/usr/share/maxima/5.32.1/src/sinint.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module sinint)
(load-macsyma-macros ratmac)
(declare-top (special genvar $savefactors checkfactors
exp var $factorflag $ratfac $logabs $expop $expon
$keepfloat ratform rootfactor pardenom $algebraic
wholepart parnumer varlist logptdx switch1))
(defun rootfac (q)
(prog (nthdq nthdq1 simproots ans)
(setq nthdq (pgcd q (pderivative q var)))
(setq simproots (pquotient q nthdq))
(setq ans (list (pquotient simproots (pgcd nthdq simproots))))
amen (if (or (pcoefp nthdq) (pointergp var (car nthdq)))
(return (reverse ans)))
(setq nthdq1 (pgcd (pderivative nthdq var) nthdq))
(push (pquotient (pgcd nthdq simproots) (pgcd nthdq1 simproots)) ans)
(setq nthdq nthdq1)
(go amen)))
(defun aprog (q)
(setq q (oldcontent q))
(setq rootfactor (rootfac (cadr q)))
(setq rootfactor
(cons (ptimes (car q) (car rootfactor)) (cdr rootfactor)))
(do ((pd (list (car rootfactor)))
(rf (cdr rootfactor) (cdr rf))
(n 2 (1+ n)))
((null rf) (setq pardenom (reverse pd)))
(push (pexpt (car rf) n) pd))
rootfactor)
(defun cprog (top bottom)
(prog (frpart pardenomc ppdenom thebpg)
(setq frpart (pdivide top bottom))
(setq wholepart (car frpart))
(setq frpart (cadr frpart))
(if (= (length pardenom) 1)
(return (setq parnumer (list frpart))))
(setq pardenomc (cdr pardenom))
(setq ppdenom (list (car pardenom)))
dseq (if (= (length pardenomc) 1) (go ok))
(setq ppdenom (cons (ptimes (car ppdenom) (car pardenomc)) ppdenom))
(setq pardenomc (cdr pardenomc))
(go dseq)
ok (setq pardenomc (reverse pardenom))
numc (setq thebpg (bprog (car pardenomc) (car ppdenom)))
(setq parnumer
(cons (cdr (ratdivide (ratti frpart (cdr thebpg) t)
(car pardenomc)))
parnumer))
(setq frpart
(cdr (ratdivide (ratti frpart (car thebpg) t)
(car ppdenom))))
(setq pardenomc (cdr pardenomc))
(setq ppdenom (cdr ppdenom))
(if (null ppdenom)
(return (setq parnumer (cons frpart parnumer))))
(go numc)))
(defun polyint (p) (ratqu (polyint1 (ratnumerator p)) (ratdenominator p)))
(defun polyint1 (p)
(cond ((or (null p) (equal p 0)) (cons 0 1))
((atom p) (list var 1 p))
((not (numberp (car p)))
(if (pointergp var (car p)) (list var 1 p) (polyint1 (cdr p))))
(t (ratplus (polyint2 p) (polyint1 (cddr p))))))
(defun polyint2 (p) (cons (list var (1+ (car p)) (cadr p)) (1+ (car p))))
(defun dprog (ratarg)
(prog (klth kx arootf deriv thebpg thetop thebot prod1 prod2 ans)
(setq ans (cons 0 1))
(if (or (pcoefp (cdr ratarg)) (pointergp var (cadr ratarg)))
(return (disrep (polyint ratarg))))
(aprog (ratdenominator ratarg))
(cprog (ratnumerator ratarg) (ratdenominator ratarg))
(setq rootfactor (reverse rootfactor))
(setq parnumer (reverse parnumer))
(setq klth (length rootfactor))
intg (if (= klth 1) (go simp))
(setq arootf (car rootfactor))
(if (zerop (pdegree arootf var)) (go reset))
(setq deriv (pderivative arootf var))
(setq thebpg (bprog arootf deriv))
(setq kx (1- klth))
(setq thetop (car parnumer))
iter (setq prod1 (ratti thetop (car thebpg) t))
(setq prod2 (ratti thetop (cdr thebpg) t))
(setq thebot (pexpt arootf kx))
(setq ans
(ratplus ans (ratqu (ratminus prod2) (ratti kx thebot t))))
(setq thetop
(ratplus prod1
(ratqu (ratreduce (pderivative (car prod2) var)
(cdr prod2))
kx)))
(setq thetop (cdr (ratdivide thetop thebot)))
(cond ((= kx 1) (setq logptdx (cons (ratqu thetop arootf) logptdx))
(go reset)))
(setq kx (1- kx))
(go iter)
reset(setq rootfactor (cdr rootfactor))
(setq parnumer (cdr parnumer))
(decf klth)
(go intg)
simp (push (ratqu (car parnumer) (car rootfactor)) logptdx)
(if (equal ans 0) (return (disrep (polyint wholepart))))
(setq thetop
(cadr (pdivide (ratnumerator ans) (ratdenominator ans))))
(return (list '(mplus)
(disrep (polyint wholepart))
(disrep (ratqu thetop (ratdenominator ans)))))))
(defun logmabs (x)
(list '(%log) (if $logabs (simplify (list '(mabs) x)) x)))
(defun npask (exp)
(cond ((freeof '$%i exp)
(learn `((mnotequal) ,exp 0) t) (asksign exp))
(t '$positive)))
(defvar $integrate_use_rootsof nil "Use the rootsof form for integrals when denominator does not factor")
(defun integrate-use-rootsof (f q variable)
(let ((dummy (make-param))
(qprime (disrep (pderivative q (p-var q))))
(ff (disrep f))
(qq (disrep q)))
;; This basically does a partial fraction expansion and integrates
;; the result. Let r be one (simple) root of the denominator
;; polynomial q. Then the partial fraction expansion is
;;
;; f(x)/q(x) = A/(x-r) + similar terms.
