto start and look in the next term.
(setq fm (cdr fm))
(go start))
((and (not (atom (cadr fm)))
(eq (caar (cadr fm)) 'mabs)
(integerp (cadr x))
(< (cadr x) -1)
(alike1 (cadr (cadr fm)) (car x))
(not (member ($csign (cadr (cadr fm)))
'($complex imaginary))))
;; abs(x)/x^n -> 1/(x^(n-2)*abs(x)), where n an integer.
;; Replace abs(x) -> 1/abs(x).
(setq temp (power (cadr fm) -1))
(rplacd fm (cddr fm))
(rplacd fm (cons temp (cdr fm)))
;; Multiply factor x^(-n+2) into list of products.
(setq x (list (car x) (add (cadr x) 2)))
(setq temp (power (car x) (cadr x)))
(setq w (cadr x))
(go start))
((maxima-constantp (car x))
(when (great temp (cadr fm))
(go gr)))
((great (car x) (cadr fm))
(go gr)))
less
(cond ((mnump temp)
;; Multiply a number into the list of products.
(return (rplaca y (timesk (car y) temp))))
((and (eq (car x) '$%i)
(fixnump w))
(go %i))
((and (eq (car x) '$%e)
$numer
(integerp w))
(return (rplaca y (timesk (car y) (exp (float w))))))
((and (onep1 w)
(not (constant (car x))))
(go less1))
;; At this point we will insert a mexpt expression,
;; but first we look at the car of the list of products and
;; modify the expression if we found a rational number.
((and (mexptp temp)
(not (onep1 (car y)))
(or (integerp (car y))
(ratnump (car y))))
;; Multiplying bas^k * num/den.
(let ((num (num1 (car y)))
(den (denom1 (car y)))
(bas (car x)))
(cond ((and (integerp bas)
(not (eql 1 (abs bas)))
(setq expo (exponent-of (abs num) bas)))
;; We have bas^m*bas^k.
(setq temp (power bas (add (cadr x) expo)))
;; Set fm to have 1/denom term.
(setq x (div (div num (exptrl bas expo)) den)))
((and (integerp bas)
(not (eql 1 (abs bas)))
(setq expo (exponent-of den bas)))
(setq expo (- expo))
;; We have bas^(-m)*bas^k.
(setq temp (power bas (add (cadr x) expo)))
;; Set fm to have the numerator term.
(setq x (div num (div den (exptrl bas (- expo))))))
(t
;; The rational doesn't contain any (simple) powers of
;; the exponential term. We're done.
(return (cdr (rplacd fm (cons temp (cdr fm)))))))
;; Add in the a^(m+k) or a^(k-m) term.
(setf y (rplaca y 1))
(rplacd fm (cons temp (cdr fm)))
(setq temp x
x (list x 1)
w 1
fm y)
(go start)))
((and (maxima-constantp (car x))
(do ((l (cdr fm) (cdr l)))
((null (cdr l)))
(when (and (mexptp (cadr l))
(alike1 (car x) (cadadr l)))
(setq fm l)
(return t))))
(go start))
((or (and (mnump (car x))
(mnump w))
(and (eq (car x) '$%e)
$%emode
(among '$%i w)
(among '$%pi w)
(setq u (%especial w))))
(setq x (cond (u)
((alike (cdr check) x)
check)
(t
(exptrl (car x) w))))
(cond ((mnump x)
(return (rplaca y (timesk (car y) x))))
((mtimesp x)
(go times))
((mexptp x)
(return (cdr (rplacd fm (cons x (cdr fm))))))
(t
(setq temp x
x (list x 1)
w 1
fm y)
(go start))))
((onep1 w)
(go less1))
(t
(setq temp (list '(mexpt) (car x) w))
(setq temp (eqtest temp (or check '((foo)))))
(return (cdr (rplacd fm (cons temp (cdr fm)))))))
less1
(return (cdr (rplacd fm (cons (car x) (cdr fm)))))
gr
(setq fm (cdr fm))
(go start)
equ
(cond ((and (eq (car x) '$%i) (equal w 1))
(rplacd fm (cddr fm))
(return (rplaca y (timesk -1 (car y)))))
((zerop1 (setq w (plsk 1 w)))
(go del))
((and (mnump (car x)) (mnump w))
(return (rplaca (cdr fm) (exptrl (car x) w))))
((maxima-constantp (car x))
(go const)))
spcheck
(setq z (list '(mexpt) (car x) w))
(cond ((alike1 (setq x (simplifya z t)) z)
(return (rplaca (cdr fm) x)))
(t
(rplacd fm (cddr fm))
(setq rulesw t)
