This file is indexed.

/usr/share/maxima/5.32.1/src/solve.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1982 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module solve)

(load-macsyma-macros ratmac strmac)

(declare-top (special expsumsplit $dispflag checkfactors *g
		      $algebraic equations ;List of E-labels
		      *power *varb *flg $derivsubst
		      $%emode genvar genpairs varlist broken-not-freeof
		      mult    ;Some crock which tracks multiplicities.
		      *roots ;alternating list of solutions and multiplicities
		      *failures	;alternating list of equations and multiplicities
		      *myvar $listconstvars
		      *has*var *var $dontfactor
		      $keepfloat $ratfac
		      xm* xn* mul*))

(defmvar $breakup t
  "Causes solutions to cubic and quartic equations to be expressed in
	 terms of common subexpressions.")

(defmvar $multiplicities '$not_set_yet
  "Set to a list of the multiplicities of the individual solutions
	 returned by SOLVE, REALROOTS, or ALLROOTS.")

(defmvar $linsolvewarn t
  "Needs to be documented.")

(defmvar $programmode t
  "Causes SOLVE to return its answers explicitly as elements
	 in a list rather than printing E-labels.")

(defmvar $solvedecomposes t
  "Causes `solve' to use `polydecomp' in attempting to solve polynomials.")

(defmvar $solveexplicit nil
  "Causes `solve' to return implicit solutions i.e. of the form F(x)=0.")

(defmvar $solvefactors t
  "If T, then SOLVE will try to factor the expression.  The FALSE
	 setting may be desired in zl-SOME cases where factoring is not
	 necessary.")

(defmvar $solvenullwarn t
  "Causes the user will be warned if SOLVE is called with either a
	 null equation list or a null variable list.  For example,
	 SOLVE([],[]); would print two warning messages and return [].")

(defmvar $solvetrigwarn t
  "Causes SOLVE to print a warning message when it is uses
	 inverse trigonometric functions to solve an equation,
	 thereby losing solutions.")

(defmvar $solveradcan nil
  "SOLVE will use RADCAN which will make SOLVE slower but will allow
	 certain problems containing exponentials and logs to be solved.")

;; Utility macros

;; This macro returns the number of trivial equations.  It counts up the
;; number of zeros in a list.

;(defmacro nzlist (llist)
;  `(do ((l ,llist (cdr l))
;	(zcount 0))
;       ((null l) zcount)
;     (if (and (integerp (car l)) (zerop (car l)))
;	 (incf zcount))))

;; This is only called on a variable.

(defmacro allroot (exp)
  `(setq *failures (list* (make-mequal-simp ,exp ,exp) 1 *failures)))

;; Finds variables, changes equations into expressions without MEQUAL.
;; Checks for consistency between the number of unknowns and equations.
;; Calls SOLVEX for simultaneous equations and SSOLVE for a single equation.

(defmfun $solve (*eql &optional (varl nil varl-p))
  (setq $multiplicities (make-mlist))
  (prog (eql                            ; Equations to solve
         $keepfloat $ratfac             ; In case user has set these
         *roots                         ; *roots gets solutions,
         *failures                      ; *failures "roots of"
         broken-not-freeof) ;Has something to do with splitting up roots
     
     ;; Create the equation list (this is a lisp list, not 'MLIST)
     (setq eql
           (cond
             ;; If an atom, cons it.
             ((atom *eql) (ncons *eql))
             ;; If we have a list of equations, move everything over
             ;; to one side, so x=5 -> x-5=0.
             ((eq (g-rep-operator *eql) 'mlist)
              (mapcar 'meqhk (mapcar 'meval (cdr *eql))))
             ;; We can't solve inequalities
             ((member (g-rep-operator *eql)
                      '(mnotequal mgreaterp mlessp mgeqp mleqp) :test #'eq)
              (merror (intl:gettext "solve: cannot solve inequalities.")))
             ;; Finally, assume we have just one equation, and put it
             ;; on one side again.
             (t (ncons (meqhk *eql)))))

     (cond
       ;; If the variable list wasn't supplied we have to supply it
       ;; ourselves. Also remove constants like $%pi from the list.
       ((null varl-p)
        (setq varl
              (let (($listconstvars nil))
                (cdr ($listofvars *eql))))
        (if varl (setq varl (remc varl)))) ; Remove all constants

       ;; If we have got a variable list then if it's a list apply
       ;; meval to each entry and then weed out duplicates. Else, just
       ;; cons it.
       (t
        (setq varl
              (cond (($listp varl) (remove-duplicates
                                    (mapcar #'meval (cdr varl))))
                    (t (list varl))))))

     ;; Some sanity checks and warning messages.
     (when (and (null varl) $solvenullwarn)
       (mtell (intl:gettext "~&solve: variable list is empty, continuing anyway.~%")))

     (when (and (null eql) $solvenullwarn)
       (mtell (intl:gettext "~&solve: equation list is empty, continuing anyway.~%")))

     (when (some #'mnump varl)
       (merror (intl:gettext "solve: all variables must not be numbers.")))
     
