This file is indexed.

/usr/share/octave/packages/msh-1.0.6/doc-cache is in octave-msh 1.0.6-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
# Created by Octave 3.6.2, Wed Oct 31 06:58:06 2012 UTC <root@panlong>
# name: cache
# type: cell
# rows: 3
# columns: 19
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
msh2m_displacement_smoothing


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1448
 -- Function File: [AX,AY] = msh2m_displacement_smoothing(MSH,K)
     Displace the boundary of a 2D mesh setting a spring with
     force/length constant K along each edge and enforcing equilibrium.

     This function builds matrices containing the resulting (linearized)
     equation for x and y coordinates of each mesh node. Boundary
     conditions enforcing the displacement (Dirichlet type problem) or
     the force (Neumann type) at the boundary must be added to make the
     system solvable, e.g.:

          msh = msh2m_structured_mesh(linspace(0,1,10), linspace(0,1,10), 1,1:4,"left");

          dnodes   = msh2m_nodes_on_sides(msh,1:4);
          varnodes = setdiff([1:columns(msh.p)],dnodes);
          xd     = msh.p(1,dnodes)';
          yd     = msh.p(2,dnodes)';
          dx     = dy    = zeros(columns(msh.p),1);
          dxtot  = dytot = -.5*sin(xd.*yd*pi/2);
          Nsteps = 10;

          for ii = 1:Nsteps
           dx(dnodes) = dxtot;
           dy(dnodes) = dytot;
           [Ax,Ay] = msh2m_displacement_smoothing(msh,1);
           dx(varnodes) = Ax(varnodes,varnodes) \ ...
               (-Ax(varnodes,dnodes)*dx(dnodes));
           dy(varnodes) = Ay(varnodes,varnodes) \ ...
               (-Ay(varnodes,dnodes)*dy(dnodes));
           msh.p += [ dx'/Nsteps; dy'/Nsteps ] ;
           triplot(msh.t(1:3,:)',msh.p(1,:)',msh.p(2,:)');
           pause(.01)
          endfor

     See also: msh2m_jiggle_mesh





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Displace the boundary of a 2D mesh setting a spring with force/length
constant K



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
msh2m_equalize_mesh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 384
 -- Function File: [MESH] = msh2m_equalize_mesh(MESH)
     Apply a baricentric regularization to equalize the size of triangle
     edges, i.e. move each node to the center of mass of the patch of
     triangles to which it belongs.

     May be useful when distorting a mesh.  Type `demo
     msh2m_equalize_mesh' to see some examples.

     See also: msh2m_displacement_smoothing





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Apply a baricentric regularization to equalize the size of triangle
edges, i.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
msh2m_geometrical_properties


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1930
 -- Function File: [VARARGOUT] =
          msh2m_geometrical_properties(MESH,[STRING1,STRING2,...])
     Compute MESH geometrical properties identified by input strings.

     Valid properties are:
        * `"bar"': return a matrix with size 2 times the number of mesh
          elements containing the center of mass coordinates.

        * `"cir"': return a matrix with size 2 times the number of mesh
          elements containing the circumcenter coordinates.

        * `"emidp"': return a matrix with size 2 times the number of
          side edges containing their midpoint coordinates.

        * `"slength"': return a matrix with size 3 times the number of
          mesh elements containing the length of each element side.

        * `"cdist"': return a matrix of size 3 times the number of mesh
          elements containing  the distance among circumcenters of
          neighbouring elements. If the corresponding side lies on the
          edge, the distance between circumcenter and border edge is
          returned in the matrix.

        * `"wjacdet"': return the weigthed Jacobian determinant used
          for the numerical integration with trapezoidal rule over an
          element.

        * `"shg"': return a matrix of size 3 times the number of
          elements matrix containing the gradient of P1 shape functions.

        * `"area"': return a row vector containing the area of every
          element.

        * `"midedge"': return a multi-dimensional array with size 2
          times 3 times the number of elements containing the
          coordinates of the midpoint of every edge.

     The output will contain the geometrical properties requested in the
     input in the same order specified in the function call.

     If an unexpected string is given as input, an empty vector is
     returned in output.

     See also: msh2m_topological_properties,
     msh3m_geometrical_properties





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Compute MESH geometrical properties identified by input strings.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
msh2m_gmsh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 798
 -- Function File: [MESH] = msh2m_gmsh(GEOMETRY,OPTION,VALUE,...)
 -- Function File: [MESH, GMSH_OUT] = msh2m_gmsh(...)
     Construct an unstructured triangular 2D mesh making use of the free
     software gmsh.

