This file is indexed.

/var/lib/mobyle/programs/clustalw-multialign.xml is in mobyle-programs 5.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
<?xml version='1.0' encoding='UTF-8'?>
<!-- XML Authors: Corinne Maufrais, Nicolas Joly and Bertrand Neron,             -->
<!-- 'Biological Software and Databases' Group, Institut Pasteur, Paris.         -->
<!-- Distributed under LGPLv2 License. Please refer to the COPYING.LIB document. -->
<program>
  <head>
    <name>clustalw-multialign</name>
    <xi:include xmlns:xi="http://www.w3.org/2001/XInclude" href="Entities/ClustalW_package.xml"/>
    <doc>
      <title>Clustalw: Multiple alignment</title>
      <description>
        <text lang="en">Do full multiple alignment</text>
      </description>
    </doc>
    <category>alignment:multiple</category>
    <command>clustalw -align </command>
  </head>
  <parameters>
    <paragraph>
      <name>input</name>
      <prompt lang="en">Data Input</prompt>
      <parameters>
    
    
    <parameter ismandatory="1" issimple="1" ismaininput="1">
      <name>sequences_input</name>
      <prompt lang="en">Sequences File ( a file containing several sequences ) (-infile)</prompt>
      <precond>
              <code proglang="perl">not $alignment_input or ($sequences_input and $alignment_input)</code>
             <code proglang="python">not alignment_input or (sequences_input and alignment_input)</code>
          </precond>
      <type>
        <datatype>
          <class>Sequence</class>
        </datatype>
        <dataFormat>FASTA</dataFormat>
        <dataFormat>NBRF</dataFormat>
        <dataFormat>EMBL</dataFormat>
        <dataFormat>GCG</dataFormat>
        <dataFormat>GDE</dataFormat>
        <dataFormat>SWISSPROT</dataFormat>
        <card>2,n</card>
      </type>
      <format>
        <code proglang="perl">" -infile=$value"</code>
        <code proglang="python">" -infile=" + str( value )</code>
      </format>
      <ctrl>
            <message>
              <text lang="en">Can not handle both Sequence and Alignment at the same time</text>
            </message>
            <code proglang="perl">not $alignment_input</code>
            <code proglang="python">not alignment_input</code>
          </ctrl>
      <argpos>1</argpos>
    </parameter>
    
            <parameter ismandatory="1" issimple="1" ismaininput="1">
          <name>alignment_input</name>
          <prompt lang="en">Aligned sequences</prompt>
          <precond>
        <code proglang="perl">not $sequences_input or ($sequences_input and $alignment_input)</code>
        <code proglang="python">not sequences_input or (sequences_input and alignment_input)</code>
      </precond>
          <type>
          <biotype>Protein</biotype>
          <biotype>DNA</biotype>
            <datatype>
              <class>Alignment</class>
            </datatype>
            <dataFormat>CLUSTAL</dataFormat>
            <dataFormat>FASTA</dataFormat>
            <card>1</card>
          </type>
          <format>
            <code proglang="perl">" -infile=$value"</code>
            <code proglang="python">" -infile=" + str( value )</code>
          </format>
          <ctrl>
            <message>
              <text lang="en">Can not handle both Sequence and Alignment at the same time</text>
            </message>
            <code proglang="perl">not $sequences_input</code>
            <code proglang="python">not sequences_input</code>
          </ctrl>
          <comment>
          <text lang="en"> When the sequences are aligned (all sequences
              have the same length and at least one sequence has at least one
              gap)</text>
          </comment>
        </parameter>
    
     </parameters>
    </paragraph>
    
    <paragraph>
      <name>general</name>
      <prompt lang="en">General settings</prompt>
      <argpos>2</argpos>
      <parameters>
        <parameter ismandatory="1" issimple="1">
          <name>quicktree</name>
          <prompt lang="en">Toggle Slow/Fast pairwise alignments (-quicktree)</prompt>
          <type>
            <datatype>
              <class>Choice</class>
            </datatype>
          </type>
          <vdef>
            <value>slow</value>
          </vdef>
          <vlist>
            <velem>
              <value>slow</value>
              <label>Slow</label>
            </velem>
            <velem>
              <value>fast</value>
              <label>Fast</label>
            </velem>
          </vlist>
          <format>
            <code proglang="perl">($value eq "fast") ? " -quicktree" : ""</code>
            <code proglang="python">( "" , " -quicktree")[ value == "fast"]</code>
          </format>
          <comment>
            <text lang="en">slow: by dynamic programming (slow but accurate)</text>
            <text lang="en">fast: method of Wilbur and Lipman (extremely fast but approximate)</text>
          </comment>
        </parameter>
        <parameter>
          <name>typeseq</name>
          <prompt lang="en">Protein or DNA (-type)</prompt>
          <type>
            <datatype>
              <class>Choice</class>
            </datatype>
          </type>
          <vdef>
            <value>auto</value>
          </vdef>
          <vlist>
            <velem undef="1">
              <value>auto</value>
              <label>Automatic</label>
            </velem>
            <velem>
              <value>protein</value>
              <label>Protein</label>
            </velem>
