This file is indexed.

/usr/share/maxima/5.32.1/src/sinint.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1982 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module sinint)

(load-macsyma-macros ratmac)

(declare-top (special genvar $savefactors checkfactors
		      exp var $factorflag $ratfac $logabs $expop $expon
		      $keepfloat ratform rootfactor pardenom $algebraic
		      wholepart parnumer varlist logptdx switch1))

(defun rootfac (q)
  (prog (nthdq nthdq1 simproots ans)
     (setq nthdq (pgcd q (pderivative q var)))
     (setq simproots (pquotient q nthdq))
     (setq ans (list (pquotient simproots (pgcd nthdq simproots))))
     amen (if (or (pcoefp nthdq) (pointergp var (car nthdq)))
	      (return (reverse ans)))
     (setq nthdq1 (pgcd (pderivative nthdq var) nthdq))
     (push (pquotient (pgcd nthdq simproots) (pgcd nthdq1 simproots)) ans)
     (setq nthdq nthdq1)
     (go amen)))

(defun aprog (q)
  (setq q (oldcontent q))
  (setq rootfactor (rootfac (cadr q)))
  (setq rootfactor
	(cons (ptimes (car q) (car rootfactor)) (cdr rootfactor)))
  (do ((pd (list (car rootfactor)))
       (rf (cdr rootfactor) (cdr rf))
       (n 2 (1+ n)))
      ((null rf) (setq pardenom (reverse pd)))
    (push (pexpt (car rf) n) pd))
  rootfactor)

(defun cprog (top bottom)
  (prog (frpart pardenomc ppdenom thebpg)
     (setq frpart (pdivide top bottom))
     (setq wholepart (car frpart))
     (setq frpart (cadr frpart))
     (if (= (length pardenom) 1)
	 (return (setq parnumer (list frpart))))
     (setq pardenomc (cdr pardenom))
     (setq ppdenom (list (car pardenom)))
     dseq (if (= (length pardenomc) 1) (go ok))
     (setq ppdenom (cons (ptimes (car ppdenom) (car pardenomc)) ppdenom))
     (setq pardenomc (cdr pardenomc))
     (go dseq)
     ok   (setq pardenomc (reverse pardenom))
     numc (setq thebpg (bprog (car pardenomc) (car ppdenom)))
     (setq parnumer
	   (cons (cdr (ratdivide (ratti frpart (cdr thebpg) t)
				 (car pardenomc)))
		 parnumer))
     (setq frpart
	   (cdr (ratdivide (ratti frpart (car thebpg) t)
			   (car ppdenom))))
     (setq pardenomc (cdr pardenomc))
     (setq ppdenom (cdr ppdenom))
     (if (null ppdenom)
	 (return (setq parnumer (cons frpart parnumer))))
     (go numc)))

(defun polyint (p) (ratqu (polyint1 (ratnumerator p)) (ratdenominator p)))
	 
(defun polyint1 (p)
  (cond ((or (null p) (equal p 0)) (cons 0 1))
	((atom p) (list var 1 p))
	((not (numberp (car p)))
	 (if (pointergp var (car p)) (list var 1 p) (polyint1 (cdr p))))
	(t (ratplus (polyint2 p) (polyint1 (cddr p))))))

(defun polyint2 (p) (cons (list var (1+ (car p)) (cadr p)) (1+ (car p))))