     ;; Deal with special cases.
     (cond
       ;; Trivially true equations for any set of variables.
       ((equal eql '(0))
        (return '$all))

       ;; Trivially false equations: return []
       ((or (null varl) (null eql))
        (return (make-mlist-simp)))

       ;; One equation in one variable: SSOLVE
       ((and (null (cdr varl)) (null (cdr eql)))
        (return (ssolve (car eql) (car varl))))

       ;; We were given a variable list, or there are same # of eqns
       ;; as unknowns: SOLVEX.
       ((or varl-p
            (= (length varl) (length eql)))
        (setq eql (solvex eql varl (not $programmode) t))
        (return
          (cond ((and (cdr eql)
                      (not ($listp (cadr eql))))
                 (make-mlist eql))
                (t eql)))))

     ;; We don't know what to do, so complain. The let sets u to varl
     ;; but as an MLIST list and e to the original eqns coerced to a
     ;; list.
     (let ((u (make-mlist-l varl))
           (e (cond (($listp *eql) *eql)
                    (t (make-mlist *eql)))))
       ;; MFORMAT doesn't have ~:[~] yet, so I just change this to
       ;; make one of two possible calls to MERROR. Smaller codesize
       ;; then what was here before anyway.
       (if (> (length varl) (length eql))
	   (merror
      (intl:gettext "solve: more unknowns than equations.~
		  ~%Unknowns given :  ~%~M~
		  ~%Equations given:  ~%~M")
      u e)
	   (merror
      (intl:gettext "solve: more equations than unknowns.~
		  ~%Unknowns given :  ~%~M~
		  ~%Equations given:  ~%~M")
      u e)))))


;; Removes anything from its list arg which solve considers not to be a
;; variable, i.e.  constants, functions or subscripted variables without
;; numeric args.

(defun remc (lst)
  (do ((l lst (cdr l)) (fl) (vl)) ((null l) vl)
    (cond ((atom (setq fl (car l)))
	   (unless (maxima-constantp fl) (push fl vl)))
	  ((every #'$constantp (cdr fl)) (push fl vl)))))

;; Solve a single equation for a single unknown.
;; Obtains roots via solve and prints them.

(defun ssolve (exp *var &aux equations multi)
  (let (($solvetrigwarn $solvetrigwarn))
    (cond ((null *var) '$all)
	  (t (solve exp *var 1)
	     (cond ((not (or *roots *failures)) (make-mlist))
		   ($programmode
		    (prog1
			(make-mlist-l (nreverse (map2c #'(lambda (eqn mult) (push mult multi) eqn)
						       (if $solveexplicit
							   *roots
							   (nconc *roots *failures)))))
		      (setq $multiplicities (make-mlist-l (nreverse multi)))))
		   (t (when (and *failures (not $solveexplicit))
			(when $dispflag (mtell (intl:gettext "solve: the roots of:~%")))
			(solve2 *failures))
		      (when *roots
			(when $dispflag (mtell (intl:gettext "solve: solution:~%")))
			(solve2 *roots))
		      (make-mlist-l equations)))))))

;; Solve takes three arguments, the expression to solve for zero, the variable
;; to solve for, and what multiplicity this solution is assumed to have (from
;; higher-level Solve's).  Solve returns NIL.  Isn't that useful?  The lists
;; *roots and *failures are special variables to which Solve prepends solutions
;; and their multiplicities in that order: *roots contains explicit solutions
;; of the form <var>=<function of independent variables>, and *failures
;; contains equations which if solved would yield additional solutions.

;; Factors expression and reduces exponents by their gcd (via solventhp)

(defmfun solve (*exp *var mult &aux (genvar nil) ($derivsubst nil)
		     (exp (float2rat (mratcheck *exp)))
		     (*myvar *var) ($savefactors t))
  (prog (factors *has*var genpairs $dontfactor temp symbol *g checkfactors 
	 varlist expsumsplit)
     (let (($ratfac t))
       (setq exp (ratdisrep (ratf exp))))
     ;; Cancel out any simple 
     ;; (non-algebraic) common factors in numerator and 
     ;; denominator without altering the structure of the 
     ;; expression too much.
     ;; Also, RJFPROB in TEST;SOLVE TEST is now solved.
     ;; - JPG
     a (cond ((atom exp)
	      (cond ((eq exp *var)
		     (solve3 0 mult))
		    ((equal exp 0) (allroot *var))
		    (t nil)))
	     (t (setq exp (meqhk exp))
		(cond ((equal exp '(0))
		       (return (allroot *var)))
		      ((free exp *var)
		       (return nil)))
		(cond ((not (atom *var))
		       (setq symbol (gensym))
		       (setq exp (maxima-substitute symbol *var exp))
		       (setq temp *var)
		       (setq *var symbol)
		       (setq *myvar *var))) ;keep *MYVAR up-to-date
	      
