/usr/share/maxima/5.32.1/src/sprdet.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module sprdet)
;; THIS IS THE NEW DETERMINANT PACKAGE
(declare-top (special x *ptr* *ptc* *blk* $ratmx ml* *detsign* rzl*))
(defun sprdet (ax n)
(declare (fixnum n))
(setq ax (get-array-pointer ax))
(prog ((j 0) rodr codr bl det (dm 0) (r 0) (i 0))
(declare (fixnum i j dm r))
(setq det 1)
(setq *ptr* (make-array (1+ n)))
(setq *ptc* (make-array (1+ n)))
(setq bl (tmlattice ax '*ptr* '*ptc* n)) ;tmlattice isn't defined anywhere -- are_muc
(when (null bl) (return 0))
(setq rodr (apply #'append bl))
(setq codr (mapcar #'cadr rodr))
(setq rodr (mapcar #'car rodr))
(setq det (* (prmusign rodr) (prmusign codr)))
(setq bl (mapcar #'length bl))
loop1 (when (null bl) (return det))
(setq i (car bl))
(setq dm i)
(setq *blk* (make-array (list (1+ dm) (1+ dm))))
(cond ((= dm 1)
(setq det (gptimes det (car (aref ax (aref *ptr* (1+ r)) (aref *ptc* (1+ r))))))
(go next))
((= dm 2)
(setq det (gptimes det
(gpdifference
(gptimes (car (aref ax (aref *ptr* (1+ r)) (aref *ptc* (1+ r))))
(car (aref ax (aref *ptr* (+ 2 r)) (aref *ptc* (+ 2 r)))))
(gptimes (car (aref ax (aref *ptr* (1+ r)) (aref *ptc* (+ 2 r))))
(car (aref ax (aref *ptr* (+ 2 r)) (aref *ptc* (1+ r))))))))
(go next)))
loop2 (when (= i 0) (go cmp))
(setq j dm)
loop3 (when (= j 0) (decf i) (go loop2))
(setf (aref *blk* i j) (car (aref ax (aref *ptr* (+ r i)) (aref *ptc*(+ r j)))))
(decf j) (go loop3)
cmp
(setq det (gptimes det (tdbu '*blk* dm)))
next
(incf r dm)
(setq bl (cdr bl))
(go loop1)))
(defun minorl (x n l nz)
(declare (fixnum n))
(prog (ans s rzl* (col 1) (n2 (truncate n 2)) d dl z a elm rule)
(declare (fixnum n2 col ))
(decf n2)
(setq dl l l nil nz (cons nil nz))
l1 (when (null nz) (return ans))
l3 (setq z (car nz))
(cond ((null l) (if dl (push dl ans) (return nil))
(setq nz (cdr nz) col (1+ col) l dl dl nil)
(go l1)))
(setq a (caar l) )
l2 (cond ((null z)
(cond (rule (rplaca (car l) (list a rule))
(setq rule nil) (setq l (cdr l)))
((null (cdr l))
(rplaca (car l) (list a 0))
(setq l (cdr l)))
(t (rplaca l (cadr l))
(rplacd l (cddr l))))
(go l3)))
(setq elm (car z) z (cdr z))
(setq s (signnp elm a))
(cond (s (setq d (delete elm (copy-list a) :test #'equal))
(cond ((membercar d dl)
(go on))
(t
(when (or (< col n2) (not (singp x d col n)))
(push (cons d 1) dl)
(go on))))))
(go l2)
on (setq rule (cons (list d s elm (1- col)) rule))
(go l2)))
(declare-top (special j))
(defun singp (x ml col n)
(declare (fixnum col n))
(prog (i (j col) l)
(declare (fixnum j))
(setq l ml)
(if (null ml)
(go loop)
(setq i (car ml)
ml (cdr ml)))
(cond ((member i rzl* :test #'equal) (return t))
((zrow x i col n) (return (setq rzl*(cons i rzl*)))))
loop (cond ((> j n) (return nil))
((every #'(lambda (i) (equal (aref x i j) 0)) l)
(return t)))
(incf j)
(go loop)))
(declare-top (unspecial j))
(defun tdbu (x n)
(declare (fixnum n))
(prog (a ml* nl nml dd)
(setq *detsign* 1)
(setq x (get-array-pointer x))
(detpivot x n)
(setq x (get-array-pointer 'x*))
(setq nl (nzl x n))
(when (member nil nl :test #'eq) (return 0))
(setq a (minorl x n (list (cons (nreverse(index* n)) 1)) nl))
(setq nl nil)
(when (null a) (return 0))
(tb2 x (car a) n)
tag2
(setq ml* (cons (cons nil nil) (car a)))
(setq a (cdr a))
(when (null a) (return (if (= *detsign* 1)
(cadadr ml*)
(gpctimes -1 (cadadr ml*)))))
(setq nml (car a))
tag1 (when (null nml) (go tag2))
(setq dd (car nml))
(setq nml (cdr nml))
(nbn dd)
(go tag1)))
(defun nbn (rule)
(declare (special x))
(prog (ans r a)
(setq ans 0 r (cadar rule))
(when (equal r 0) (return 0))