     The compulsory argument GEOMETRY is the basename of the `*.geo'
     file to be meshed.

     The optional arguments OPTION and VALUE identify respectively a
     gmsh option and its value. For more information regarding the
     possible option to pass, refer to gmsh manual or gmsh site
     `http://www.geuz.org/gmsh/'.

     The returned value MESH is a PDE-tool like mesh structure.  If the
     function is called with two outputs GMSH_OUT is the verbose output
     of the gmsh subprocess.

     See also: msh2m_structured_mesh, msh3m_gmsh,
     msh2m_mesh_along_spline





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Construct an unstructured triangular 2D mesh making use of the free
software gms



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
msh2m_jiggle_mesh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 558
 -- Function File: [NEWMSH] = msh2m_jiggle_mesh(MSH,STEPS)
     Equalize the size of  triangle edges setting a spring of rest
     length FACTOR*AREA along each edge of the mesh and solving for
     static equilibrium.

     The non-linear eqautions of the system obtained are solved via a
     non-linear Gauss-Seidel method. STEP is the number of steps of the
     method to be applied.

     May be useful when distorting a mesh, type `demo
     msh2m_jiggle_mesh' to see some examples.

     See also: msh2m_displacement_smoothing, msh2m_equalize_mesh





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Equalize the size of  triangle edges setting a spring of rest length
FACTOR*AREA



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
msh2m_join_structured_mesh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 420
 -- Function File: [MESH] =
          msh2m_join_structured_mesh(MESH1,MESH2,S1,S2)
     Join the two structured meshes MESH1 and MESH2 into one single
     mesh.

     The two meshes must share a common edge identified by S1 and S2.

     *WARNING*: the two meshes must share the same vertexes on the
     common edge.

     See also: msh2m_structured_mesh, msh2m_gmsh, msh2m_submesh,
     msh3m_join_structured_mesh





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Join the two structured meshes MESH1 and MESH2 into one single mesh.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
msh2m_mesh_along_spline


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 712
 -- Function File: [MESH] = msh2m_mesh_along_spline(XC,YC,NNX,NNY,SIGMA)
     Generate a structured mesh in a thin layer of size SIGMA sitting
     on a natural Catmull-Rom type cubic spline with control points XC,
     YC.

     If NNX and NNY are scalars, the mesh has NNX nodes in the
     direction along the spline and NNY in the normal direction.

     If NNX and NNY are vectors they indicate the curvilinear
     coordinates of the mesh nodes.

     The returned value MESH is a PDE-tool like mesh structure.

     Be aware that if SIGMA is not much smaller than the curvature of
     the line the resulting mesh may be invalid.

     See also: msh2m_structured_mesh, msh2m_gmsh, msh3m_structured_mesh





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Generate a structured mesh in a thin layer of size SIGMA sitting on a
natural Ca



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
msh2m_nodes_on_sides


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 252
 -- Function File: [NODELIST] = msh2m_nodes_on_sides(MESH,SIDELIST)
     Return a list of MESH nodes lying on the sides specified in
     SIDELIST.

     See also: msh2m_geometrical_properties,
     msh2m_topological_properties, msh3m_nodes_on_faces





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Return a list of MESH nodes lying on the sides specified in SIDELIST.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
msh2m_structured_mesh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2122
 -- Function File: [MESH] =
          msh2m_structured_mesh(X,Y,REGION,SIDES,STRING)
     Construct a structured triangular 2D mesh on a rectangular domain.

        * X and Y are the one dimensional mesh vector of the
          corresponding Cartesian axis.

        * REGION is a number identifying the geometrical surface
          region, while SIDES is a 4 components vector containing the
          numbers used to identify the geometrical side edges.

        * STRING is an optional value specifying the orientation of the
          diagonal edge of the structured mesh. It may take the value
          `"right"' (default), `"left"', `"random"'.

     The returned value MESH is a PDE-tool like mesh structure composed
     of the following fields:
        - P: matrix with size 2 times number of mesh points.
             * 1st row: x-coordinates of the points.

             * 2nd row: y-coordinates of the points.

        - E: matrix with size 7 times number of mesh side edges.
             * 1st row: number of the first vertex of the side edge.

             * 2nd row: number of the second vertex of the side edge.

             * 3rd row: set to 0, present for compatibility with MatLab
               PDE-tool.

             * 4th row: set to 0, present for compatibility with MatLab
               PDE-tool.

             * 5th row: number of the geometrical border containing the
               side edge.

             * 6th row: number of the geometrical surface to the right
               of side edge.

             * 7th row: number of the geometrical surface to the left
               of the side edge.