		(cond ($solveradcan (setq exp (radcan1 exp))
				    (if (atom exp) (go a))))
	      
		(cond ((easy-cases exp *var mult)
		       (cond (symbol (setq *roots (subst temp *var *roots))
				     (setq *failures (subst temp *var *failures))))
		       (rootsort *roots)
		       (rootsort *failures)
		       (return nil)))
	      
		(cond ((setq factors (first-order-p exp *var))
		       (solve3 (ratdisrep
				(ratf (make-mtimes -1 (div* (cdr factors)
							    (car factors)))))
			       mult))
		    
		      (t (setq varlist (list *var))
			 (fnewvar exp)
			 (setq varlist (varsort varlist))
			 (let ((vartemp)
			       (ratnumer (mrat-numer (ratrep* exp)))
			       (numer-varlist varlist)
			       (subst-list (trig-subst-p varlist)))
			   (setq varlist (ncons *var))
			   (cond (subst-list
				  (setq exp (trig-subst exp subst-list))
				  (fnewvar exp)
				  (setq varlist (varsort varlist))
				  (setq exp (mrat-numer (ratrep* exp)))
				  (setq vartemp varlist))
				 (t (setq vartemp numer-varlist)
				    (setq exp ratnumer)))
			   (setq varlist vartemp))
		       
			 (cond ((atom exp) (go a))
			       ((of-form-A*F<X>^N+B exp) (solve1a exp mult))
			       ((and (not (pcoefp exp))
				     (cddr exp)
				     (not (equal 1 (setq *g (solventhp (cdddr exp) (cadr exp))))))
				(solventh exp *g))
			       (t (cond ($solvefactors 
					 (map2c (lambda (x y) (solve1a x (m* mult y)))
						(pfactor exp)))
					(t (solve1a exp mult)))))))))

     (cond (symbol (setq *roots (subst temp *var *roots))
		   (setq *failures (subst temp *var *failures))))
     (rootsort *roots)
     (rootsort *failures)
     (return nil)))

(defun float2rat (exp)
  (cond ((floatp exp) (setq exp (prep1 exp)) (make-rat-simp (car exp) (cdr exp)))
	((or (atom exp) (specrepp exp)) exp)
	(t (recur-apply #'float2rat exp))))

;;; The following takes care of cases where the expression is already in 
;;; factored form. This can introduce spurious roots if one of the factors
;;; is an expression that can be undefined or infinity for certain values of
;;; the variable in question. But soon this will be no worry because I will
;;; add a list of  "possible bad roots" to what $SOLVE returns.
;;; Passes multiplicity to recursive calls to solve.

(defun easy-cases (*exp *var mult)
  (cond ((or (atom *exp) (atom (car *exp))) nil)
	((eq (caar *exp) 'mtimes)
	 (do ((terms (cdr *exp) (cdr terms)))
	     ((null terms))
	   (solve (car terms) *var mult))
	 'mtimes)

	((eq (caar *exp) 'mabs)		;; abs(x) = 0  <=>  x = 0
	 (solve (cadr *exp) *var mult)
	 'mabs)

	((eq (caar *exp) 'mexpt)
	 (cond ((and (freeof *var (cadr *exp))
		     (not (zerop1 (cadr *exp))))
		;; no solutions: c^x is never zero
		'mexpt)

	       ((and (integerp  (caddr *exp))
		     (plusp (caddr *exp)))
		(solve (cadr *exp) *var (m* mult (caddr *exp)))
		'mexprat)))))

;;; Predicate to test for presence of troublesome trig functions to be
;;; canonicalized.  A  table of when to make substitutions should
;;; be used here. 
;;;  trig kind                     => SIN | COS | TAN ...   subst to make
;;; number around in expression ->     1     1     0         ......
;;; what you want to be able to do for example is to see if SIN and COS^2 
;;; are around and then make a reasonable substitution.

(defun trig-subst-p (vlist)
  (and (not (trig-not-subst-p vlist))
       (do ((var (car vlist) (car vlist))
	    (vlist (cdr vlist) (cdr vlist))
	    (subst-list))
	   ((null var) subst-list)
	 (cond ((and (not (atom var))
		     (trig-cannon (g-rep-operator var))
		     (not (free var *var)))
		(push var subst-list))))))

;; Predicate to see when obviously not to substitute for trigs.
;; A hack in the direction of expression properties-table driven
;; substition. The "measure" of the expression is the total number
;; of different kinds of trig functions in the expression.