            <velem>
              <value>dna</value>
              <label>DNA</label>
            </velem>
          </vlist>
          <format>
            <code proglang="perl">(defined $value) ? " -type=$value" : ""</code>
            <code proglang="python">("", " -type="+str(value))[value is not None]</code>
          </format>
        </parameter>
      </parameters>
    </paragraph>
    <paragraph>
      <name>multalign</name>
      <prompt lang="en">Multiple Alignments parameters</prompt>
      <argpos>3</argpos>
      <comment>
        <text lang="en">Multiple alignments are carried out in 3 stages :</text>
        <text lang="en">1) all sequences are compared to each other (pairwise alignments);</text>
        <text lang="en">2) a dendrogram (like a phylogenetic tree) is constructed, describing the approximate groupings of the sequences by similarity (stored in a file).</text>
        <text lang="en">3) the final multiple alignment is carried out, using the dendrogram as a guide.</text>
        <text lang="en">Pairwise alignment parameters control the speed/sensitivity of the initial alignments.</text>
        <text lang="en">Multiple alignment parameters control the gaps in the final multiple alignments.</text>
      </comment>
      <parameters>
        <parameter>
          <name>gapopen</name>
          <prompt lang="en">Gap opening penalty (-gapopen)</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <vdef>
            <value>10.00</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " -gapopen=$value" : ""</code>
            <code proglang="python">( "" , " -gapopen=" + str( value ))[ value is not None and value != vdef ]</code>
          </format>
        </parameter>
        <parameter>
          <name>gapext</name>
          <prompt lang="en">Gap extension penalty (-gapext)</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <vdef>
            <value>0.20</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " -gapext=$value" : ""</code>
            <code proglang="python">( "" , " -gapext=" + str( value ))[ value is not None and value != vdef ]</code>
          </format>
        </parameter>
        <parameter>
          <name>endgaps</name>
          <prompt lang="en">No end gap separation penalty (-endgaps)</prompt>
          <type>
            <datatype>
              <class>Boolean</class>
            </datatype>
          </type>
          <vdef>
            <value>0</value>
          </vdef>
          <format>
            <code proglang="perl">($value) ? " -endgaps" : ""</code>
            <code proglang="python">( "" ," -endgaps" )[ value ]</code>
          </format>
          <comment>
            <text lang="en">End gap separation treats end gaps just
		like internal gaps for the purposes of avoiding gaps that
		are too close (set by GAP SEPARATION DISTANCE above). If
		you turn this off, end gaps will be ignored for this
		purpose. This is useful when you wish to align fragments
		where the end gaps are not biologically meaningful.</text>
          </comment>
        </parameter>
        <parameter>
          <name>gapdist</name>
          <prompt lang="en">Gap separation penalty range (-gapdist)</prompt>
          <type>
            <datatype>
              <class>Integer</class>
            </datatype>
          </type>
          <vdef>
            <value>8</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " -gapdist=$value" : ""</code>
            <code proglang="python">( "" , " -gapdist=" + str( value ))[ value is not None and value != vdef]</code>
          </format>
          <comment>
            <text lang="en">Gap separation distance tries to decrease
		the chances of gaps being too close to each other. Gaps
		that are less than this distance apart are penalised more
		than other gaps. This does not prevent close gaps; it makes
		them less frequent, promoting a block-like appearance of
		the alignment.</text>
          </comment>
        </parameter>
        <parameter>
          <name>maxdiv</name>
          <prompt lang="en">Delay divergent sequences : % ident. for delay (-maxdiv)</prompt>
          <type>
            <datatype>
              <class>Integer</class>
            </datatype>
          </type>
          <vdef>
            <value>30</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " -maxdiv=$value" : ""</code>
            <code proglang="python">( "" , " -maxdiv=" + str( value ))[ value is not None and value != vdef ]</code>
          </format>
          <comment>
            <text lang="en">Delays the alignment of the most distantly
		related sequences until after the most closely related
		sequences have been aligned. The setting shows the percent
		identity level required to delay the addition of a
		sequence; sequences that are less identical than this level
		to any other sequences will be aligned later.</text>
          </comment>
        </parameter>
        <parameter>
          <name>newtree</name>
          <prompt lang="en">File for new guide tree (-newtree)</prompt>
          <type>
            <datatype>
              <class>Filename</class>
            </datatype>
          </type>
          <format>
            <code proglang="perl">(defined $value) ? " -newtree=$value" : ""</code>
            <code proglang="python">( "" , " -newtree=" + str( value ))[value is not None]</code>
          </format>
        </parameter>
        <parameter isout="1">
          <name>newtreefile</name>
          <prompt>Output tree</prompt>
