This file is indexed.

/usr/share/mozart/doc/demo/flowers.html is in mozart-doc 1.4.0-8ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

1
2
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE>5 Flowers</TITLE><LINK href="ozdoc.css" rel="stylesheet" type="text/css"></HEAD><BODY><TABLE align="center" border="0" cellpadding="6" cellspacing="6" class="nav"><TR bgcolor="#DDDDDD"><TD><A href="index.html">- Up -</A></TD><TD><A href="trucks.html#chapter.trucks">Next &gt;&gt;</A></TD></TR></TABLE><DIV id="chapter.flowers"><H1><A name="chapter.flowers">5 Flowers</A></H1><H3 class="authors"><A href="http://www.ps.uni-sb.de/~smolka/">Gert&nbsp;Smolka</A> and&nbsp;<A href="http://www.ps.uni-sb.de/~tmueller/">Tobias&nbsp;Müller</A></H3><P> </P><P class="linkmenu">[ <A href="applets/Flowers.oza">Start Applet for Flowers</A>  | <A href="applets/Flowers3d.oza">Start Applet for 3D Flowers</A>  | <A href="../install/node14.html#appendix.applets">How to enable Applets</A>  ]</P><P> </P><P> Lindenmayer systems are used to model the development of plants (see <A href="bib.html#lindenmayer:90">[PL90]</A>). They are basically rewriting systems, which generate a term describing the topology of a plant. The starting point is an initial term, which is successively expanded by replacing parts of it with the initial term itself. The final expansion of the plant is determined by the number of rewriting steps. The term describing a plant's topology (in short topology term) is a sequence of drawing instructions represented by an ordinary list. A graphical representation of such a plant can be obtained by appropriately interpreting the list holding drawing instructions. The semantics of the drawing instructions is given below, supposing a current state: </P><DL><DT><CODE>[...]</CODE></DT><DD><P>a sequence of drawing instructions, whereby all modifications of the state are local to the sequence. </P></DD><DT><CODE>f</CODE> </DT><DD><P>draw a line from the current position using the current orientation and the step-width <IMG alt="l" src="latex3.png">. </P></DD><DT><CODE>l</CODE> </DT><DD><P>turn the current orientation by <IMG alt="\delta" src="latex4.png"> degrees to the left. </P></DD><DT><CODE>r</CODE> </DT><DD><P>turn the current orientation by <IMG alt="\delta" src="latex4.png"> degrees to the right. </P></DD></DL><P> </P><P> The state represents the current position and the current orientation. The arc <IMG alt="\delta" src="latex4.png"> (used by rotations) and the stepwidth <IMG alt="l" src="latex3.png"> (used for moving from one position to another) are supposed to be constant while drawing. </P><P class="margin">Description of <CODE>Flowers.oz</CODE></P><P> The variables <CODE>FlowerA</CODE> and <CODE>FlowerB</CODE> hold descriptions of plants using a proper record. Such a description consists of an initial state (fields at features <CODE>xPos</CODE>, <CODE>yPos</CODE> and <CODE>angle</CODE>), the term describing the topology (field at feature <CODE>grammar</CODE> and the field at feature <CODE>start</CODE> as initial value for the rewriting process), the parameters <IMG alt="l" src="latex3.png"> (field at feature <CODE>stepWidth</CODE>) and <IMG alt="\delta" src="latex4.png"> (field at feature <IMG alt="delta" src="latex5.png">), and the recursion depth (field at feature <CODE>recDepth</CODE>), which determines the number rewriting cycles. The central procedure of the program is <CODE>DrawFlower</CODE>. It implements a kind of rewriting system which interlaces expansion and drawing of the topology term. You may try to find new flower topologies by modifying the descriptions held by the mentioned variables <CODE>FlowerA</CODE> and <CODE>FlowerB</CODE>. </P><P> After starting the program a window pops up. The growing of the flowers can then be controlled by pressing the appropriate buttons which meaning ought to be self-explanatory. </P><P> The program <CODE>Flowers3d.oz</CODE> renders a three-dimensional flower. The principle remains unchanged only the computation for the drawing is slightly more complicated. </P><DIV class="unnumbered" id="section.flowers.implementation"><H2><A name="section.flowers.implementation">Implementation</A></H2><HR><UL class="toc"><LI><A href="node21.html#code.flowers">Two flowers: <CODE>Flowers.oz</CODE></A></LI></UL><UL class="toc"><LI><A href="node22.html#code.flowers3d">A single 3D flower: <CODE>Flowers3d.oz</CODE></A></LI></UL></DIV></DIV><TABLE align="center" border="0" cellpadding="6" cellspacing="6" class="nav"><TR bgcolor="#DDDDDD"><TD><A href="index.html">- Up -</A></TD><TD><A href="trucks.html#chapter.trucks">Next &gt;&gt;</A></TD></TR></TABLE><HR><ADDRESS><SPAN class="version">Version 1.4.0 (20110908185330)</SPAN></ADDRESS></BODY></HTML>