(defun dprog (ratarg)
  (prog (klth kx arootf deriv thebpg thetop thebot prod1 prod2 ans)
     (setq ans (cons 0 1))
     (if (or (pcoefp (cdr ratarg)) (pointergp var (cadr ratarg)))
	 (return (disrep (polyint ratarg))))
     (aprog (ratdenominator ratarg))
     (cprog (ratnumerator ratarg) (ratdenominator ratarg))
     (setq rootfactor (reverse rootfactor))
     (setq parnumer (reverse parnumer))
     (setq klth (length rootfactor))
     intg (if (= klth 1) (go simp))
     (setq arootf (car rootfactor))
     (if (zerop (pdegree arootf var)) (go reset))
     (setq deriv (pderivative arootf var))
     (setq thebpg (bprog arootf deriv))
     (setq kx (1- klth))
     (setq thetop (car parnumer))
     iter (setq prod1 (ratti thetop (car thebpg) t))
     (setq prod2 (ratti thetop (cdr thebpg) t))
     (setq thebot (pexpt arootf kx))
     (setq ans
	   (ratplus ans (ratqu (ratminus prod2) (ratti kx thebot t))))
     (setq thetop
	   (ratplus prod1
		    (ratqu (ratreduce (pderivative (car prod2) var)
				      (cdr prod2))
			   kx)))
     (setq thetop (cdr (ratdivide thetop thebot)))
     (cond ((= kx 1) (setq logptdx (cons (ratqu thetop arootf) logptdx))
	    (go reset)))
     (setq kx (1- kx))
     (go iter)
     reset(setq rootfactor (cdr rootfactor))
     (setq parnumer (cdr parnumer))
     (decf klth)
     (go intg)
     simp (push (ratqu (car parnumer) (car rootfactor)) logptdx)
     (if (equal ans 0) (return (disrep (polyint wholepart))))
     (setq thetop
	   (cadr (pdivide (ratnumerator ans) (ratdenominator ans))))
     (return (list '(mplus)
		   (disrep (polyint wholepart))
		   (disrep (ratqu thetop (ratdenominator ans)))))))

(defun logmabs (x)
  (list '(%log) (if $logabs (simplify (list '(mabs) x)) x)))

(defun npask (exp)
  (cond ((freeof '$%i exp)
	 (learn `((mnotequal) ,exp 0) t) (asksign exp))
	(t '$positive)))

(defvar $integrate_use_rootsof nil "Use the rootsof form for integrals when denominator does not factor")

(defun integrate-use-rootsof (f q variable)
  (let ((dummy (make-param))
	(qprime (disrep (pderivative q (p-var q))))
	(ff (disrep f))
	(qq (disrep q)))
    ;; This basically does a partial fraction expansion and integrates
    ;; the result.  Let r be one (simple) root of the denominator
    ;; polynomial q.  Then the partial fraction expansion is
    ;;
    ;;   f(x)/q(x) = A/(x-r) + similar terms.
    ;;
    ;; Then
    ;;
    ;;   f(x) = A*q(x)/(x-r) + others
    ;;
    ;; Take the limit as x -> r.
    ;;
    ;;   f(r) = A*limit(q(x)/(x-r),x,r) + others
    ;;        = A*at(diff(q(x),r), [x=r])
    ;;
    ;; Hence, A = f(r)/at(diff(q(x),x),[x=r])
    ;;
    ;; Then it follows that the integral is
    ;;
    ;;    A*log(x-r)
    `((%lsum) ((mtimes)
	       ,(div* (subst dummy variable ff)
		      (subst dummy variable qprime))
	       ((%log) ,(sub* variable  dummy)))
      ,dummy
      (($rootsof) ,qq))))