(defun trig-not-subst-p (vlist)
  (let ((trigs '(%sin %cos %tan %cot %csc %sec)))
    (< (measure #'sign-gjc (operator-frequency-table vlist trigs) trigs)
       2)))

;; To get the total "value" of things in a table, this case an assoc list.
;; (MEASURE FUNCTION ASSOCIATION-LIST SET) where FUNCTION is a function mapping
;; the range of the ASSOCIATION-LIST viewed as a function on the SET, to the
;; integers.

(defun measure (f alist set &aux (sum 0))
  (dolist (element set)
    (incf sum (funcall f (cdr (assoc element alist :test #'eq)))))
  sum)

;; Named for uniqueness only

(defun sign-gjc (x)
  (cond ((or (null x) (= x 0)) 0)
	((< 0 x) 1)
	(t -1)))

;; A function that can EXTEND a function
;; over two association lists. Note that I have been using association lists
;; as mere functions (that is, as sets of ordered pairs).
;; (EXTEND '+ L1 L2 S) could also be to take the union of two multi-sets in the
;; sample space S. (what the '&%%#?& has this got to do with SOLVE?) 

(defun extend (f l1 l2 s)
  (do ((j 0 (1+ j))
       (value nil))
      ((= j (length s)) value)
    (setq value (cons (cons (nth j s)
			    (funcall f (cdr (assoc (nth j s) l1 :test #'equal))
				     (cdr (assoc (nth j s) l2 :test #'equal))))
		      value))))

;; For the case where the value of assoc is NIL, we will need a special "+"

(defun +mset (a b)
  (+ (or a 0) (or b 0)))

;; To recursively looks through a list
;; structure (the VLIST) for members of the SET appearing in the MACSYMA 
;; functional position (caar list). Returning an assoc. list of appearence
;; frequencies. Notice the use of EXTEND.

(defun operator-frequency-table (vlist set)
  (do ((j 0 (1+ j))
       (it)
       (assl (do ((k 0 (1+ k))
		  (made nil))
		 ((= k (length set)) made)
	       (setq made (cons (cons (nth k set) 0)
				made)))))
      ((= j (length vlist)) assl)
    (setq it (nth j vlist))
    (cond ((atom it))
	  (t (setq assl (extend #'+mset (cons (cons (caar it) 1) nil)
				assl set))
	     (setq assl (extend #'+mset assl
				(operator-frequency-table (cdr it) set)
				set))))))

(defun trig-subst (exp sub-list)
  (do ((exp exp)
       (sub-list (cdr sub-list) (cdr sub-list))
       (var (car sub-list) (car sub-list)))
      ((null var) exp)
    (setq exp
	  (maxima-substitute (funcall (trig-cannon (g-rep-operator var))
				      (make-mlist-l (g-rep-operands var)))
			     var exp))))

;; Here are the canonical trig substitutions.

(defun-prop (%sec trig-cannon) (x)
  (inv* (make-g-rep '%cos (g-rep-first-operand x))))

(defun-prop (%csc trig-cannon) (x)
  (inv* (make-g-rep '%sin (g-rep-first-operand x))))

(defun-prop (%tan trig-cannon) (x)
  (div* (make-g-rep '%sin (g-rep-first-operand x))
	(make-g-rep '%cos (g-rep-first-operand x))))

(defun-prop (%cot trig-cannon) (x)
  (div* (make-g-rep '%cos (g-rep-first-operand x))
	(make-g-rep '%sin (g-rep-first-operand x))))

(defun-prop (%sech trig-cannon) (x)
  (inv* (make-g-rep '%cosh (g-rep-first-operand x))))

(defun-prop (%csch trig-cannon) (x)
  (inv* (make-g-rep '%sinh (g-rep-first-operand x))))

(defun-prop (%tanh trig-cannon) (x)
  (div* (make-g-rep '%sinh (g-rep-first-operand x))
	(make-g-rep '%cosh (g-rep-first-operand x))))

(defun-prop (%coth trig-cannon) (x)
  (div* (make-g-rep '%cosh (g-rep-first-operand x))
	(make-g-rep '%sinh (g-rep-first-operand x))))

;; Predicate to replace ISLINEAR....Returns NIL if not of for A*X+B, A and B
;; freeof X, else returns (A . B)

(defun first-order-p (exp var &aux temp)
  ;; Expand the expression at one level, i.e. distribute products
  ;; over sums, but leave exponentiations alone.
  ;; (X+1)^2*(X+Y) --> X*(X+1)^2 + Y*(X+1)^2
  (setq exp (expand1 exp 1 1))
  (cond ((atom exp) nil)
	(t (case (g-rep-operator exp)
	     (mtimes
	      (cond ((setq temp (linear-term-p exp var))
		     (make-lineq temp 0))
		    (t nil)))
	     (mplus
	      (do ((arg  (car (g-rep-operands exp)) (car rest))
		   (rest (cdr (g-rep-operands exp)) (cdr rest))
		   (linear-term-list)
		   (constant-term-list)
		   (temp))
		  ((null arg)
		   (if linear-term-list
		       (make-lineq (make-mplus-l linear-term-list)
				   (if constant-term-list
				       (make-mplus-l constant-term-list)
				       0))))
		(cond ((setq temp (linear-term-p arg var))
		       (push temp linear-term-list))
		      ((broken-freeof var arg)
		       (push arg constant-term-list))
		      (t (return nil)))))
	     (t nil)))))

;; Function to test if a term from an expanded expression is a linear term
;; check and see that exactly one item in the product is the main var and
;; all others are free of the main var.  Returns NIL or a G-REP expression.