(return (muln (cons x y) t))))
const
(rplacd fm (cddr fm))
(setq x (car x) check nil)
(go top)
times
(setq z (tms x 1 (setq temp (cons '(mtimes) y))))
(return (cond ((eq z temp)
(cdr z))
(t
(setq rulesw t) z)))
del
(return (rplacd fm (cddr fm)))
%i
(if (minusp (setq w (rem w 4)))
(incf w 4))
(return (cond ((zerop w)
fm)
((= w 2)
(rplaca y (timesk -1 (car y))))
((= w 3)
(rplaca y (timesk -1 (car y)))
(rplacd fm (cons '$%i (cdr fm))))
(t
(rplacd fm (cons '$%i (cdr fm))))))))
(defmfun simpmatrix (x vestigial z)
(declare (ignore vestigial))
(if (and (null (cddr x))
$scalarmatrixp
(or (eq $scalarmatrixp '$all) (member 'mult (cdar x) :test #'eq))
($listp (cadr x)) (cdadr x) (null (cddadr x)))
(simplifya (cadadr x) z)
(let ((badp (dolist (row (cdr x)) (if (not ($listp row)) (return t))))
(args (simpmap (cdr x) z)))
(if (and args (not badp)) (matcheck args))
(cons (if badp '(%matrix simp) '($matrix simp)) args))))
(defun %itopot (pot)
(if (fixnump pot)
(let ((i (boole boole-and pot 3)))
(cond ((= i 0) 1)
((= i 1) '$%i)
((= i 2) -1)
(t (list '(mtimes simp) -1 '$%i))))
(power -1 (mul2 pot '((rat simp) 1 2)))))
(defun mnlogp (pot)
(cond ((eq (caar pot) '%log) (simplifya (cadr pot) nil))
((and (eq (caar pot) 'mtimes)
(or (maxima-integerp (cadr pot))
(and $%e_to_numlog ($numberp (cadr pot))))
(not (atom (caddr pot))) (eq (caar (caddr pot)) '%log)
(null (cdddr pot)))
(power (cadr (caddr pot)) (cadr pot)))))
(defun mnlog (pot)
(prog (a b c)
loop (cond ((null pot)
(cond (a (setq a (cons '(mtimes) a))))
(cond (c (setq c (list '(mexpt simp) '$%e (addn c nil)))))
(return (cond ((null c) (simptimes a 1 nil))
((null a) c)
(t (simptimes (append a (list c)) 1 nil)))))
((and (among '%log (car pot)) (setq b (mnlogp (car pot))))
(setq a (cons b a)))
(t (setq c (cons (car pot) c))))
(setq pot (cdr pot))
(go loop)))
(defun %etolog (pot) (cond ((mnlogp pot))
((eq (caar pot) 'mplus) (mnlog (cdr pot)))
(t (list '(mexpt simp) '$%e pot))))
(defun zerores (r1 r2)
(cond ((or ($bfloatp r1) ($bfloatp r2)) bigfloatzero)
((or (floatp r1) (floatp r2)) 0.0)
(t 0)))
(defmfun $orderlessp (a b)
(setq a ($totaldisrep (specrepcheck a))
b ($totaldisrep (specrepcheck b)))
(and (not (alike1 a b)) (great b a) t))
(defmfun $ordergreatp (a b)
(setq a ($totaldisrep (specrepcheck a))
b ($totaldisrep (specrepcheck b)))
(and (not (alike1 a b)) (great a b) t))
;; Test function to order a and b by magnitude. If it is not possible to
;; order a and b by magnitude they are ordered by great. This function
;; can be used by sort, e.g. sort([3,1,7,x,sin(1),minf],ordermagnitudep)
(defun $ordermagnitudep (a b)
(let (sgn)
(setq a ($totaldisrep (specrepcheck a))
b ($totaldisrep (specrepcheck b)))
(cond ((and (or (constp a) (member a '($inf $minf)))
(or (constp b) (member b '($inf $minf)))
(member (setq sgn ($csign (sub b a))) '($pos $neg $zero)))
(cond ((eq sgn '$pos) t)
((eq sgn '$zero) (and (not (alike1 a b)) (great b a)))
(t nil)))
((or (constp a) (member a '($inf $minf))) t)
((or (constp b) (member b '($inf $minf))) nil)
(t (and (not (alike1 a b)) (great b a))))))
(defun evnump (n) (or (even n) (and (ratnump n) (even (cadr n)))))
(defun odnump (n) (or (and (integerp n) (oddp n))
(and (ratnump n) (oddp (cadr n)))))
(defun simplexpon (e)
(or (maxima-integerp e)
(and (eq $domain '$real) (ratnump e) (oddp (caddr e)))))
;; This function is not called in Maxima core or share code
;; and can be cut out.
