/usr/share/doc/mcl/examples/make-falkner.pl is in mcl-doc 1:12-135-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | #!/usr/bin/perl -w
use Getopt::Long;
use strict;
my @ARGV_COPY = @ARGV;
my $n_args = @ARGV;
$::debug = 0;
$::test = 0;
my $help = 0;
my $foo = '';
my $fndata = "";
my $fndefs = "";
my $progname = 'funkelectric';
my $R = 2.0;
my $radius = 0.34;
# --debug debug
# --test test
sub help {
print <<EOH;
Usage:
$progname [options]
Options:
--help this
--data=<fname> data in <x> <y> format, id 0, 1, 2, ..
--mink=<f> minkovsky distance parameter
--radius=<f> cutoff for inclusion (note: inverted distance)
--defs=<fname> write postscript definitions "/v0[1 4]def" etc
EOH
}
if
(! GetOptions
( "help" => \$help
, "test" => \$::test
, "debug=i" => \$::debug
, "data=s" => \$fndata
, "defs=s" => \$fndefs
, "mink=f" => \$R
, "radius=f" => \$radius
)
)
{ print STDERR "option processing failed\n";
exit(1);
}
if ($help) {
help();
exit(0);
}
my $fh = \*DATA;
if ($fndata) {
if ($fndata eq '-') {
$fh = \*STDIN;
}
else {
open(FH, "<$fndata") || die "no can do no open file named $fndata";
$fh = \*FH;
}
}
my %co = ();
while (<$fh>) {
chomp;
next if /^\s*#/;
next unless /\S+\s*\S+/;
my ($c, $x, $y) = split;
$co{$c} = [$x, $y];
}
my $dim = keys %co;
if ($fndefs) {
open (DEFS, ">$fndefs") || die "cannot open $fndefs for writing";
print DEFS "\n\n";
for my $c (sort {$a <=> $b} keys %co) {
print DEFS "/v$c\[$co{$c}[0] $co{$c}[1]]def\n";
}
print DEFS "\n\n";
close DEFS;
}
my $dims = $dim . 'x' . $dim;
print <<EOH;
(mclheader
mcltype matrix
dimensions $dims
)
(mclmatrix
begin
EOH
for my $c (sort { $a <=> $b } keys %co) {
my ($u, $v) = @{$co{$c}};
printf "%-4d", $c;
for my $d (sort { $a <=> $b } keys %co) {
next if $c == $d;
my ($x, $y) = @{$co{$d}};
my $d1 = $x-$u;
my $d2 = $y-$v;
$d1 *= -1 if $d1 < 0;
$d2 *= -1 if $d2 < 0;
my $sim = 1/(($d1 ** $R + $d2 ** $R)**(1/$R));
# print ".. [$c($u,$v) $d($x,$y)] [$d1 $d2] [$R $sim $radius]\n";
# next;
next if 1/sqrt($d1**2 + $d2**2) < $radius;
printf " $d:%.3f", $sim;
}
print " \$\n";
}
print ")\n";
__DATA__
0 4 1
1 5 1
2 7 1
3 8 1
4 10 1
5 11 1
6 16 1
7 17 1
8 18 1
9 3 2
10 4 2
11 6 2
12 7 2
13 11 2
14 15 2
15 16 2
16 17 2
17 4 3
18 5 3
19 6 3
20 7 3
21 8 3
22 10 3
23 14 3
24 15 3
25 17 3
26 18 3
27 19 3
28 1 4
29 2 4
30 10 4
31 12 4
32 13 4
33 15 4
34 16 4
35 18 4
36 19 4
37 4 5
38 5 5
39 8 5
40 9 5
41 11 5
42 12 5
43 3 6
44 7 6
45 9 6
46 10 6
47 12 6
48 13 6
49 15 6
50 18 6
51 1 7
52 4 7
53 12 7
54 13 7
55 14 7
56 16 7
57 17 7
58 18 7
59 19 7
60 3 8
61 4 8
62 5 8
63 6 8
64 7 8
65 14 8
66 15 8
67 19 8
68 3 9
69 5 9
70 9 9
71 11 9
72 14 9
73 15 9
74 16 9
75 19 9
76 1 10
77 2 10
78 5 10
79 14 10
80 15 10
81 17 10
82 19 10
83 3 11
84 6 11
85 7 11
86 10 11
87 13 11
88 15 11
89 18 11
90 1 12
91 2 12
92 3 12
93 7 12
94 9 12
95 10 12
96 15 12
97 16 12
98 18 12
99 2 13
100 3 13
101 4 13
102 6 13
103 12 13
104 13 13
105 17 13
106 4 14
107 5 14
108 10 14
109 13 14
110 16 14
111 17 14
112 1 15
113 2 15
114 3 15
115 6 15
116 14 15
117 17 15
118 2 16
119 4 16
120 5 16
121 8 16
122 12 16
123 13 16
124 14 16
125 17 16
126 18 16
127 19 16
128 1 17
129 4 17
130 7 17
131 8 17
132 9 17
133 10 17
134 12 17
135 14 17
136 16 17
137 5 18
138 9 18
139 11 18
140 12 18
141 13 18
142 19 18
143 1 19
144 2 19
145 5 19
146 7 19
147 9 19
148 13 19
149 14 19
|