(defun linear-term-p (exp var)
  (cond ((atom exp)
	 (cond ((eq exp var) 1)
	       (t nil)))
	(t (case (g-rep-operator exp)
	     (mtimes
	      (do ((factor (car (g-rep-operands exp)) ;individual factors
			   (car rest))
		   (rest (cdr (g-rep-operands exp)) ;factors yet to be done
			 (cdr rest))
		   (main-var-p)	     ;nt -> main-var seen at top level
		   (list-of-factors))	;accumulate our factors
		  ((null factor)	;for all factors
		   (and main-var-p
					;no-main-var at top level -=> not linear
			(make-mtimes-l list-of-factors)))
		(cond ((eq factor var)  ;if it's our main var
					;note it...it has to be there to be a linear term
		       (setq main-var-p t))
		      ((broken-freeof var factor) ;if 
		       (push factor list-of-factors))
		      (t (return nil)))))
	     (t nil)))))


;;; DISPATCHING FUNCTION ON DEGREE OF EXPRESSION
;;; This is a crock of shit, it should be data driven and be able to
;;; dispatch to all manner of special cases that are in a table.
;;; EXP here is a polynomial in MRAT form.  All of this well-structured,
;;; intelligently-designed code works by side effect.  SOLVECUBIC
;;; takes something that looks like (G0003 3 4 1 1 0 10) as an argument
;;; and returns something like ((MEQUAL) $X ((MTIMES) ...)).  You figure
;;; out where the $X comes from.

;;; It comes from GENVARS/VARLIST, of course.  Isn't this wonderful rational
;;; function package irrational?  If you don't know about GENVARS and
;;; VARLIST, you'd better bite the bullet and learn...everything depends
;;; on them.  The canonical example of mis-use of special variables!
;;; --RWK

(defun solve1a (exp mult) 
  (let ((*myvar *myvar)
	(*g nil)) 
    (cond ((atom exp) nil)
          ((not (memalike (setq *myvar (simplify (pdis (list (car exp) 1 1))))
                          *has*var))
           nil)
	  ((equal (cadr exp) 1) (solvelin exp))
	  ((of-form-A*F<X>^N+B exp) (solve-A*F<X>^N+B exp t))
	  ((equal (cadr exp) 2) (solvequad exp))
	  ((not (equal 1 (setq *g (solventhp (cdddr exp) (cadr exp)))))
	   (solventh exp *g))
	  ((equal (cadr exp) 3) (solvecubic exp))
	  ((equal (cadr exp) 4) (solvequartic exp))
	  (t (let ((tt (solve-by-decomposition exp *myvar)))
	       (setq *failures (append (solution-losses tt) *failures))
	       (setq *roots    (append (solution-wins tt) *roots)))))))

(defun solve-simplist (list-of-things)
  (g-rep-operands (simplifya (make-mlist-l list-of-things) nil)))

;; The Solve-by-decomposition program returns the cons of (ROOTS . FAILURES).
;; It returns a "Solution" object, that is, a CONS with the CAR being the
;; failures and the CDR being the successes.
;; It takes a POLY as an argument and returns a SOLUTION.

(defun solve-by-decomposition (poly *$var)
  (let ((decomp))
    (cond ((or (not $solvedecomposes)
	       (= (length (setq decomp (polydecomp poly (poly-var poly)))) 1))
	   (make-solution nil `(,(make-mequal 0 (pdis poly)) 1)))
	  (t (decomp-trace (make-mequal 0 (rdis (car decomp)))
			   decomp
			   (poly-var poly) *$var 1)))))

;; DECOMP-TRACE is the recursive function which maps itself down the
;; intermediate solutions until the end is reached.  If it encounters
;; non-solvable equations it stops.  It returns a SOLUTION object, that is, a
;; CONS with the CAR being the failures and the CDR being the successes.

(defun decomp-trace (eqn decomp var *$var mult &aux sol chain-sol wins losses)
  (setq sol (if decomp
		(re-solve eqn *$var mult)
		(make-solution `(,eqn 1) nil)))
  (cond ((solution-losses sol) sol)
	;; End test
	((null decomp) sol)
	(t (do ((l (solution-wins sol) (cddr l)))
	       ((null l))
	     (setq chain-sol
		   (decomp-chain (car l) (cdr decomp) var *$var (cadr l)))
	     (setq wins (nconc wins (copy-list (solution-wins chain-sol))))
	     (setq losses (nconc losses (copy-list (solution-losses chain-sol)))))
	   (make-solution wins losses))))

;; Decomp-chain is the function which formats the mess for the recursive call.
;; It returns a "Solution" object, that is, a CONS with the CAR being the
;; failures and the CDR being the successes.