        - T: matrix with size 4 times number of mesh elements.
             * 1st row: number of the first vertex of the element.

             * 2nd row: number of the second vertex of the element.

             * 3rd row: number of the third vertex of the element.

             * 4th row: number of the geometrical surface containing
               the element.

     See also: msh3m_structured_mesh, msh2m_gmsh,
     msh2m_mesh_along_spline, msh2m_join_structured_mesh, msh2m_submesh





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Construct a structured triangular 2D mesh on a rectangular domain.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
msh2m_submesh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 534
 -- Function File: [OMESH,NODELIST,ELEMENTLIST] =
          msh2m_submesh(IMESH,INTRFC,SDL)
     Extract the subdomain(s) in SDL from IMESH.

     The row vector INTRFC contains the internal interface sides to be
     maintained (field `mesh.e(5,:)'). It can be empty.

     Return the vectors NODELIST and ELEMENTLIST containing
     respectively the list of nodes and elements of the original mesh
     that are part of the selected subdomain(s).

     See also: msh2m_join_structured_mesh, msh3m_submesh,
     msh3e_surface_mesh





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Extract the subdomain(s) in SDL from IMESH.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
msh2m_topological_properties


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1723
 -- Function File: [VARARGOUT] =
          msh2m_topological_properties(MESH,[STRING1,STRING2,...])
     Compute MESH topological properties identified by input strings.

     Valid properties are:
        * `"n"': return a matrix with size 3 times the number of mesh
          elements containing the list of its neighbours. The entry
          `M(i,j)' in this matrix is the mesh element sharing the side
          `i' of triangle `j'. If no such element exists (i.e. for
          boundary edges) a value of `NaN' is set.

        * `"sides"': return a matrix with size 2 times number of
          sides.The entry `M(i,j)' is the index of the i-th vertex of
          j-th side.

        * `"ts"': return a matrix with size 3 times the number of mesh
          elements containing the sides associated with each element.

        * `"tws"':return a matrix with size 2 times the number of mesh
          sides containing the elements associated with each side. For a
          side belonging to one triangle only a value of `NaN' is set.

        * `"coinc"': return a matrix with 2 rows. Each column contains
          the indices of two triangles sharing the same circumcenter.

        * `"boundary"': return a matrix with size 2 times the number of
          side edges. The first row contains the mesh element to which
          the side belongs, the second row is the local index of this
          edge.

     The output will contain the geometrical properties requested in the
     input in the same order specified in the function call.

     If an unexpected string is given as input, an empty vector is
     returned in output.

     See also: mshm2m_geometrical_properties,
     msh3m_geometrical_properties





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Compute MESH topological properties identified by input strings.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
msh2p_mesh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
 -- Function File: msh2p_mesh (MESH, LINESPEC)
     Plot MESH with the line specification in LINESPEC using `triplot'.

     See also: triplot





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Plot MESH with the line specification in LINESPEC using `triplot'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
msh3e_surface_mesh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 595
 -- Function File: [EMESH,SNODES,SSIDES,STRIANGLES] =
          msh3e_surface_mesh(MESH,NSRF,NSIDES)
     Extract the plane surface NSRF delimited by NSIDES from MESH.

     Return the vector SNODES containing the references to input mesh
     nodes (field `mesh.p'), the vector SSIDES containing the
     references to input mesh side (field `mesh.s') and the vector
     STRIANGLES containing the references to input mesh side edges
     (field `mesh.e').

     *WARNING*: the suface MUST be ortogonal to either X, Y or Z axis.
     This should be changed to account for generic 2D surface.





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Extract the plane surface NSRF delimited by NSIDES from MESH.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
msh3m_geometrical_properties


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 899
 -- Function File: [VARARGOUT] =
          msh3m_geometrical_properties(MESH,[STRING1,STRING2,...])
     Compute MESH geometrical properties identified by input strings.

     Valid properties are:
        * `"wjacdet"': return the weigthed Jacobian determinant used
          for the numerical integration with trapezoidal rule over an
          element.

        * `"shg"': return a matrix of size 3 times the number of
          elements matrix containing the gradient of P1 shape functions.

        * `"shp"': return a matrix containing the the value of P1 shape
          functions.

     The output will contain the geometrical properties requested in the
     input in the same order specified in the function call.

     If an unexpected string is given as input, an empty vector is
     returned in output.