(defun noneg (p)
(and (free p '$%i) (member ($sign p) '($pos $pz $zero) :test #'eq)))
(defun radmabs (e)
(if (and limitp (free e '$%i)) (asksign-p-or-n e))
(simplifya (list '(mabs) e) t))
(defmfun simpmqapply (exp y z)
(let ((simpfun (and (not (atom (cadr exp))) (get (caaadr exp) 'specsimp))) u)
(if simpfun
(funcall simpfun exp y z)
(progn (setq u (simpargs exp z))
(if (symbolp (cadr u))
(simplifya (cons (cons (cadr u) (cdar u)) (cddr u)) z)
u)))))
;; TRUE, if the symbol e is declared to be $complex or $imaginary.
(defun decl-complexp (e)
(and (symbolp e)
(kindp e '$complex)))
;; TRUE, if the symbol e is declared to be $integer, $rational, or $real
(defun decl-realp (e)
(and (symbolp e)
(or (kindp e '$real)
(kindp e '$rational)
(kindp e '$integer))))
;; WARNING: Exercise extreme caution when modifying this function!
;;
;; Richard Fateman and Stavros Macrakis both say that changing the
;; actual ordering relations (as opposed to making them faster to
;; determine) could have very subtle and wide-ranging effects. Also,
;; the simplifier spends the vast majority of its time here, so be
;; very careful about changes that may drastically slow down the
;; simplifier.
(defmfun great (x y)
(cond ((atom x)
(cond ((atom y)
(cond ((numberp x)
(cond ((numberp y)
(setq y (- x y))
(cond ((zerop y) (floatp x)) (t (plusp y))))))
((constant x)
(cond ((constant y) (alphalessp y x)) (t (numberp y))))
((mget x '$scalar)
(cond ((mget y '$scalar) (alphalessp y x))
(t (maxima-constantp y))))
((mget x '$mainvar)
(cond ((mget y '$mainvar) (alphalessp y x)) (t t)))
(t (or (maxima-constantp y) (mget y '$scalar)
(and (not (mget y '$mainvar)) (alphalessp y x))))))
(t (not (ordfna y x)))))
((atom y) (ordfna x y))
((eq (caar x) 'rat)
(cond ((eq (caar y) 'rat)
(> (* (caddr y) (cadr x)) (* (caddr x) (cadr y))))))
((eq (caar y) 'rat))
((member (caar x) '(mbox mlabox) :test #'eq) (great (cadr x) y))
((member (caar y) '(mbox mlabox) :test #'eq) (great x (cadr y)))
((or (member (caar x) '(mtimes mplus mexpt %del) :test #'eq)
(member (caar y) '(mtimes mplus mexpt %del) :test #'eq))
(ordfn x y))
((and (eq (caar x) 'bigfloat) (eq (caar y) 'bigfloat)) (mgrp x y))
((or (eq (caar x) 'mrat) (eq (caar y) 'mrat))
(error "GREAT: internal error: unexpected MRAT argument"))
(t (do ((x1 (margs x) (cdr x1)) (y1 (margs y) (cdr y1))) (())
(cond ((null x1)
(return (cond (y1 nil)
((not (alike1 (mop x) (mop y)))
(great (mop x) (mop y)))
((member 'array (cdar x) :test #'eq) t))))
((null y1) (return t))
((not (alike1 (car x1) (car y1)))
(return (great (car x1) (car y1)))))))))
;; Trivial function used only in ALIKE1.