(defun decomp-chain (rsol decomp var *$var mult)
  (let ((sol (simplify (make-mequal (rdis (if decomp (car decomp)
					      ;; Include the var itself in the decomposition
					      (make-mrat-body (make-mrat-poly var '(1 1)) 1)))
				    (mequal-rhs rsol)))))
    (decomp-trace sol decomp var *$var mult)))

;; RE-SOLVE calls SOLVE recursively, returning a SOLUTION object.
;; Will not decompose or factor.

(defun re-solve (eqn var mult)
  (let ((*roots nil)
	(*failures nil)
	;; We've already decomposed and factored
	($solvedecomposes)
	($solvefactors))
    (solve eqn var mult)
    (make-solution *roots *failures)))

;; SOLVENTH programs test to see if the variable of interest appears 
;; to some power in all terms.  If so, a new variable is substituted for it
;; and the simpler expression solved with the multiplicity
;; adjusted accordingly.
;; SOLVENTHP returns gcd of exponents.

(defun solventhp (l gcd) 
  (cond ((null l) gcd)
	((equal gcd 1) 1)
	(t (solventhp (cddr l)
		      (gcd (car l) gcd)))))

;; Reduces exponents by their gcd.

(defun solventh (exp *g) 
  (let ((*varb (pdis (make-mrat-poly (poly-var exp) '(1 1))))
	(exp   (make-mrat-poly (poly-var exp) (solventh1 (poly-terms exp)))))
    (let* ((rts (re-solve-full (pdis exp) *varb))
	   (fails (solution-losses rts))
	   (wins (solution-wins rts))
	   (*power (make-mexpt *varb *g)))
      (map2c #'(lambda (w z)
		 (cond ((atom *varb)
			(solve (make-mequal *power (mequal-rhs w)) *varb z))
		       (t (let ((rts (re-solve-full
				      (make-mequal *power (mequal-rhs w))
				      *varb)))
			    (map2c #'(lambda (root mult)
				       (solve (make-mequal (mequal-rhs root) 0)
					      *myvar mult))
				   (solution-wins rts))))))
	     wins)
      (map2c #'(lambda (w z)
		 (push z *failures)
		 (push (solventh3 w *power *varb) *failures))
	     fails)
      *roots)))

(defun solventh3 (w *power *varb &aux varlist genvar *flg w1 w2)
  (cond ((broken-freeof *varb w) w)
	(t (setq w1 (ratf (cadr w)))
	   (setq w2 (ratf (caddr w)))
	   (setq varlist
		 (mapcar #'(lambda (h) 
			     (cond (*flg h)
				   ((alike1 h *varb)
				    (setq *flg t)
				    *power)
				   (t h)))
			 varlist))
	   (list (car w) (rdis (cdr w1)) (rdis (cdr w2))))))

(defun solventh1 (l) 
  (cond ((null l) nil)
	(t (cons (quotient (car l) *g)
		 (cons (cadr l) (solventh1 (cddr l)))))))

;; Will decompose or factor

(defun re-solve-full (x var &aux *roots *failures)
  (solve x var mult)
  (make-solution *roots *failures))

;; Sees if expression is of the form A*F<X>^N+B.

(defun of-form-A*F<X>^N+B (e)
  (and (memalike (simplify (pdis (list (car e) 1 1))) *has*var)
       (or (atom (caddr e))
           (not (memalike (simplify (pdis (list (caaddr e) 1 1)))
                          *has*var)))
       (or (null (cdddr e)) (equal (cadddr e) 0))))

;; Solves the special case A*F<X>^N+B.

(defun solve-A*F<X>^N+B (exp $%emode) 
  (prog (a b c) 
     (setq a (pdis (caddr exp)))
     (setq c (pdis (list (car exp) 1 1)))
     (cond ((null (cdddr exp))
	    (return (solve c *var (* (cadr exp) mult)))))
     (setq b (pdis (pminus (cadddr (cdr exp)))))
     (return (solve-A*F<X>^N+B1 c
			 (simpnrt (div* b a) (cadr exp))
			 (make-rat 1 (cadr exp))
			 (cadr exp)))))

(defun solve-A*F<X>^N+B1 (var root n thisn) 
  (do ((thisn thisn (1- thisn))) ((zerop thisn))
    (solve (add* var (mul* -1 root (power* '$%e (mul* 2 '$%pi '$%i thisn n))))
	   *var mult)))


;; ADISPLINE displays a line like DISPLINE, and in addition, notes that it is
;; not free of *VAR if it isn't.