(defun eprog (p)
  (prog (p1e p2e a1e a2e a3e discrim repart sign ncc dcc allcc xx deg)
     (if (or (equal p 0) (equal (car p) 0)) (return 0))
     (setq p1e (ratnumerator p) p2e (ratdenominator p))
     (cond ((or switch1
		(and (not (atom p2e))
		     (eq (car (setq xx (cadr (oldcontent p2e)))) var)
		     (member (setq deg (pdegree xx var)) '(5 6) :test #'equal)
		     (zerocoefl xx deg)
		     (or (equal deg 5) (not (pminusp (car (last xx)))))))
	    (go efac)))
     (setq a1e (intfactor p2e))
     (if (> (length a1e) 1) (go e40))
     efac	(setq ncc (oldcontent p1e))
     (setq p1e (cadr ncc))
     (setq dcc (oldcontent p2e))
     (setq p2e (cadr dcc))
     (setq allcc (ratqu (car ncc) (car dcc)))
     (setq deg (pdegree p2e var))
     (setq a1e (pderivative p2e var))
     (setq a2e (ratqu (polcoef p1e (pdegree p1e var))
		      (polcoef a1e (pdegree a1e var))))
     (cond ((equal (ratti a2e a1e t) (cons p1e 1))
	    (return (list '(mtimes)
			  (disrep (ratti allcc a2e t))
			  (logmabs (disrep p2e))))))
     (cond ((equal deg 1) (go e10))
	   ((equal deg 2) (go e20))
	   ((and (equal deg 3) (equal (polcoef p2e 2) 0)
		 (equal (polcoef p2e 1) 0))
	    (return (e3prog p1e p2e allcc)))
	   ((and (member deg '(4 5 6) :test #'equal) (zerocoefl p2e deg))
	    (return (enprog p1e p2e allcc deg))))
     (cond ((and $integrate_use_rootsof (equal (car (psqfr p2e)) p2e))
	    (return (list '(mtimes) (disrep allcc)
			  (integrate-use-rootsof p1e p2e
						 (car (last varlist)))))))
     (return (list '(mtimes)
		   (disrep allcc)
		   (list '(%integrate)
			 (list '(mquotient) (disrep p1e) (disrep p2e))
			 (car (last varlist)))))
     e10	(return (list '(mtimes)
			      (disrep (ratti allcc
					     (ratqu (polcoef p1e (pdegree p1e var))
						    (polcoef p2e 1))
					     t))
			      (logmabs (disrep p2e))))
     e20	(setq discrim
		      (ratdifference (cons (pexpt (polcoef p2e 1) 2) 1)
				     (ratti 4 (ratti (polcoef p2e 2) (polcoef p2e 0) t) t)))
     (setq a2e (ratti (polcoef p2e (pdegree p2e var)) 2 t))
     (setq xx (simplify (disrep discrim)))
     (when (equal ($imagpart xx) 0)
       (setq sign (npask xx))
       (cond ((eq sign '$negative) (go e30))
	     ((eq sign '$zero) (go zip))))
     (setq a1e (ratsqrt discrim))
     (setq a3e (logmabs
		(list '(mquotient)
		      (list '(mplus)
			    (list '(mtimes)
				  (disrep a2e) (disrep (list var 1 1)))
			    (disrep (polcoef p2e 1))
			    (list '(mminus) a1e))
		      (list '(mplus)
			    (list '(mtimes)
				  (disrep a2e) (disrep (list var 1 1)))
			    (disrep (polcoef p2e 1))
			    a1e))))
     (cond ((zerop (pdegree p1e var))
	    (return (list '(mtimes)
			  (disrep allcc)
			  (list '(mquotient) (disrep (polcoef p1e 0)) a1e)
			  a3e))))
     (return
       (list
	'(mplus)
	(list '(mtimes)
	      (disrep (ratti allcc (ratqu (polcoef p1e (pdegree p1e var)) a2e) t))
	      (logmabs (disrep p2e)))
	(list
	 '(mtimes)
	 (list
	  '(mquotient)
	  (disrep (ratti allcc (ratqu (eprogratd a2e p1e p2e) a2e) t))
	  a1e)
	 a3e)))
     e30	(setq a1e (ratsqrt (ratminus discrim)))
     (setq
      repart
      (ratqu (cond ((zerop (pdegree p1e var)) (ratti a2e (polcoef p1e 0) t))
		   (t (eprogratd a2e p1e p2e)))
	     (polcoef p2e (pdegree p2e var))))
     (setq a3e (cond ((equal 0 (car repart)) 0)
		     (t `((mtimes) ((mquotient)
				    ,(disrep (ratti allcc repart t))
				    ,a1e)
			  ((%atan)
			   ((mquotient)
			    ,(disrep (pderivative p2e var))
			    ,a1e))))))
     (if (zerop (pdegree p1e var)) (return a3e))
     (return (list '(mplus)
		   (list '(mtimes)
			 (disrep (ratti allcc
					(ratqu (polcoef p1e (pdegree p1e var)) a2e)
					t))
			 (logmabs (disrep p2e)))
		   a3e))
     zip	(setq
		 p2e
		 (ratqu
		  (psimp
		   (p-var p2e)
		   (pcoefadd 2 
			     (pexpt (ptimes 2 (polcoef p2e 2)) 2)
			     (pcoefadd 1 (ptimes 4 (ptimes (polcoef p2e 2)
							   (polcoef p2e 1)))
				       (pcoefadd 0 (pexpt (polcoef p2e 1) 2) ()))))
		  (ptimes 4 (polcoef p2e 2))))
     (return (fprog (ratti allcc (ratqu p1e p2e) t)))
     e40	(setq parnumer nil pardenom a1e switch1 t)
     (cprog p1e p2e)
     (setq a2e
	   (mapcar #'(lambda (j k) (eprog (ratqu j k))) parnumer pardenom))
     (setq switch1 nil)
     (return (cons '(mplus) a2e))))
 