;; Should be defined as an open-codable subr.
(defmacro memqarr (l)
`(if (member 'array ,l :test #'eq) t))
;; Compares two Macsyma expressions ignoring SIMP flags and all other
;; items in the header except for the ARRAY flag.
(defmfun alike1 (x y)
(cond ((eq x y))
((atom x)
(cond
((arrayp x)
(and (arrayp y) (lisp-array-alike1 x y)))
;; NOT SURE IF WE WANT TO ENABLE COMPARISON OF MAXIMA ARRAYS
;; ASIDE FROM THAT, ADD2LNC CALLS ALIKE1 (VIA MEMALIKE) AND THAT CAUSES TROUBLE
;; ((maxima-declared-arrayp x)
;; (and (maxima-declared-arrayp y) (maxima-declared-array-alike1 x y)))
;; ((maxima-undeclared-arrayp x)
;; (and (maxima-undeclared-arrayp y) (maxima-undeclared-array-alike1 x y)))
(t (equal x y))))
((atom y) nil)
((and
(not (atom (car x)))
(not (atom (car y)))
(eq (caar x) (caar y)))
(cond
((eq (caar x) 'mrat)
;; Punt back to LIKE, which handles CREs.
(like x y))
(t (and
(eq (memqarr (cdar x)) (memqarr (cdar y)))
(alike (cdr x) (cdr y))))))))
(defun lisp-array-alike1 (x y)
(and
(equal (array-dimensions x) (array-dimensions y))
(progn
(dotimes (i (array-total-size x))
(if (not (alike1 (row-major-aref x i) (row-major-aref y i)))
(return-from lisp-array-alike1 nil)))
t)))
(defun maxima-declared-array-alike1 (x y)
(lisp-array-alike1 (get (mget x 'array) 'array) (get (mget y 'array) 'array)))
(defun maxima-undeclared-array-alike1 (x y)
(and
(alike1 (mfuncall '$arrayinfo x) (mfuncall '$arrayinfo y))
(alike1 ($listarray x) ($listarray y))))
;; Maps ALIKE1 down two lists.
(defmfun alike (x y)
(do ((x x (cdr x)) (y y (cdr y))) ((atom x) (equal x y))
(cond ((or (atom y) (not (alike1 (car x) (car y))))
(return nil)))))
(defun ordfna (e a) ; A is an atom
(cond ((numberp a)
(or (not (eq (caar e) 'rat))
(> (cadr e) (* (caddr e) a))))
((and (constant a)
(not (member (caar e) '(mplus mtimes mexpt) :test #'eq)))
(not (member (caar e) '(rat bigfloat) :test #'eq)))
((eq (caar e) 'mrat)) ;; all MRATs succeed all atoms
((null (margs e)) nil)
((eq (caar e) 'mexpt)
(cond ((and (maxima-constantp (cadr e))
(or (not (constant a)) (not (maxima-constantp (caddr e)))))
(or (not (free (caddr e) a)) (great (caddr e) a)))
((eq (cadr e) a) (great (caddr e) 1))
(t (great (cadr e) a))))
((member (caar e) '(mplus mtimes) :test #'eq)
(let ((u (car (last e))))
(cond ((eq u a) (not (ordhack e))) (t (great u a)))))
((eq (caar e) '%del))
((prog2 (setq e (car (margs e)))
(and (not (atom e)) (member (caar e) '(mplus mtimes) :test #'eq)))
(let ((u (car (last e)))) (or (eq u a) (great u a))))
((eq e a))
(t (great e a))))
;; compare lists a and b elementwise from back to front
(defun ordlist (a b cx cy)
(prog (l1 l2 c d)
(setq l1 (length a) l2 (length b))
loop (cond ((= l1 0)
(return (cond ((= l2 0) (eq cx 'mplus))
((and (eq cx cy) (= l2 1))
(great (cond ((eq cx 'mplus) 0) (t 1)) (car b))))))