          <type>
            <datatype>
              <class>Tree</class>
            </datatype>
            <dataFormat>NEWICK</dataFormat>
          </type>
          <precond>
            <code proglang="perl">defined $newtree</code>
            <code proglang="python">newtree is not None</code>
          </precond>
          <filenames>
            <code proglang="perl">$newtree</code>
            <code proglang="python">newtree</code>
          </filenames>
        </parameter>
        <parameter>
          <name>usetree</name>
          <prompt lang="en">File for old guide tree (-usetree)</prompt>
          <type>
            <datatype>
              <class>Tree</class>
            </datatype>
            <dataFormat>NEWICK</dataFormat>
          </type>
          <format>
            <code proglang="perl">(defined $value) ? " -usetree=$value" : ""</code>
            <code proglang="python">( "" ," -usetree=" + str( value ))[value is not None]</code>
          </format>
          <comment>
            <text lang="en">You can give a previously computed tree (.dnd file) - on the same data</text>
          </comment>
        </parameter>
        <paragraph>
          <name>multalign_prot</name>
          <prompt lang="en">Protein parameters</prompt>
          <precond>
            <code proglang="perl">$typeseq eq "protein"</code>
            <code proglang="python">typeseq == "protein"</code>
          </precond>
          <parameters>
            <parameter>
              <name>matrix</name>
              <prompt lang="en">Protein weight matrix (-matrix)</prompt>
              <type>
                <datatype>
                  <class>Choice</class>
                </datatype>
              </type>
              <vdef>
                <value>gonnet</value>
              </vdef>
              <vlist>
                <velem>
                  <value>gonnet</value>
                  <label>Gonnet series</label>
                </velem>
                <velem>
                  <value>blosum</value>
                  <label>BLOSUM series</label>
                </velem>
                <velem>
                  <value>pam</value>
                  <label>PAM series</label>
                </velem>
                <velem>
                  <value>id</value>
                  <label>Identity matrix</label>
                </velem>
              </vlist>
              <format>
                <code proglang="perl">(defined $value and $value ne $vdef) ? " -matrix=$value" : ""</code>
                <code proglang="python">("", " -matrix="+str(value))[value is not None and value!=vdef]</code>
              </format>
              <comment>
                <text lang="en">There are three 'in-built' series of weight
		matrices offered. Each consists of several matrices which
		work differently at different evolutionary distances. To
		see the exact details, read the documentation. Crudely, we
		store several matrices in memory, spanning the full range
		of amino acid distance (from almost identical sequences to
		highly divergent ones). For very similar sequences, it is
		best to use a strict weight matrix which only gives a high
		score to identities and the most favoured conservative
		substitutions. For more divergent sequences, it is
		appropriate to use 'softer' matrices which give a high
		score to many other frequent substitutions.</text>
                <text lang="en">BLOSUM (Henikoff). These matrices appear to
		be the best available for carrying out data base similarity
		(homology searches). The matrices used are: Blosum80, 62,
		40 and 30.</text>
                <text lang="en">The Gonnet Pam 250 matrix has been reported
		as the best single matrix for alignment, if you only choose
		one matrix. Our experience with profile database searches
		is that the Gonnet series is unambiguously superior to the
		Blosum series at high divergence. However, we did not get
		the series to perform systematically better than the Blosum
		series in Clustal W (communication of the authors).</text>
                <text lang="en">PAM (Dayhoff). These have been extremely
		widely used since the late '70s. We use the PAM 120, 160,
		250 and 350 matrices.</text>
              </comment>
            </parameter>
            <parameter>
              <name>negative</name>
              <prompt lang="en">Negative values in matrix ? (-negative)</prompt>
              <type>
                <datatype>
                  <class>Boolean</class>
                </datatype>
              </type>
              <vdef>
                <value>0</value>
              </vdef>
              <format>
                <code proglang="perl">($value) ? " -negative" : ""</code>
                <code proglang="python">( "" , " -negative" )[ value ]</code>
              </format>
            </parameter>
            <parameter>
              <name>pgap</name>
              <prompt lang="en">Residue specific gaps off (-nopgap)</prompt>
              <type>
                <datatype>
                  <class>Boolean</class>
                </datatype>
              </type>
              <vdef>
                <value>1</value>
              </vdef>
              <format>
                <code proglang="perl">($value) ? " -nopgap" : ""</code>
                <code proglang="python">( "" , " -nopgap" )[ value ]</code>
              </format>
              <comment>
                <text lang="en">Residue specific penalties are amino acid