(rplaca rule (caar rule))
loop (when (null r) (return (rplacd rule (cons ans (cdr rule)))))
(setq a (car r) r(cdr r))
(setq ans (gpplus ans (gptimes (if (= (cadr a) 1)
(aref x (caddr a) (cadddr a))
(gpctimes (cadr a) (aref x (caddr a) (cadddr a))))
(getminor (car a)))))
(go loop)))
(defun getminor (index)
(cond ((null (setq index (assoc index ml* :test #'equal))) 0)
(t (rplacd (cdr index) (1- (cddr index)))
(when (= (cddr index) 0)
(setf index (delete index ml* :test #'equal)))
(cadr index))))
(defun tb2 (x l n)
(declare (fixnum n ))
(prog ((n-1 (1- n)) b a)
(declare (fixnum n-1))
loop (when (null l) (return nil))
(setq a (car l) l (cdr l) b (car a))
(rplacd a (cons (gpdifference (gptimes (aref x (car b) n-1) (aref x (cadr b) n))
(gptimes (aref x (car b) n) (aref x (cadr b) n-1)))
(cdr a)))
(go loop)))
(defun zrow (x i col n)
(declare (fixnum i col n))
(prog ((j col))
(declare (fixnum j))
loop (cond ((> j n)
(return t))
((equal (aref x i j) 0)
(incf j)
(go loop)))))
(defun nzl (a n)
(declare (fixnum n))
(prog ((i 0) (j (- n 2)) d l)
(declare (fixnum i j))
loop0 (when (= j 0) (return l))
(setq i n)
loop1 (when (= i 0)
(push d l)
(setq d nil)
(decf j)
(go loop0))
(when (not (equal (aref a i j) 0))
(push i d))
(decf i)
(go loop1)))
(defun signnp (e l)
(prog (i)
(setq i 1)
loop (cond ((null l) (return nil))
((equal e (car l)) (return i)))
(setq l (cdr l) i (- i))
(go loop)))
(defun membercar (e l)
(prog()
loop (cond ((null l)
(return nil))
((equal e (caar l))
(return (rplacd (car l) (1+ (cdar l))))))
(setq l (cdr l))
(go loop)))
(declare-top (unspecial x ml* rzl*))
(defun atranspose (a n)
(prog (i j d)
(setq i 0)
loop1 (setq i (1+ i) j i)
(when (> i n) (return nil))
loop2 (incf j)
(when (> j n) (go loop1))
(setq d (aref a i j))
(setf (aref a i j) (aref a j i))
(setf (aref a j i) d)
(go loop2)))
(defun mxcomp (l1 l2)
(prog()
loop (cond ((null l1) (return t))
((car> (car l1) (car l2)) (return t))
((car> (car l2) (car l1)) (return nil)))
(setq l1 (cdr l1) l2 (cdr l2))
(go loop)))
(defun prmusign (l)
(prog ((b 0) a d)
(declare (fixnum b))
loop (when (null l) (return (if (even b) 1 -1)))
(setq a (car l) l (cdr l) d l)
loop1 (cond ((null d) (go loop))
((> a (car d)) (incf b)))
(setq d (cdr d))
(go loop1)))
(defun detpivot (x n)
(prog (r0 c0)
(setq c0 (colrow0 x n nil)
r0 (colrow0 x n t))
(setq c0 (nreverse (bbsort c0 #'car>)))
(setq r0 (nreverse (bbsort r0 #'car>)))
(when (not (mxcomp c0 r0))
(atranspose x n)
(setq c0 r0))
(setq *detsign* (prmusign (mapcar #'car c0)))
(newmat 'x* x n c0)))
(defun newmat(x y n l)
(prog (i j jl)
(setf (symbol-value x) (make-array (list (1+ n) (1+ n))))
(setq x (get-array-pointer x))
(setq j 0)
loop (setq i 0 j (1+ j))
(when (null l) (return nil))
(setq jl (cdar l) l (cdr l))
tag (incf i)
(when (> i n) (go loop))
(setf (aref x i j) (aref y i jl))
(go tag)))
(defun car> (a b)
(> (car a) (car b)))
;; ind=t for row ortherwise col
(defun colrow0 (a n ind)
(declare (fixnum n))
(prog ((i 0) (j n) l (c 0))
(declare (fixnum i c j))
loop0 (cond ((= j 0) (return l)))
(setq i n)
loop1 (when (= i 0)
(push (cons c j) l)
(setq c 0)
(decf j)
(go loop0))
(when (equal (if ind (aref a j i) (aref a i j)) 0)
(incf c))
(decf i)
(go loop1)))
(defun gpdifference (a b)
(if $ratmx
(pdifference a b)
(simplus(list '(mplus) a (list '(mtimes) -1 b)) 1 nil)))
(defun gpctimes(a b)
(if $ratmx
(pctimes a b)
(simptimes(list '(mtimes) a b) 1 nil)))
(defun gptimes(a b)
(if $ratmx
(ptimes a b)
(simptimes (list '(mtimes) a b) 1 nil)))
(defun gpplus(a b)
(if $ratmx
(pplus a b)
(simplus(list '(mplus) a b) 1 nil)))
|