((= l2 0) (return (not (ordlist b a cy cx)))))
(setq c (nthelem l1 a) d (nthelem l2 b))
(cond ((not (alike1 c d)) (return (great c d))))
(setq l1 (1- l1) l2 (1- l2))
(go loop)))
(defun term-list (x)
(if (mplusp x)
(cdr x)
(list x)))
(defun factor-list (x)
(if (mtimesp x)
(cdr x)
(list x)))
;; one of the exprs x or y should be one of:
;; %del, mexpt, mplus, mtimes
(defun ordfn (x y)
(let ((cx (caar x)) (cy (caar y)))
(cond ((eq cx '%del) (if (eq cy '%del) (great (cadr x) (cadr y)) t))
((eq cy '%del) nil)
((or (eq cx 'mtimes) (eq cy 'mtimes))
(ordlist (factor-list x) (factor-list y) 'mtimes 'mtimes))
((or (eq cx 'mplus) (eq cy 'mplus))
(ordlist (term-list x) (term-list y) 'mplus 'mplus))
((eq cx 'mexpt) (ordmexpt x y))
((eq cy 'mexpt) (not (ordmexpt y x))))))
(defun ordhack (x)
(if (and (cddr x) (null (cdddr x)))
(great (if (eq (caar x) 'mplus) 0 1) (cadr x))))
(defun ordmexpt (x y)
(cond ((eq (caar y) 'mexpt)
(cond ((alike1 (cadr x) (cadr y)) (great (caddr x) (caddr y)))
((maxima-constantp (cadr x))
(if (maxima-constantp (cadr y))
(if (or (alike1 (caddr x) (caddr y))
(and (mnump (caddr x)) (mnump (caddr y))))
(great (cadr x) (cadr y))
(great (caddr x) (caddr y)))
(great x (cadr y))))
((maxima-constantp (cadr y)) (great (cadr x) y))
((mnump (caddr x))
(great (cadr x) (if (mnump (caddr y)) (cadr y) y)))
((mnump (caddr y)) (great x (cadr y)))
(t (let ((x1 (simpln1 x)) (y1 (simpln1 y)))
(if (alike1 x1 y1) (great (cadr x) (cadr y))
(great x1 y1))))))
((alike1 (cadr x) y) (great (caddr x) 1))
((mnump (caddr x)) (great (cadr x) y))
(t (great (simpln1 x) (simpln (list '(%log) y) 1 t)))))
(defmfun $multthru (e1 &optional e2)
(let (arg1 arg2)
(cond (e2 ;called with two args
(setq arg1 (specrepcheck e1)
arg2 (specrepcheck e2))
(cond ((or (atom arg2)
(not (member (caar arg2) '(mplus mequal) :test #'eq)))
(mul2 arg1 arg2))
((eq (caar arg2) 'mequal)
(list (car arg2) ($multthru arg1 (cadr arg2))
($multthru arg1 (caddr arg2))))
(t (expandterms arg1 (cdr arg2)))))
(t ;called with only one arg
(prog (l1)
(setq arg1 (setq arg2 (specrepcheck e1)))
(cond ((atom arg1) (return arg1))
((eq (caar arg1) 'mnctimes)
(setq arg1 (cdr arg1)) (go nct))
((not (eq (caar arg1) 'mtimes)) (return arg1)))
(setq arg1 (reverse (cdr arg1)))
times (when (mplusp (car arg1))
(setq l1 (nconc l1 (cdr arg1)))
(return (expandterms (muln l1 t) (cdar arg1))))
(setq l1 (cons (car arg1) l1))
(setq arg1 (cdr arg1))
(if (null arg1) (return arg2))
(go times)
nct (when (mplusp (car arg1))
(setq l1 (nreverse l1))
(return (addn (mapcar
#'(lambda (u)
(simplifya
(cons '(mnctimes)
(append l1 (ncons u) (cdr arg1)))
t))
(cdar arg1))
t)))
(setq l1 (cons (car arg1) l1))
(setq arg1 (cdr arg1))
(if (null arg1) (return arg2))
(go nct))))))
;; EXPANDEXPT computes the expansion of (x1 + x2 + ... + xm)^n
;; taking a sum and integer power as arguments.