(defun e3prog (num denom cont)
  (prog (a b c d e r ratr var* x)
     (setq a (polcoef num 2) b (polcoef num 1) c (polcoef num 0)
	   d (polcoef denom 3) e (polcoef denom 0))
     (setq r (cond ((eq (npask (simplify (disrep (ratqu e d)))) '$negative)
		    (simpnrt (disrep (ratqu (ratti -1 e t) d)) 3))
		   (t (neg (simpnrt (disrep (ratqu e d)) 3)))))
     (setq var* (list var 1 1))
     (newvar r)
     (orderpointer varlist)
     (setq x (ratf r))
     (setq ratform (car x) ratr (cdr x))
     (return
       (simplify
	(list '(mplus)
	      (list '(mtimes)
		    (disrep (ratqu (r* cont (r+ (r* a ratr ratr) (r* b ratr) c))
				   (r* ratr ratr 3 d)))
		    (logmabs (disrep (ratpl (ratti -1 ratr t) var*))))
	      (eprog (r* cont (ratqu (r+ (r* (r+ (r* 2 a ratr ratr)
						 (r* -1 b ratr)
						 (r* -1 c))
					     var*)
					 (r+ (ratqu (r* -1 a e) d)
					     (r* b ratr ratr)
					     (r* -1 2 c ratr)))
				     (r* 3 d ratr ratr
					 (r+ (ratti var* var* t)
					     (ratti ratr var* t)
					     (ratti ratr ratr t))))))
	      )))))

(defun eprogratd (a2e p1e p2e)
  (ratdifference (ratti a2e (polcoef p1e (1- (pdegree p1e var))) t)
		 (ratti (polcoef p2e (1- (pdegree p2e var)))
			(polcoef p1e (pdegree p1e var))
			t)))