(defun adispline (line)
  ;; This may be redundant, but nice if ADISPLINE gets used where not needed.
  (cond ((and $breakup (not $programmode))
	 (let ((linelabel (displine line)))
	   (cond ((broken-freeof *var line))
		 (t (setq broken-not-freeof
			  (cons linelabel broken-not-freeof))))
	   linelabel))
	(t (displine line))))

;; Predicate to check if an expression which may be broken up
;; is freeof

(setq broken-not-freeof nil)

;; For consistency, use backwards args.
;; == (freeof var exp) but works even if solution is broken up ($breakup=t)
(defun broken-freeof (var exp)
  (cond ($breakup
	 (do ((b-n-fo var (car b-n-fo-l))
	      (b-n-fo-l broken-not-freeof (cdr b-n-fo-l)))
	     ((null b-n-fo) t)
	   (and (not (argsfreeof b-n-fo exp))
		(return nil))))
	(t (argsfreeof var exp))))

;; Adds solutions to roots list.
;; Solves for inverse of functions (via USOLVE)

(defun solve3 (exp mult) 
  (setq exp (simplify exp))
  (cond ((not (broken-freeof *var exp))
	 (push mult *failures)
	 (push (make-mequal-simp (simplify *myvar) exp) *failures))
	(t (cond ((eq *myvar *var)
		  (push mult *roots)
		  (push (make-mequal-simp *var exp) *roots))
		 ((atom *myvar)
		  (push mult *failures)
		  (push (make-mequal-simp *myvar exp) *failures))
		 (t (usolve exp (g-rep-operator *myvar)))))))


;; Solve a linear equation.  Argument is a polynomial in pseudo-cre form.
;; This function is called for side-effect only.

(defun solvelin (exp) 
  (cond ((equal 0 (ptterm (cdr exp) 0))
	 (solve1a (caddr exp) mult)))
  (solve3 (rdis (ratreduce (pminus (ptterm (cdr exp) 0))
			   (caddr exp)))
	  mult))

;; Solve a quadratic equation.  Argument is a polynomial in pseudo-cre form.
;; This function is called for side-effect only.
;; The code for handling the case where the discriminant = 0 seems to never
;; be run.  Presumably, the expression is factored higher up.

(defun solvequad (exp &aux discrim a b c)
  (setq a (caddr exp))
  (setq b (ptterm (cdr exp) 1.))
  (setq c (ptterm (cdr exp) 0.))
  (setq discrim (simplify (pdis (pplus (pexpt b 2.)
				       (pminus (ptimes 4. (ptimes a c)))))))
  (setq b (pdis (pminus b)))
  (setq a (pdis (ptimes 2. a)))
  ;; At this point, everything is back in general representation.
  (let ((varlist nil)) ;;2/6/2002 RJF
    (cond ((equal 0 discrim)
	   (solve3 (fullratsimp `((mquotient) ,b ,a))
		   (* 2 mult)))
	  (t (setq discrim (simpnrt discrim 2))
	     (solve3 (fullratsimp `((mquotient) ((mplus) ,b ,discrim) ,a))
		     mult)
	     (solve3 (fullratsimp `((mquotient) ((mplus) ,b ((mminus) ,discrim)) ,a))
		     mult)))))

;; Reorders V so that members which contain the variable of
;; interest come first.

(defun varsort (v)
  (let ((*u nil)
	(*v (copy-list v)))
    (mapc #'(lambda (z) 
	      (cond ((broken-freeof *var z)
		     (setq *u (cons z *u))
		     (setq *v (delete z *v :count 1 :test #'equal)))))
	  v)
    (setq $dontfactor *u)
    (setq *has*var (mapcar #'resimplify *v))
    (append *u *v)))

;; Solves for variable when it occurs within a function by taking the inverse.
;; When this code is fixed, the `((mplus) ,x ,y) forms should be rewritten as
;; (MAKE-MPLUS X Y).  I didn't do this because the code was buggy and it should
;; be fixed first.  - cwh
;; You mean you didn't do it because you were buggy.  Hope you're fixed soon!
;; --RWK