;; Its theory is to recurse down the binomial expansion of
;; (x1 + (x2 + x3 + ... + xm))^n using the Binomial Expansion
;; Thus it does a sigma:
;;
;; n
;; -------
;; \ / n \ k (n - k)
;; > | | x1 (x2 + x3 + ... + xm)
;; / \ k /
;; -------
;; k=0
;;
;; The function EXPONENTIATE-SUM does this and recurses through the second
;; sum raised to a power. It takes a list of terms and a positive integer
;; power as arguments.
(defun expandexpt (sum power)
(declare (fixnum power))
(let ((expansion (exponentiate-sum (cdr sum) (abs power))))
(cond ((plusp power) expansion)
(t `((mexpt simp) ,expansion -1)))))
(defun exponentiate-sum (terms rpower)
(declare (fixnum rpower))
(cond ((= rpower 0) 1)
((null (cdr terms)) (power (car terms) rpower))
((= rpower 1) (cons '(mplus simp) terms))
(t (do ((i 0 (1+ i))
(result 0 (add2 result
(muln (list (combination rpower i)
(exponentiate-sum (cdr terms)
(- rpower i))
(power (car terms) i)) t))))
((> i rpower) result)
(declare (fixnum i))))))
;; Computes the combination of n elements taken m at a time by the formula
;;
;; (n * (n-1) * ... * (n - m + 1)) / m! =
;; (n / 1) * ((n - 1) / 2) * ... * ((n - m + 1) / m)
;;
;; Checks for the case when m is greater than n/2 and translates
;; to an equivalent expression.
(defun combination (n m)
(declare (fixnum n m))
(cond ((> m (truncate n 2))
(combination n (- n m)))
(t
(do ((result 1 (truncate (* result n1) m1))
(n1 n (1- n1))
(m1 1 (1+ m1)))
((> m1 m) result)
(declare (fixnum n1 m1))))))
(defun expandsums (a b)
(addn (prog (c)
(setq a (fixexpand a) b (cdr b))
loop
(when (null a) (return c))
(setq c (cons (expandterms (car a) b) c))
(setq a (cdr a))
(go loop))
t))
(defun expandterms (a b)
(addn (prog (c)
loop
(when (null b) (return c))
(setq c (cons (mul2 a (car b)) c))
(setq b (cdr b))
(go loop))
t))
(defun genexpands (l)
(prog ()
loop
(setq l (cdr l))
(cond ((null l)
(setq prods (nreverse prods)
negprods (nreverse negprods)
sums (nreverse sums)
negsums (nreverse negsums))
(return nil))
((atom (car l))
(push (car l) prods))
((eq (caaar l) 'rat)
(unless (equal (cadar l) 1)
(push (cadar l) prods))
(push (caddar l) negprods))
((eq (caaar l) 'mplus)
(push (car l) sums))
((and (eq (caaar l) 'mexpt)
(equal (caddar l) -1) (mplusp (cadar l)))
(push (cadar l) negsums))
((and (eq (caaar l) 'mexpt)
(let ((expandp t))
(mminusp (caddar l))))
(push (if (equal (caddar l) -1)
(cadar l)
(list (caar l) (cadar l) (neg (caddar l))))
negprods))
(t
(push (car l) prods)))
(go loop)))
(defun expandtimes (a)
(prog (prods negprods sums negsums expsums expnegsums)
(genexpands a)
(setq prods (cond ((null prods) 1)
((null (cdr prods)) (car prods))
(t (cons '(mtimes simp) prods))))
(setq negprods (cond ((null negprods) 1)
((null (cdr negprods)) (car negprods))
(t (cons '(mtimes simp) negprods))))
(cond ((null sums) (go down))
(t (setq expsums (car sums))
(mapc #'(lambda (c)
(setq expsums (expandsums expsums c)))
(cdr sums))))
(setq prods (cond ((equal prods 1) expsums)
(t (expandterms prods (fixexpand expsums)))))
down (cond ((null negsums)
(cond ((equal 1 negprods) (return prods))