;;
;; Then
;;
;; f(x) = A*q(x)/(x-r) + others
;;
;; Take the limit as x -> r.
;;
;; f(r) = A*limit(q(x)/(x-r),x,r) + others
;; = A*at(diff(q(x),r), [x=r])
;;
;; Hence, A = f(r)/at(diff(q(x),x),[x=r])
;;
;; Then it follows that the integral is
;;
;; A*log(x-r)
`((%lsum) ((mtimes)
,(div* (subst dummy variable ff)
(subst dummy variable qprime))
((%log) ,(sub* variable dummy)))
,dummy
(($rootsof) ,qq))))
(defun eprog (p)
(prog (p1e p2e a1e a2e a3e discrim repart sign ncc dcc allcc xx deg)
(if (or (equal p 0) (equal (car p) 0)) (return 0))
(setq p1e (ratnumerator p) p2e (ratdenominator p))
(cond ((or switch1
(and (not (atom p2e))
(eq (car (setq xx (cadr (oldcontent p2e)))) var)
(member (setq deg (pdegree xx var)) '(5 6) :test #'equal)
(zerocoefl xx deg)
(or (equal deg 5) (not (pminusp (car (last xx)))))))
(go efac)))
(setq a1e (intfactor p2e))
(if (> (length a1e) 1) (go e40))
efac (setq ncc (oldcontent p1e))
(setq p1e (cadr ncc))
(setq dcc (oldcontent p2e))
(setq p2e (cadr dcc))
(setq allcc (ratqu (car ncc) (car dcc)))
(setq deg (pdegree p2e var))
(setq a1e (pderivative p2e var))
(setq a2e (ratqu (polcoef p1e (pdegree p1e var))
(polcoef a1e (pdegree a1e var))))
(cond ((equal (ratti a2e a1e t) (cons p1e 1))
(return (list '(mtimes)
(disrep (ratti allcc a2e t))
(logmabs (disrep p2e))))))
(cond ((equal deg 1) (go e10))
((equal deg 2) (go e20))
((and (equal deg 3) (equal (polcoef p2e 2) 0)
(equal (polcoef p2e 1) 0))
(return (e3prog p1e p2e allcc)))
((and (member deg '(4 5 6) :test #'equal) (zerocoefl p2e deg))
(return (enprog p1e p2e allcc deg))))
(cond ((and $integrate_use_rootsof (equal (car (psqfr p2e)) p2e))
(return (list '(mtimes) (disrep allcc)
(integrate-use-rootsof p1e p2e
(car (last varlist)))))))
(return (list '(mtimes)
(disrep allcc)
(list '(%integrate)
(list '(mquotient) (disrep p1e) (disrep p2e))
(car (last varlist)))))
e10 (return (list '(mtimes)
(disrep (ratti allcc
(ratqu (polcoef p1e (pdegree p1e var))
(polcoef p2e 1))
t))
(logmabs (disrep p2e))))
e20 (setq discrim
(ratdifference (cons (pexpt (polcoef p2e 1) 2) 1)
(ratti 4 (ratti (polcoef p2e 2) (polcoef p2e 0) t) t)))
(setq a2e (ratti (polcoef p2e (pdegree p2e var)) 2 t))
(setq xx (simplify (disrep discrim)))
(when (equal ($imagpart xx) 0)
(setq sign (npask xx))
(cond ((eq sign '$negative) (go e30))
((eq sign '$zero) (go zip))))
(setq a1e (ratsqrt discrim))
(setq a3e (logmabs
(list '(mquotient)
(list '(mplus)
(list '(mtimes)
(disrep a2e) (disrep (list var 1 1)))
(disrep (polcoef p2e 1))
(list '(mminus) a1e))
(list '(mplus)
(list '(mtimes)
(disrep a2e) (disrep (list var 1 1)))
(disrep (polcoef p2e 1))
a1e))))
(cond ((zerop (pdegree p1e var))
(return (list '(mtimes)
(disrep allcc)
(list '(mquotient) (disrep (polcoef p1e 0)) a1e)
a3e))))
(return
(list
'(mplus)
(list '(mtimes)
(disrep (ratti allcc (ratqu (polcoef p1e (pdegree p1e var)) a2e) t))