		specific gap penalties that reduce or increase the gap
		opening penalties at each position in the alignment or
		sequence. As an example, positions that are rich in glycine
		are more likely to have an adjacent gap than positions that
		are rich in valine.</text>
                <text lang="en">Table of residue specific gap modification
		factors:</text>
                <text lang="en">A 1.13 M 1.29</text>
                <text lang="en">C 1.13 N 0.63</text>
                <text lang="en">D 0.96 P 0.74</text>
                <text lang="en">E 1.31 Q 1.07</text>
                <text lang="en">F 1.20 R 0.72</text>
                <text lang="en">G 0.61 S 0.76</text>
                <text lang="en">H 1.00 T 0.89</text>
                <text lang="en">I 1.32 V 1.25</text>
                <text lang="en">K 0.96 Y 1.00</text>
                <text lang="en">L 1.21 W 1.23</text>
                <text lang="en">The values are normalised around a mean value of 1.0 for H. The lower the value, the greater the chance of having an adjacent gap. These are derived from the original table of relative frequencies of gaps adjacent to each residue (12) by subtraction from 2.0.</text>
              </comment>
            </parameter>
            <parameter>
              <name>hgap</name>
              <prompt lang="en">Hydrophilic gaps off (-nohgap)</prompt>
              <type>
                <datatype>
                  <class>Boolean</class>
                </datatype>
              </type>
              <vdef>
                <value>1</value>
              </vdef>
              <format>
                <code proglang="perl">($value) ? " -nohgap" : ""</code>
                <code proglang="python">( "" , " -nohgap" )[ value ]</code>
              </format>
              <comment>
                <text lang="en">Hydrophilic gap penalties are used to
		increase the chances of a gap within a run (5 or more
		residues) of hydrophilic amino acids; these are likely to
		be loop or random coil regions where gaps are more
		common. The residues that are 'considered' to be
		hydrophilic are set by menu item 3.</text>
              </comment>
            </parameter>
            <parameter>
              <name>hgapresidues</name>
              <prompt lang="en">Hydrophilic residues list (-hgapresidues)</prompt>
              <type>
                <datatype>
                  <class>MultipleChoice</class>
                </datatype>
              </type>
              <vdef>
                <value>R</value>
                <value>N</value>
                <value>D</value>
                <value>Q</value>
                <value>E</value>
                <value>G</value>
                <value>K</value>
                <value>P</value>
                <value>S</value>
              </vdef>
              <vlist>
                <velem>
                  <value>A</value>
                  <label>A</label>
                </velem>
                <velem>
                  <value>R</value>
                  <label>R</label>
                </velem>
                <velem>
                  <value>N</value>
                  <label>N</label>
                </velem>
                <velem>
                  <value>D</value>
                  <label>D</label>
                </velem>
                <velem>
                  <value>C</value>
                  <label>C</label>
                </velem>
                <velem>
                  <value>Q</value>
                  <label>Q</label>
                </velem>
                <velem>
                  <value>E</value>
                  <label>E</label>
                </velem>
                <velem>
                  <value>G</value>
                  <label>G</label>
                </velem>
                <velem>
                  <value>H</value>
                  <label>H</label>
                </velem>
                <velem>
                  <value>I</value>
                  <label>I</label>
                </velem>
                <velem>
                  <value>L</value>
                  <label>L</label>
                </velem>
                <velem>
                  <value>K</value>
                  <label>K</label>
                </velem>
                <velem>
                  <value>M</value>
                  <label>M</label>
                </velem>
                <velem>
                  <value>F</value>
                  <label>F</label>
                </velem>
                <velem>
                  <value>P</value>
                  <label>P</label>
                </velem>
                <velem>
                  <value>S</value>
                  <label>S</label>
                </velem>
                <velem>
                  <value>T</value>
                  <label>T</label>
                </velem>
                <velem>
                  <value>W</value>
                  <label>W</label>
                </velem>
                <velem>
                  <value>Y</value>
                  <label>Y</label>
                </velem>
                <velem>
                  <value>V</value>
                  <label>V</label>
                </velem>
              </vlist>
              <separator/>
              <format>
                <code proglang="perl">($value and $value ne $vdef) ? " -hgapresidues=\\"$value\\"" : ""</code>
                <code proglang="python">( '' , ' -hgapresidues="%s"' % str(value) )[ value and value != vdef ]</code>