((mplusp prods)
(return (expandterms (power negprods -1) (cdr prods))))
(t (return (let ((expandflag t))
(mul2 prods (power negprods -1)))))))
(t
(setq expnegsums (car negsums))
(mapc #'(lambda (c)
(setq expnegsums (expandsums expnegsums c)))
(cdr negsums))))
(setq expnegsums (expandterms negprods (fixexpand expnegsums)))
(return (if (mplusp prods)
(expandterms (list '(mexpt simp) expnegsums -1) (cdr prods))
(let ((expandflag t))
(mul2 prods (list '(mexpt simp) expnegsums -1)))))))
(defmfun expand1 (exp $expop $expon)
(unless (and (integerp $expop) (> $expop -1))
(merror (intl:gettext "expand: expop must be a nonnegative integer; found: ~M") $expop))
(unless (and (integerp $expon) (> $expon -1))
(merror (intl:gettext "expand: expon must be a nonnegative integer; found: ~M") $expon))
(resimplify (specrepcheck exp)))
(defmfun $expand (exp &optional (expop $maxposex) (expon $maxnegex))
(expand1 exp expop expon))
(defun fixexpand (a)
(if (not (mplusp a))
(ncons a)
(cdr a)))
(defmfun simpnrt (x *n) ; computes X^(1/*N)
(prog (*in *out varlist genvar $factorflag $dontfactor)
(setq $factorflag t)
(newvar x)
(setq x (ratrep* x))
(when (equal (cadr x) 0) (return 0))
(setq x (ratfact (cdr x) 'psqfr))
(simpnrt1 (mapcar #'pdis x))
(setq *out (if *out (muln *out nil) 1))
(setq *in (cond (*in
(setq *in (muln *in nil))
(nrthk *in *n))
(t 1)))
(return (let (($%emode t))
(simplifya (list '(mtimes) *in *out)
(not (or (atom *in)
(atom (cadr *in))
(member (caaadr *in) '(mplus mtimes rat) :test #'eq))))))))
(defun simpnrt1 (x)
(do ((x x (cddr x)) (y))
((null x))
(cond ((not (equal 1 (setq y (gcd (cadr x) *n))))
(push (simpnrt (list '(mexpt) (car x) (quotient (cadr x) y))
(quotient *n y))
*out))
((and (equal (cadr x) 1) (integerp (car x)) (plusp (car x))
(setq y (pnthrootp (car x) *n)))
(push y *out))
(t
(unless (> *n (abs (cadr x)))
(push (list '(mexpt) (car x) (quotient (cadr x) *n)) *out))
(push (list '(mexpt) (car x) (rem (cadr x) *n)) *in)))))
(defun nrthk (in *n)
(cond ((equal in 1)
1)
((equal in -1)
(cond ((equal *n 2)
'$%i)
((eq $domain '$real)
(if (even *n)
(nrthk2 -1 *n)
-1))
($m1pbranch
(let (($%emode t))
(power* '$%e (list '(mtimes) (list '(rat) 1 *n) '$%pi '$%i))))
(t
(nrthk2 -1 *n))))
((or (and wflag (eq ($asksign in) '$neg))
(and (mnump in) (equal ($sign in) '$neg)))
(nrthk1 (mul2* -1 in) *n))
(t
(nrthk2 in *n))))
(defun nrthk1 (in *n) ; computes (-IN)^(1/*N)
(if $radexpand
(mul2 (nrthk2 in *n) (nrthk -1 *n))
(nrthk2 (mul2* -1 in) *n)))
(defun nrthk2 (in *n)
(power* in (list '(rat) 1 *n))) ; computes IN^(1/*N)
;; The following was formerly in SININT. This code was placed here because
;; SININT is now an out-of-core file on MC, and this code is needed in-core
;; because of the various calls to it. - BMT & JPG
(declare-top (special var $ratfac ratform context))
(defmfun $integrate (expr x &optional lo hi)
(let ($ratfac)
(if (not hi)
(with-new-context (context)
(if (member '%risch *nounl* :test #'eq)
(rischint expr x)
(sinint expr x)))
($defint expr x lo hi))))
(defmfun ratp (a var)
(cond ((atom a) t)
((member (caar a) '(mplus mtimes) :test #'eq)