     See also: msh2m_topological_properties,
     msh2m_geometrical_properties





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Compute MESH geometrical properties identified by input strings.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
msh3m_gmsh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 797
 -- Function File: [MESH] = msh3m_gmsh(GEOMETRY,OPTION,VALUE,...)
 -- Function File: [MESH, GMSH_OUT] = msh3m_gmsh(...)
     Construct an unstructured tetrahedral 3D mesh making use of the
     free software gmsh.

     The required argument GEOMETRY is the basename of the `*.geo' file
     to be meshed.

     The optional arguments OPTION and VALUE identify respectively a
     gmsh option and its value. For more information regarding the
     possible option to pass, refer to gmsh manual or gmsh site
     `http://www.geuz.org/gmsh/'.

     The returned value MESH is a PDE-tool like mesh structure.  If the
     function is called with two outputs GMSH_OUT is the verbose output
     of the gmsh subprocess.

     See also: msh3m_structured_mesh, msh2m_gmsh,
     msh2m_mesh_along_spline





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Construct an unstructured tetrahedral 3D mesh making use of the free
software gm



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
msh3m_join_structured_mesh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 420
 -- Function File: [MESH] =
          msh3m_join_structured_mesh(MESH1,MESH2,S1,S2)
     Join the two structured meshes MESH1 and MESH2 into one single
     mesh.

     The two meshes must share a common face identified by S1 and S2.

     *WARNING*: the two meshes must share the same vertexes on the
     common face.

     See also: msh3m_structured_mesh, msh3m_gmsh, msh3m_submesh,
     msh2m_join_structured_mesh





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Join the two structured meshes MESH1 and MESH2 into one single mesh.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
msh3m_nodes_on_faces


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 217
 -- Function File: [NODELIST] = msh3m_nodes_on_faces(MESH,FACELIST)
     Return a list of MESH nodes lying on the faces specified in
     FACELIST.

     See also: msh3m_geometrical_properties, msh2m_nodes_on_faces





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Return a list of MESH nodes lying on the faces specified in FACELIST.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
msh3m_structured_mesh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2309
 -- Function File: [MESH] = msh3m_structured_mesh(X,Y,Z,REGION,SIDES)
     Construct a structured tetrahedral 3D mesh on a parallelepipedal
     domain.

        * X, Y and Z are the one dimensional mesh vector of the
          corresponding Cartesian axis.

        * REGION is a number identifying the geometrical volume, while
          SIDES is a 6 components vector containing the numbers used to
          identify the geometrical face edges.

     The returned value MESH is a PDE-tool like mesh structure composed
     of the following fields:
        - P: matrix with size 3 times number of mesh points.
             * 1st row: x-coordinates of the points.

             * 2nd row: y-coordinates of the points.

             * 3rd row: z-coordinates of the points.

        - E: matrix with size 10 times number of mesh face edges.
             * 1st row: number of the first vertex of the face edge.

             * 2nd row: number of the second vertex of the face edge.

             * 3rd row: number of the third vertex of the face edge.

             * 4th row: set to 0, present for compatibility with MatLab
               PDE-tool.

             * 5th row: set to 0, present for compatibility with MatLab
               PDE-tool.

             * 6th row: set to 0, present for compatibility with MatLab
               PDE-tool.

             * 7th row: set to 0, present for compatibility with MatLab
               PDE-tool.

             * 8th row: number of the geometrical volume to the right
               of the face edge.

             * 9th row: number of the geometrical volume to the left of
               the face edge.

             * 10th row: number of the geometrical border containing
               the face edge.

        - T: matrix with size 5 times number of mesh elements.
             * 1st row: number of the first vertex of the element.

             * 2nd row: number of the second vertex of the element.

             * 3rd row: number of the third vertex of the element.

             * 4th row: number of the fourth vertex of the element.

             * 5th row: number of the geometrical volume containing the
               element.

     See also: msh2m_structured_mesh, msh3m_gmsh,
     msh2m_mesh_along_spline, msh3m_join_structured_mesh, msh3m_submesh





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Construct a structured tetrahedral 3D mesh on a parallelepipedal domain.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
msh3m_submesh


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 542
 -- Function File: [OMESH,NODELIST,ELEMENTLIST] =
          msh3m_submesh(IMESH,INTRFC,SDL)
     Extract the subdomain(s) in SDL from IMESH.

     The row vector INTRFC contains the internal interface sides to be
     maintained (field `mesh.e(5,:)'). It can be empty.

     Return the vectors NODELIST and ELEMENTLIST containing
     respectively the list of nodes and elements of the original mesh
     that are part of the selected subdomain(s).

     See also: msh3m_join_structured_mesh, msh2m_join_structured_mesh,
     msh3m_submesh





# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Extract the subdomain(s) in SDL from IMESH.