              </format>
            </parameter>
          </parameters>
        </paragraph>
        <paragraph>
          <name>multalign_dna</name>
          <prompt lang="en">DNA parameters</prompt>
          <precond>
            <code proglang="perl">$typeseq eq "dna"</code>
            <code proglang="python">typeseq == "dna"</code>
          </precond>
          <parameters>
            <parameter>
              <name>dnamatrix</name>
              <prompt lang="en">DNA weight matrix (-dnamatrix)</prompt>
              <type>
                <datatype>
                  <class>Choice</class>
                </datatype>
              </type>
              <vdef>
                <value>iub</value>
              </vdef>
              <vlist>
                <velem>
                  <value>iub</value>
                  <label>IUB</label>
                </velem>
                <velem>
                  <value>clustalw</value>
                  <label>CLUSTALW</label>
                </velem>
              </vlist>
              <format>
                <code proglang="perl">(defined $value and $value ne $vdef) ? " -dnamatrix=$value" : ""</code>
                <code proglang="python">("", " -dnamatrix=" + str(value))[value is not None and value!=vdef]</code>
              </format>
              <comment>
                <text lang="en">1) IUB. This is the default scoring matrix
		used by BESTFIT for the comparison of nucleic acid
		sequences. X's and N's are treated as matches to any IUB
		ambiguity symbol. All matches score 1.9; all mismatches for
		IUB symbols score 0.</text>
                <text lang="en">2) CLUSTALW(1.6). The previous system used
		by ClustalW, in which matches score 1.0 and mismatches
		score 0. All matches for IUB symbols also score 0.</text>
              </comment>
            </parameter>
            <parameter>
              <name>transweight</name>
              <prompt lang="en">Transitions weight (between 0 and 1) (-transweight)</prompt>
              <type>
                <datatype>
                  <class>Float</class>
                </datatype>
              </type>
              <vdef>
                <value>0.5</value>
              </vdef>
              <format>
                <code proglang="perl">(defined $value and $value != $vdef) ? " -transweight=$value" : ""</code>
                <code proglang="python">( "" , " -transweight=" + str( value ) )[ value is not None and value != vdef ]</code>
              </format>
              <comment>
                <text lang="en">A weight of
		zero means that the transitions are scored as mismatches; a
		weight of 1 gives transitions the full match score. For
		distantly related DNA sequences, the weight should be near
		to zero; for closely related sequences it can be useful to
		assign a higher score.</text>
              </comment>
            </parameter>
          </parameters>
        </paragraph>
      </parameters>
    </paragraph>
    <paragraph>
      <name>fastpw</name>
      <prompt lang="en">Fast Pairwise Alignments parameters</prompt>
      <precond>
        <code proglang="perl">$quicktree eq "fast"</code>
        <code proglang="python">quicktree == "fast"</code>
      </precond>
      <argpos>4</argpos>
      <comment>
        <text lang="en">These similarity scores are calculated from fast,
	  approximate, global alignments, which are controlled by 4
	  parameters. 2 techniques are used to make these alignments very
	  fast: 1) only exactly matching fragments (k-tuples) are
	  considered; 2) only the 'best' diagonals (the ones with most
	  k-tuple matches) are used.</text>
      </comment>
      <parameters>
        <parameter>
          <name>ktuple</name>
          <prompt lang="en">Word size (-ktuple)</prompt>
          <type>
            <datatype>
              <class>Integer</class>
            </datatype>
          </type>
          <vdef>
            <value>1</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " -ktuple=$value" : ""</code>
            <code proglang="python">( "" , " -ktuple=" + str( value ) )[value is not None and value != vdef ]</code>
          </format>
          <argpos>2</argpos>
          <comment>
            <text lang="en">K-TUPLE SIZE: This is the size of exactly matching fragment that is used. INCREASE for speed (max= 2 for proteins; 4 for DNA), DECREASE for sensitivity. For longer sequences (e.g. &gt;1000 residues) you may need to increase the default.</text>
          </comment>
        </parameter>
        <parameter>
          <name>topdiags</name>
          <prompt lang="en">Number of best diagonals (-topdiags)</prompt>
          <type>
            <datatype>
              <class>Integer</class>
            </datatype>
          </type>
          <vdef>
            <value>5</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " -topdiags=$value" : ""</code>
            <code proglang="python">( "" , " -topdiags=" + str( value ))[value is not None and value != vdef ]</code>
          </format>
          <comment>
            <text lang="en">The number of k-tuple matches on each
		diagonal (in an imaginary dot-matrix plot) is
		calculated. Only the best ones (with most matches) are used
		in the alignment. This parameter specifies how
		many. Decrease for speed; increase for sensitivity.</text>
          </comment>
        </parameter>
        <parameter>
          <name>window</name>