(defun enprog (num denom cont deg)
  ;; Denominator is (A*VAR^4+B) = 
  ;;   if B<0 then (SQRT(A)*VAR^2 - SQRT(-B)) (SQRT(A)*VAR^2 + SQRT(-B))
  ;;	     else
  ;;	(SQRT(A)*VAR^2 - SQRT(2)*A^(1/4)*B^(1/4)*VAR + SQRT(B)) * 
  ;;	(SQRT(A)*VAR^2 + SQRT(2)*A^(1/4)*B^(1/4)*VAR + SQRT(B))
  ;; or (A*VAR^5+B) = 
  ;;	(1/4) * (A^(1/5)*VAR + B^(1/5)) *
  ;;	(2*A^(2/5)*VAR^2 + (-SQRT(5)-1)*A^(1/5)*B^(1/5)*VAR + 2*B^(2/5)) *
  ;;	(2*A^(2/5)*VAR^2 + (+SQRT(5)-1)*A^(1/5)*B^(1/5)*VAR + 2*B^(2/5))
  ;; or (A*VAR^6+B) = 
  ;;   if B<0 then (SQRT(A)*VAR^3 - SQRT(-B)) (SQRT(A)*VAR^3 + SQRT(-B))
  ;;	     else
  ;;	(A^(1/3)*VAR^2 + B^(1/3)) *
  ;;	(A^(1/3)*VAR^2 - SQRT(3)*A^(1/6)*B^(1/6)*VAR + B^(1/3)) *
  ;;	(A^(1/3)*VAR^2 + SQRT(3)*A^(1/6)*B^(1/6)*VAR + B^(1/3))
  (prog ($expop $expon a b term disvar $algebraic)
     (setq $expop 0 $expon 0)
     (setq a (simplify (disrep (polcoef denom deg)))
	   b (simplify (disrep (polcoef denom 0)))
	   disvar (simplify (get var 'disrep))
	   num (simplify (disrep num))
	   cont (simplify (disrep cont)))
     (cond ((= deg 4)
	    (if (eq '$neg ($asksign b))
		(setq denom
		      (mul2 (add2 (mul2 (power a '((rat simp) 1 2)) (power disvar 2))
				  (power (mul -1 b) '((rat simp) 1 2)))
			    (add2 (mul2 (power a '((rat simp) 1 2)) (power disvar 2))
				  (mul -1 (power (mul -1 b) '((rat simp) 1 2))))))
		(progn
		  (setq denom (add2 (mul2 (power a '((rat simp) 1 2)) (power disvar 2))
				    (power b '((rat simp) 1 2)))
			term (muln (list (power 2 '((rat simp) 1 2))
					 (power a '((rat simp) 1 4))
					 (power b '((rat simp) 1 4))
					 disvar)
				   t))
		  (setq denom (mul2 (add2 denom term) (sub denom term))))))
	   ((= deg 5)
	    (setq term (mul3 (power a '((rat simp) 1 5))
			     (power b '((rat simp) 1 5))
			     disvar))
	    (setq denom (add2 (mul3 2 (power a '((rat simp) 2 5))
				    (power disvar 2))
			      (sub (mul2 2 (power b '((rat simp) 2 5))) term)))
	    (setq term (mul2 (power 5 '((rat simp) 1 2)) term))
	    (setq denom (muln (list '((rat simp) 1 4)
				    (add2 (mul2 (power a '((rat simp) 1 5)) disvar)
					  (power b '((rat simp) 1 5)))
				    (add2 denom term) (sub denom term))
			      t)))
	   (t
	    (if (eq '$neg ($asksign b))
		(setq denom
		      (mul2 (add2 (mul2 (power a '((rat simp) 1 2)) (power disvar 3))
				  (power (mul -1 b) '((rat simp) 1 2)))
			    (add2 (mul2 (power a '((rat simp) 1 2)) (power disvar 3))
				  (mul -1 (power (mul -1 b) '((rat simp) 1 2))))))
		(progn
		  (setq denom (add2 (mul2 (power a '((rat simp) 1 3)) (power disvar 2))
				    (power b '((rat simp) 1 3)))
			term (muln (list (power 3 '((rat simp) 1 2))
					 (power a '((rat simp) 1 6))
					 (power b '((rat simp) 1 6))
					 disvar)
				   t))
		  (setq denom (mul3 denom (add2 denom term) (sub denom term))))
		)))
     ;;Needs $ALGEBRAIC NIL so next call to RATF will preserve factorization.
     (return (mul2 cont (ratint (div num denom) disvar)))))

(defun zerocoefl (e n)
  (do ((i 1 (1+ i))) ((= i n) t)
    (if (not (equal (polcoef e i) 0)) (return nil))))

(defun ratsqrt (a) (let (varlist) (simpnrt (disrep a) 2)))

(defun fprog (rat*)
  (prog (rootfactor pardenom parnumer logptdx wholepart switch1)
     (return (addn (cons (dprog rat*) (mapcar #'eprog logptdx)) nil))))

(defmfun ratint (exp var)
  (prog (genvar checkfactors varlist ratarg ratform $keepfloat)
     (setq varlist (list var))
     (setq ratarg (ratf exp))
     (setq ratform (car ratarg))
     (setq var (caadr (ratf var)))
     (return (fprog (cdr ratarg)))))

(defun intfactor (l)
  (prog ($factorflag a b)
     (setq a (oldcontent l) b (everysecond (pfactor (cadr a))))
     (return (if (equal (car a) 1) b (cons (car a) b)))))

(defun everysecond (a)
  (if a (cons (if (numberp (car a))
		  (pexpt (car a) (cadr a))
		  (car a))
	      (everysecond (cddr a)))))