(logmabs (disrep p2e)))
(list
'(mtimes)
(list
'(mquotient)
(disrep (ratti allcc (ratqu (eprogratd a2e p1e p2e) a2e) t))
a1e)
a3e)))
e30 (setq a1e (ratsqrt (ratminus discrim)))
(setq
repart
(ratqu (cond ((zerop (pdegree p1e var)) (ratti a2e (polcoef p1e 0) t))
(t (eprogratd a2e p1e p2e)))
(polcoef p2e (pdegree p2e var))))
(setq a3e (cond ((equal 0 (car repart)) 0)
(t `((mtimes) ((mquotient)
,(disrep (ratti allcc repart t))
,a1e)
((%atan)
((mquotient)
,(disrep (pderivative p2e var))
,a1e))))))
(if (zerop (pdegree p1e var)) (return a3e))
(return (list '(mplus)
(list '(mtimes)
(disrep (ratti allcc
(ratqu (polcoef p1e (pdegree p1e var)) a2e)
t))
(logmabs (disrep p2e)))
a3e))
zip (setq
p2e
(ratqu
(psimp
(p-var p2e)
(pcoefadd 2
(pexpt (ptimes 2 (polcoef p2e 2)) 2)
(pcoefadd 1 (ptimes 4 (ptimes (polcoef p2e 2)
(polcoef p2e 1)))
(pcoefadd 0 (pexpt (polcoef p2e 1) 2) ()))))
(ptimes 4 (polcoef p2e 2))))
(return (fprog (ratti allcc (ratqu p1e p2e) t)))
e40 (setq parnumer nil pardenom a1e switch1 t)
(cprog p1e p2e)
(setq a2e
(mapcar #'(lambda (j k) (eprog (ratqu j k))) parnumer pardenom))
(setq switch1 nil)
(return (cons '(mplus) a2e))))
(defun e3prog (num denom cont)
(prog (a b c d e r ratr var* x)
(setq a (polcoef num 2) b (polcoef num 1) c (polcoef num 0)
d (polcoef denom 3) e (polcoef denom 0))
(setq r (cond ((eq (npask (simplify (disrep (ratqu e d)))) '$negative)
(simpnrt (disrep (ratqu (ratti -1 e t) d)) 3))
(t (neg (simpnrt (disrep (ratqu e d)) 3)))))
(setq var* (list var 1 1))
(newvar r)
(orderpointer varlist)
(setq x (ratf r))
(setq ratform (car x) ratr (cdr x))
(return
(simplify
(list '(mplus)
(list '(mtimes)
(disrep (ratqu (r* cont (r+ (r* a ratr ratr) (r* b ratr) c))
(r* ratr ratr 3 d)))
(logmabs (disrep (ratpl (ratti -1 ratr t) var*))))
(eprog (r* cont (ratqu (r+ (r* (r+ (r* 2 a ratr ratr)
(r* -1 b ratr)
(r* -1 c))
var*)
(r+ (ratqu (r* -1 a e) d)
(r* b ratr ratr)
(r* -1 2 c ratr)))
(r* 3 d ratr ratr
(r+ (ratti var* var* t)
(ratti ratr var* t)
(ratti ratr ratr t))))))
)))))
(defun eprogratd (a2e p1e p2e)
(ratdifference (ratti a2e (polcoef p1e (1- (pdegree p1e var))) t)
(ratti (polcoef p2e (1- (pdegree p2e var)))
(polcoef p1e (pdegree p1e var))
t)))
(defun enprog (num denom cont deg)
;; Denominator is (A*VAR^4+B) =
;; if B<0 then (SQRT(A)*VAR^2 - SQRT(-B)) (SQRT(A)*VAR^2 + SQRT(-B))
;; else
;; (SQRT(A)*VAR^2 - SQRT(2)*A^(1/4)*B^(1/4)*VAR + SQRT(B)) *
;; (SQRT(A)*VAR^2 + SQRT(2)*A^(1/4)*B^(1/4)*VAR + SQRT(B))
;; or (A*VAR^5+B) =
;; (1/4) * (A^(1/5)*VAR + B^(1/5)) *
;; (2*A^(2/5)*VAR^2 + (-SQRT(5)-1)*A^(1/5)*B^(1/5)*VAR + 2*B^(2/5)) *
;; (2*A^(2/5)*VAR^2 + (+SQRT(5)-1)*A^(1/5)*B^(1/5)*VAR + 2*B^(2/5))
;; or (A*VAR^6+B) =
;; if B<0 then (SQRT(A)*VAR^3 - SQRT(-B)) (SQRT(A)*VAR^3 + SQRT(-B))
;; else
;; (A^(1/3)*VAR^2 + B^(1/3)) *