          <prompt lang="en">Window around best diags (-window)</prompt>
          <type>
            <datatype>
              <class>Integer</class>
            </datatype>
          </type>
          <vdef>
            <value>5</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " -window=$value" : ""</code>
            <code proglang="python">( "" , " -window=" + str( value ) )[ value is not None and value != vdef ]</code>
          </format>
          <comment>
            <text lang="en">WINDOW SIZE: This is the number of
		diagonals around each of the 'best' diagonals that will be
		used. Decrease for speed; increase for sensitivity</text>
          </comment>
        </parameter>
        <parameter>
          <name>pairgap</name>
          <prompt lang="en">Gap penalty (-pairgap)</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <vdef>
            <value>3</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " -pairgap=$value" : ""</code>
            <code proglang="python">( "" , " -pairgap=" + str( value ))[ value is not None and value != vdef ]</code>
          </format>
          <comment>
            <text lang="en">This is a penalty for each gap in the fast
		alignments. It has little affect on the speed or
		sensitivity except for extreme values.</text>
          </comment>
        </parameter>
        <parameter>
          <name>score</name>
          <prompt lang="en">Percent or absolute score ? (-score)</prompt>
          <type>
            <datatype>
              <class>Choice</class>
            </datatype>
          </type>
          <vdef>
            <value>percent</value>
          </vdef>
          <vlist>
            <velem>
              <value>percent</value>
              <label>Percent</label>
            </velem>
            <velem>
              <value>absolute</value>
              <label>Absolute</label>
            </velem>
          </vlist>
          <format>
            <code proglang="perl">(defined $value and $value ne $vdef) ? " -score=$value" : ""</code>
            <code proglang="python">( "" , " -score=" +str( value ) )[value is not None or value != vdef]</code>
          </format>
        </parameter>
      </parameters>
    </paragraph>
    <paragraph>
      <name>slowpw</name>
      <prompt lang="en">Slow Pairwise Alignments parameters</prompt>
      <precond>
        <code proglang="perl">$quicktree eq "slow"</code>
        <code proglang="python">quicktree == "slow"</code>
      </precond>
      <argpos>4</argpos>
      <comment>
        <text lang="en">These parameters do not have any affect on the
	  speed of the alignments. They are used to give initial alignments
	  which are then rescored to give percent identity scores. These %
	  scores are the ones which are displayed on the screen. The scores
	  are converted to distances for the trees.</text>
      </comment>
      <parameters>
        <parameter>
          <name>pwgapopen</name>
          <prompt lang="en">Gap opening penalty (-pwgapopen)</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <vdef>
            <value>10.00</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " -pwgapopen=$value" : ""</code>
            <code proglang="python">( "" , " -pwgapopen=" + str( value ) )[ value is not None and value != vdef ]</code>
          </format>
        </parameter>
        <parameter>
          <name>pwgapext</name>
          <prompt lang="en">Gap extension penalty (-pwgapext)</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <vdef>
            <value>0.10</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " -pwgapext=$value" : ""</code>
            <code proglang="python">( "" , " -pwgapext=" + str( value ) )[ value is not None and value != vdef ]</code>
          </format>
        </parameter>
        <paragraph>
          <name>slowpw_prot</name>
          <prompt lang="en">Protein parameters</prompt>
          <precond>
            <code proglang="perl">$typeseq eq "protein"</code>
            <code proglang="python">typeseq == "protein"</code>
          </precond>
          <parameters>
            <parameter>
              <name>pwmatrix</name>
              <prompt lang="en">Protein weight matrix (-pwmatrix)</prompt>
              <type>
                <datatype>
                  <class>Choice</class>
                </datatype>
              </type>
              <vdef>
                <value>gonnet</value>
              </vdef>
              <vlist>
                <velem>
                  <value>blosum</value>
                  <label>BLOSUM30 (Henikoff)</label>
                </velem>
                <velem>
                  <value>gonnet</value>
                  <label>Gonnet 250</label>
                </velem>
                <velem>
                  <value>pam</value>
                  <label>PAM350 (Dayhoff)</label>
                </velem>
                <velem>
                  <value>id</value>
                  <label>Identity matrix</label>
                </velem>
              </vlist>
              <format>
                <code proglang="perl">(defined $value and $value ne $vdef) ? " -pwmatrix=$value" : ""</code>
                <code proglang="python">( "" , " -pwmatrix=" + str(value) )[value is not None and value != vdef ]</code>
              </format>
              <comment>
                <text lang="en">The scoring table which describes the
		similarity of each amino acid to each other. For DNA, an
		identity matrix is used.</text>