;; Solve <exp> = <*myvar> for <*var>, where <*myvar>=<op>(...)
(defun usolve (exp op) 
  (prog (inverse) 
     (setq inverse
	   (cond
	     ((eq op 'mexpt)
	      (cond ((broken-freeof *var
				    (cadr *myvar))
		     (cond ((equal exp 0)
			    (go fail)))
		     `((mplus) ((mminus) ,(caddr *myvar))
		       ,(div* `((%log) ,exp)
			      `((%log) ,(cadr *myvar)))))
		    ((broken-freeof *var
				    (caddr *myvar))
		     (cond ((equal exp 0)
			    (cond ((mnegp (caddr *myvar))
				   (go fail))
				  (t (cadr *myvar))))
			   ;; There is a bug right here.
			   ;; SOLVE(SQRT(U)+1) should return U=1
			   ;; This code is entered with EXP = -1, OP = MEXPT
			   ;; *VAR = U, and *MYVAR = ((MEXPT) U ((RAT) 1 2))
			   ;; BULLSHIT -- RWK.  That is precisely the bug
			   ;; this code was added to fix!
			   ((and (not (eq (ask-integer (caddr *myvar)
						       '$integer)
					  '$yes))
				 (free exp '$%i)
				 (eq ($asksign exp) '$neg))
			    (go fail))				    
			   (t `((mplus) ,(cadr *myvar)
				((mminus)
				 ((mexpt) ,exp
				  ,(div* 1 (caddr *myvar))))))))
		    (t (go fail))))
	     ((setq inverse (get op '$inverse))
	      (when (and $solvetrigwarn
			 (member op '(%sin %cos %tan %sec %csc %cot %cosh %sech) :test #'eq))
		(mtell (intl:gettext "~&solve: using arc-trig functions to get a solution.~%Some solutions will be lost.~%"))
		(setq $solvetrigwarn nil))
	      `((mplus) ((mminus) ,(cadr *myvar))
		((,inverse) ,exp)))
	     ((eq op '%log)
	      `((mplus) ((mminus) ,(cadr *myvar))
		((mexpt) $%e ,exp)))
	     (t (go fail))))
     (return (solve (simplify inverse) *var mult))
     fail (return (setq *failures
			(cons (simplify `((mequal) ,*myvar ,exp))
			      (cons mult *failures))))))

;; Predicate for determining if an expression is messy enough to 
;; generate a new linelabel for it.
;; Expression must be in general form.

(defun complicated (exp)
  (and $breakup
       (not $programmode)
       (not (free exp 'mplus))))

(defun rootsort (l) 
  (prog (a fm fm1) 
   g1   (cond ((null l) (return nil)))
   (setq a (car (setq fm l)))
   (setq fm1 (cdr fm))
   loop (cond ((null (cddr fm)) (setq l (cddr l)) (go g1))
	      ((alike1 (caddr fm) a)
	       (rplaca fm1 (+ (car fm1) (cadddr fm)))
	       (rplacd (cdr fm) (cddddr fm))
	       (go loop)))
   (setq fm (cddr fm))
   (go loop)))

(defmfun $linsolve (eql varl)
  (let (($ratfac))
    (setq eql (if ($listp eql) (cdr eql) (ncons eql)))
    (setq varl (if ($listp varl)
		   (delete-duplicates (cdr varl) :test #'equal :from-end t)
		   (ncons varl)))
    (do ((varl varl (cdr varl)))
	((null varl))
      (when (mnump (car varl))
	(merror (intl:gettext "solve: variable must not be a number; found: ~M") (car varl))))
    (if (null varl)
	(make-mlist-simp)
	(solvex (mapcar 'meqhk eql) varl (not $programmode) nil))))

(defun solvex (eql varl ind flag &aux ($algebraic $algebraic))
  (declare (special xa*))
  (prog (*varl ans varlist genvar xm* xn* mul*)
     (setq *varl varl)
     (setq eql (mapcar #'(lambda (x) ($ratdisrep ($ratnumer x))) eql))
     (cond ((atom (ignore-rat-err (formx flag 'xa* eql varl)))
	    ;; This flag is T if called from SOLVE
	    ;; and NIL if called from LINSOLVE.
	    (cond (flag (return ($algsys (make-mlist-l eql)
					 (make-mlist-l varl))))
		  (t (merror (intl:gettext "linsolve: cannot solve a nonlinear equation."))))))
     (setq ans (tfgeli 'xa* xn* xm*))
     (if (and $linsolvewarn (car ans))
	 (mtell (intl:gettext "~&solve: dependent equations eliminated: ~A~%") (car ans)))
     (if (cadr ans)
	 (return '((mlist simp))))
     (do ((j 0 (1+ j)))
	 ((> j xm*))
       ;;I put this in the value cell--wfs 
       (setf (aref xa* 0 j) nil))
     (ptorat 'xa* xn* xm*)
     (setq varl
	   (xrutout 'xa* xn* xm* 
		    (mapcar #'(lambda (x) (ith varl x))
			    (caddr ans))
		    ind))
     (if $programmode
	 (setq varl (make-mlist-l (linsort (cdr varl) *varl))))
     (return varl)))

;; (LINSORT '(((MEQUAL) A2 FOO) ((MEQUAL) A3 BAR)) '(A3 A2))
;; returns (((MEQUAL) A3 BAR) ((MEQUAL) A2 FOO)) .

(defun linsort (meq-list var-list)
  (mapcar #'(lambda (x) (cons (caar meq-list) x))
	  (sort (mapcar #'cdr meq-list)
		   #'(lambda (x y) (member y (member x var-list :test #'equal) :test #'equal)) :key #'car)))