;; (A^(1/3)*VAR^2 - SQRT(3)*A^(1/6)*B^(1/6)*VAR + B^(1/3)) *
;; (A^(1/3)*VAR^2 + SQRT(3)*A^(1/6)*B^(1/6)*VAR + B^(1/3))
(prog ($expop $expon a b term disvar $algebraic)
(setq $expop 0 $expon 0)
(setq a (simplify (disrep (polcoef denom deg)))
b (simplify (disrep (polcoef denom 0)))
disvar (simplify (get var 'disrep))
num (simplify (disrep num))
cont (simplify (disrep cont)))
(cond ((= deg 4)
(if (eq '$neg ($asksign b))
(setq denom
(mul2 (add2 (mul2 (power a '((rat simp) 1 2)) (power disvar 2))
(power (mul -1 b) '((rat simp) 1 2)))
(add2 (mul2 (power a '((rat simp) 1 2)) (power disvar 2))
(mul -1 (power (mul -1 b) '((rat simp) 1 2))))))
(progn
(setq denom (add2 (mul2 (power a '((rat simp) 1 2)) (power disvar 2))
(power b '((rat simp) 1 2)))
term (muln (list (power 2 '((rat simp) 1 2))
(power a '((rat simp) 1 4))
(power b '((rat simp) 1 4))
disvar)
t))
(setq denom (mul2 (add2 denom term) (sub denom term))))))
((= deg 5)
(setq term (mul3 (power a '((rat simp) 1 5))
(power b '((rat simp) 1 5))
disvar))
(setq denom (add2 (mul3 2 (power a '((rat simp) 2 5))
(power disvar 2))
(sub (mul2 2 (power b '((rat simp) 2 5))) term)))
(setq term (mul2 (power 5 '((rat simp) 1 2)) term))
(setq denom (muln (list '((rat simp) 1 4)
(add2 (mul2 (power a '((rat simp) 1 5)) disvar)
(power b '((rat simp) 1 5)))
(add2 denom term) (sub denom term))
t)))
(t
(if (eq '$neg ($asksign b))
(setq denom
(mul2 (add2 (mul2 (power a '((rat simp) 1 2)) (power disvar 3))
(power (mul -1 b) '((rat simp) 1 2)))
(add2 (mul2 (power a '((rat simp) 1 2)) (power disvar 3))
(mul -1 (power (mul -1 b) '((rat simp) 1 2))))))
(progn
(setq denom (add2 (mul2 (power a '((rat simp) 1 3)) (power disvar 2))
(power b '((rat simp) 1 3)))
term (muln (list (power 3 '((rat simp) 1 2))
(power a '((rat simp) 1 6))
(power b '((rat simp) 1 6))
disvar)
t))
(setq denom (mul3 denom (add2 denom term) (sub denom term))))
)))
;;Needs $ALGEBRAIC NIL so next call to RATF will preserve factorization.
(return (mul2 cont (ratint (div num denom) disvar)))))
(defun zerocoefl (e n)
(do ((i 1 (1+ i))) ((= i n) t)
(if (not (equal (polcoef e i) 0)) (return nil))))
(defun ratsqrt (a) (let (varlist) (simpnrt (disrep a) 2)))
(defun fprog (rat*)
(prog (rootfactor pardenom parnumer logptdx wholepart switch1)
(return (addn (cons (dprog rat*) (mapcar #'eprog logptdx)) nil))))
(defmfun ratint (exp var)
(prog (genvar checkfactors varlist ratarg ratform $keepfloat)
(setq varlist (list var))
(setq ratarg (ratf exp))
(setq ratform (car ratarg))
(setq var (caadr (ratf var)))
(return (fprog (cdr ratarg)))))
(defun intfactor (l)
(prog ($factorflag a b)
(setq a (oldcontent l) b (everysecond (pfactor (cadr a))))
(return (if (equal (car a) 1) b (cons (car a) b)))))
(defun everysecond (a)
(if a (cons (if (numberp (car a))
(pexpt (car a) (cadr a))
(car a))
(everysecond (cddr a)))))
|