                <text lang="en">BLOSUM (Henikoff). These matrices appear to
		be the best available for carrying out data base similarity
		(homology searches). The matrices used are: Blosum80, 62,
		40 and 30.</text>
                <text lang="en">The Gonnet Pam 250 matrix has been reported
		as the best single matrix for alignment, if you only choose
		one matrix. Our experience with profile database searches
		is that the Gonnet series is unambiguously superior to the
		Blosum series at high divergence. However, we did not get
		the series to perform systematically better than the Blosum
		series in Clustal W (communication of the authors).</text>
                <text lang="en">PAM (Dayhoff). These have been extremely
		widely used since the late '70s. We use the PAM 120, 160,
		250 and 350 matrices.</text>
              </comment>
            </parameter>
          </parameters>
        </paragraph>
        <paragraph>
          <name>slowpw_dna</name>
          <prompt lang="en">DNA parameters</prompt>
          <precond>
            <code proglang="perl">$typeseq eq "dna"</code>
            <code proglang="python">typeseq == "dna"</code>
          </precond>
          <parameters>
            <parameter>
              <name>pwdnamatrix</name>
              <prompt lang="en">DNA weight matrix (-pwdnamatrix)</prompt>
              <type>
                <datatype>
                  <class>Choice</class>
                </datatype>
              </type>
              <vdef>
                <value>iub</value>
              </vdef>
              <vlist>
                <velem>
                  <value>iub</value>
                  <label>IUB</label>
                </velem>
                <velem>
                  <value>clustalw</value>
                  <label>CLUSTALW</label>
                </velem>
              </vlist>
              <format>
                <code proglang="perl">(defined $value and $value ne $vdef) ? " -pwdnamatrix=$value" : ""</code>
                <code proglang="python">( "" , " -pwdnamatrix=" + str(value) )[ value is not None and value != vdef ]</code>
              </format>
              <comment>
                <text lang="en">For DNA, a single matrix (not a series) is
		used. Two hard-coded matrices are available:</text>
                <text lang="en">1) IUB. This is the default scoring matrix
		used by BESTFIT for the comparison of nucleic acid
		sequences. X's and N's are treated as matches to any IUB
		ambiguity symbol. All matches score 1.9; all mismatches for
		IUB symbols score 0.</text>
                <text lang="en">2) CLUSTALW(1.6). The previous system used
		by ClustalW, in which matches score 1.0 and mismatches
		score 0. All matches for IUB symbols also score 0.</text>
              </comment>
            </parameter>
          </parameters>
        </paragraph>
      </parameters>
    </paragraph>
    <paragraph>
      <name>outputparam</name>
      <prompt lang="en">Output parameters</prompt>
      <argpos>5</argpos>
      <parameters>
        <parameter>
          <name>outputformat</name>
          <prompt lang="en">Output format (-output)</prompt>
          <type>
            <datatype>
              <class>Choice</class>
            </datatype>
          </type>
          <vdef>
            <value>null</value>
          </vdef>
          <vlist>
            <velem undef="1">
              <value>null</value>
              <label>CLUSTAL</label>
            </velem>
            <velem>
              <value>FASTA</value>
              <label>FASTA</label>
            </velem>
            <velem>
              <value>GCG</value>
              <label>GCG</label>
            </velem>
            <velem>
              <value>GDE</value>
              <label>GDE</label>
            </velem>
            <velem>
              <value>PHYLIPI</value>
              <label>PHYLIP</label>
            </velem>
            <velem>
              <value>PIR</value>
              <label>PIR/NBRF</label>
            </velem>
            <velem>
              <value>NEXUS</value>
              <label>NEXUS</label>
            </velem>
          </vlist>
          <format>
            <code proglang="perl">(defined $value ) ? " -output=$value" : ""</code>
            <code proglang="python">( "" , " -output=" + str( value) )[ value is not None ]</code>
          </format>
        </parameter>
        <parameter>
          <name>seqnos</name>
          <prompt lang="en">Output sequence numbers in the output file (for clustalw output only) (-seqnos)</prompt>
          <type>
            <datatype>
              <class>Boolean</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">not defined $outputformat</code>
            <code proglang="python">outputformat is None</code>
          </precond>
          <vdef>
            <value>0</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " -seqnos=on" : ""</code>
            <code proglang="python">( "" , " -seqnos=on")[ value is not None and value != vdef]</code>
          </format>
        </parameter>
        <parameter>
          <name>outorder</name>
          <prompt lang="en">Result order (-outorder)</prompt>
          <type>
            <datatype>
              <class>Choice</class>
            </datatype>
          </type>
          <vdef>
            <value>aligned</value>
          </vdef>
          <vlist>
            <velem>
              <value>input</value>
              <label>Input</label>
            </velem>
            <velem>