(do ((l (cdr a) (cdr l))) ((null l) t)
(or (ratp (car l) var) (return nil))))
((eq (caar a) 'mexpt)
(if (free (cadr a) var)
(free (caddr a) var)
(and (integerp (caddr a)) (ratp (cadr a) var))))
(t (free a var))))
(defmfun ratnumerator (r)
(cond ((atom r) r)
((atom (cdr r)) (car r))
((numberp (cadr r)) r)
(t (car r))))
(defmfun ratdenominator (r)
(cond ((atom r) 1)
((atom (cdr r)) (cdr r))
((numberp (cadr r)) 1)
(t (cdr r))))
(declare-top (special var))
(defun bprog (r s)
(prog (p1b p2b coef1r coef2r coef1s coef2s f1 f2 a egcd)
(setq r (ratfix r))
(setq s (ratfix s))
(setq coef2r (setq coef1s 0))
(setq coef2s (setq coef1r 1))
(setq a 1 egcd 1)
(setq p1b (car r))
(unless (zerop (pdegree p1b var)) (setq egcd (pgcdexpon p1b)))
(setq p2b (car s))
(unless (or (zerop (pdegree p2b var)) (= egcd 1))
(setq egcd (gcd egcd (pgcdexpon p2b)))
(setq p1b (pexpon*// p1b egcd nil)
p2b (pexpon*// p2b egcd nil)))
b1 (cond ((< (pdegree p1b var) (pdegree p2b var))
(exch p1b p2b)
(exch coef1r coef2r)
(exch coef1s coef2s)))
(when (zerop (pdegree p2b var))
(unless (zerop (pdegree coef2r var))
(setq coef2r (pexpon*// coef2r egcd t)))
(unless (zerop (pdegree coef2s var))
(setq coef2s (pexpon*// coef2s egcd t)))
(return (cons (ratreduce (ptimes (cdr r) coef2r) p2b)
(ratreduce (ptimes (cdr s) coef2s) p2b))))
(setq f1 (psquorem1 (cdr p1b) (cdr p2b) t))
(setq f2 (psimp var (cadr f1)))
(setq p1b (pquotientchk (psimp var (caddr f1)) a))
(setq f1 (car f1))
(setq coef1r (pquotientchk (pdifference (ptimes f1 coef1r)
(ptimes f2 coef2r))
a))
(setq coef1s (pquotientchk (pdifference (ptimes f1 coef1s)
(ptimes f2 coef2s))
a))
(setq a f1)
(go b1)))
(defmfun ratdifference (a b) (ratplus a (ratminus b)))
(defmfun ratpl (a b) (ratplus (ratfix a) (ratfix b)))
(defmfun ratti (a b c) (rattimes (ratfix a) (ratfix b) c))
(defmfun ratqu (a b) (ratquotient (ratfix a) (ratfix b)))
(defmfun ratfix (a) (cond ((equal a (ratnumerator a)) (cons a 1)) (t a)))
(defmfun ratdivide (f g)
(destructuring-let* (((fnum . fden) (ratfix f))
((gnum . gden) (ratfix g))
((q r) (pdivide fnum gnum)))
(cons (ratqu (ratti q gden t) fden)
(ratqu r fden))))
(defmfun polcoef (l n) (cond ((or (atom l) (pointergp var (car l)))
(cond ((equal n 0) l) (t 0)))
(t (ptterm (cdr l) n))))
(defun disrep (l) (cond ((equal (ratnumerator l) l)
($ratdisrep (cons ratform (cons l 1))))
(t ($ratdisrep (cons ratform l)))))
(declare-top (unspecial var))
;; The following was formerly in MATRUN. This code was placed here because
;; MATRUN is now an out-of-core file on MC, and this code is needed in-core
;; so that MACSYMA SAVE files will work. - JPG
(defmfun matcherr ()
(throw 'match nil))
(defmfun kar (x) (if (atom x) (matcherr) (car x)))
(defmfun kaar (x) (kar (kar x)))
(defmfun kdr (x) (if (atom x) (matcherr) (cdr x)))
(defmfun simpargs1 (a vestigial c)
(declare (ignore vestigial))
(simpargs a c))
(defmfun *kar (x)
(if (not (atom x)) (car x)))
(defquote retlist (&rest l)
(cons '(mlist simp)
(mapcar #'(lambda (z) (list '(mequal simp) z (meval z))) l)))
(defmfun nthkdr (x c)
(if (zerop c) x (nthkdr (kdr x) (1- c))))
|