              <value>aligned</value>
              <label>Aligned</label>
            </velem>
          </vlist>
          <format>
            <code proglang="perl">(defined $value and $value ne $vdef) ? " -outorder=$value" : ""</code>
            <code proglang="python">( "" , " -outorder=" + str(value))[ value is not None and value != vdef ]</code>
          </format>
        </parameter>
        <parameter>
          <name>outfile</name>
          <prompt lang="en">Sequence alignment file name (-outfile)</prompt>
          <type>
            <datatype>
              <class>Filename</class>
            </datatype>
          </type>
          <format>
            <code proglang="perl">(defined $value) ? " -outfile=$value" : ""</code>
            <code proglang="python">( "" , " -outfile=" + str( value))[ value is not None ]</code>
          </format>
        </parameter>
        <parameter isout="1">
          <name>clustalaligfile</name>
          <prompt>Alignment file</prompt>
          <type>
            <datatype>
              <class>Alignment</class>
            </datatype>
            <dataFormat>CLUSTAL</dataFormat>
          </type>
          <precond>
            <code proglang="perl">not defined $outputformat</code>
            <code proglang="python">outputformat is None</code>
          </precond>
          <filenames>
            <code proglang="perl">(defined $outfile)? "$outfile":"*.aln"</code>
            <code proglang="python">("*.aln", str(outfile))[outfile is not None]</code>
          </filenames>
          <comment>
            <text lang="en">In the conservation line output in the clustal format alignment file, three characters are used:</text>
            <text lang="en">'*' indicates positions which have a single, fully conserved residue.</text>
            <text lang="en">':' indicates that one of the following 'strong' groups is fully conserved (STA,NEQK,NHQK,NDEQ,QHRK,MILV,MILF,HY,FYW).</text>
            <text lang="en">'.' indicates that one of the following 'weaker' groups is fully conserved (CSA,ATV,SAG,STNK,STPA,SGND,SNDEQK,NDEQHK,NEQHRK,FVLIM,HFY).</text>
            <text lang="en">These are all the positively scoring groups that occur in the Gonnet Pam250
matrix. The strong and weak groups are defined as strong score &gt;0.5 and weak
score =&lt;0.5 respectively.</text>
          </comment>
        </parameter>
        <parameter isout="1">
          <name>aligfile</name>
          <prompt>Alignment file</prompt>
          <type>
            <datatype>
              <class>Alignment</class>
            </datatype>
            <dataFormat>
              <ref param="outputformat"/>
            </dataFormat>
          </type>
          <precond>
            <code proglang="perl">$outputformat =~ /^(NEXUS|GCG|PHYLIPI|FASTA)$/</code>
            <code proglang="python">outputformat in [ "NEXUS", "GCG", "PHYLIPI","FASTA"]</code>
          </precond>
          <filenames>
            <code proglang="perl">(defined $outfile)? "$outfile":"*.fasta *.nxs *.phy *.msf"</code>
            <code proglang="python">{ "OUTFILE":outfile, "FASTA":"*.fasta", "NEXUS": "*.nxs", "PHYLIPI": "*.phy" , 'GCG': '*.msf' }[( "OUTFILE", outputformat)[outfile is None]]</code>
          </filenames>
        </parameter>
        
        <parameter isout="1">
          <name>seqfile</name>
          <prompt>Sequences file</prompt>
          <type>
            <datatype>
              <class>Sequence</class>
            </datatype>
            <dataFormat>
            	<test param="outputformat" eq="PIR">NBRF</test>
                <test param="outputformat" eq="GDE">GDE</test>
            </dataFormat>
          </type>
          <precond>
            <code proglang="perl">$outputformat =~ /^(GDE|PIR)$/</code>
            <code proglang="python">outputformat in [ 'GDE', 'PIR' ]</code>
          </precond>
          <filenames>
            <code proglang="perl">(defined $outfile)? "$outfile":"*.gde *.pir"</code>
            <code proglang="python">{ "OUTFILE":outfile,  'GDE':'*.gde', 'PIR':'*.pir}[( "OUTFILE", outputformat)[outfile is None]]</code>
          </filenames>
        </parameter>
        <parameter isout="1">
          <name>dndfile</name>
          <prompt>Tree file</prompt>
          <type>
            <datatype>
              <class>Tree</class>
            </datatype>
            <dataFormat>NEWICK</dataFormat>
          </type>
          <precond>
            <code proglang="perl">not defined $newtree</code>
            <code proglang="python">newtree is None</code>
          </precond>
          <filenames>
            <code proglang="perl">"*.dnd"</code>
            <code proglang="python">"*.dnd"</code>
          </filenames>
        </parameter>
        <parameter>
          <name>gde_lower</name>
          <prompt lang="en">Upper case (for GDE output only) (-case)</prompt>
          <type>
            <datatype>
              <class>Boolean</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">$outputformat eq "GDE"</code>
            <code proglang="python">outputformat == "GDE"</code>
          </precond>
          <vdef>
            <value>0</value>
          </vdef>
          <format>
            <code proglang="perl">($value) ? " -case=upper" : ""</code>
            <code proglang="python">( "" , " -case=upper" )[ value ]</code>
          </format>
          <argpos>2</argpos>
        </parameter>
      </parameters>
    </paragraph>
  </parameters>
</program>