This file is indexed.

/usr/share/octave/packages/splines-1.2.6/doc-cache is in octave-splines 1.2.6-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
# Created by Octave 3.6.4, Fri Nov 22 17:14:55 2013 UTC <root@komainu>
# name: cache
# type: cell
# rows: 3
# columns: 12
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
bin_values


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1025
 -- Function File: [X_BIN Y_BIN W_BIN N_BIN] = bin_values( X, Y, K)

     Average values over ranges of one variable
     Given X (size N*1) and Y (N*M), this function splits the range of X
     into up to K intervals (bins) containing approximately equal
     numbers of elements, and for each part of the range computes the
     mean of y.

     Any NaN values are removed.

     Useful for detecting possible nonlinear dependence of Y on X and as
     a preprocessor for spline fitting.  E.g., to make a plot of the
     average behavior of y versus x: 'errorbar(x_bin, y_bin, 1 ./
     sqrt(w_bin)); grid on'

     Inputs:
     X: N*1 real array
     Y: N*M array of values at the coordinates X
     K: Desired number of bins, 'floor(sqrt(n))' by default

     Outputs:
     X_BIN, Y_BIN: Mean values by bin (ordered by increasing X)
     W_BIN: Weights (inverse standard error of each element in Y_BIN;
     note: will be infinite where N_BIN = 1)
     N_BIN: Number of elements of X per bin

   See also: csaps, dedup




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Average values over ranges of one variable
Given X (size N*1) and Y (N*M), this 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
catmullrom


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 490
 -- Function File: PP = catmullrom( X, F, V)

     Returns the piecewise polynomial form of the Catmull-Rom cubic
     spline interpolating F at the points X.  If the input V is supplied
     it will be interpreted as the values of the tangents at the
     extremals, if it is missing, the values will be computed from the
     data via one-sided finite difference formulas.  See the wikipedia
     page for "Cubic Hermite spline" for a description of the algorithm.

     See also: ppval




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Returns the piecewise polynomial form of the Catmull-Rom cubic spline
interpolat



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
csape


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 740
 -- Function File: PP = csape (X, Y, COND, VALC)
     cubic spline interpolation with various end conditions.  creates
     the pp-form of the cubic spline.

     the following end conditions as given in COND are possible.
     'complete'
          match slopes at first and last point as given in VALC
     'not-a-knot'
          third derivatives are continuous at the second and second last
          point
     'periodic'
          match first and second derivative of first and last point
     'second'
          match second derivative at first and last point as given in
          VALC
     'variational'
          set second derivative at first and last point to zero (natural
          cubic spline)

     See also: ppval, spline




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
cubic spline interpolation with various end conditions.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
csapi


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
 -- Function File: PP = csapi (X, Y)
 -- Function File: YI = csapi (X, Y, XI)
     cubic spline interpolation

     See also: ppval, spline, csape




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
cubic spline interpolation




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
csaps


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1193
 -- Function File: [YI P] = csaps( X, Y, P, XI, W=[])
 -- Function File: [PP P] = csaps( X, Y, P, [], W=[])

     Cubic spline approximation (smoothing)
     approximate [X,Y], weighted by W (inverse variance; if not given,
     equal weighting is assumed), at XI

     The chosen cubic spline with natural boundary conditions PP(X)
     minimizes P Sum_i W_i*(Y_i - PP(X_i))^2 + (1-P) Int PP"(X) dX

     Outside the range of X, the cubic spline is a straight line

     X and W should be n by 1 in size; Y should be n by m; XI should be
     k by 1; the values in X should be distinct and in ascending order;
     the values in W should be nonzero

     P=0
          maximum smoothing: straight line
     P=1
          no smoothing: interpolation
     P<0 or not given
          an intermediate amount of smoothing is chosen (such that the
          smoothing term and the interpolation term are of the same
          magnitude) (csaps_sel provides other methods for automatically
          selecting the smoothing parameter P.)

     Reference: Carl de Boor (1978), A Practical Guide to Splines,
     Springer, Chapter XIV

   See also: spline, csapi, ppval, dedup, bin_values, csaps_sel




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Cubic spline approximation (smoothing)
approximate [X,Y], weighted by W (inverse



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
csaps_sel


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2915
 -- Function File: [YI P SIGMA2,UNC_Y] = csaps_sel( X, Y, XI, W=[],
          CRIT=[])
 -- Function File: [PP P SIGMA2,UNC_Y] = csaps_sel( X, Y, [], W=[],
          CRIT=[])

     Cubic spline approximation with smoothing parameter estimation
     Approximately interpolates [X,Y], weighted by W (inverse variance;
     if not given, equal weighting is assumed), at XI.

     The chosen cubic spline with natural boundary conditions PP(X)
     minimizes P Sum_i W_i*(Y_i - PP(X_i))^2 + (1-P) Int PP"(X) dX.

     A selection criterion CRIT is used to find a suitable value for P
     (between 0 and 1); possible values for CRIT are 'vm' (Vapnik's
     measure [Cherkassky and Mulier 2007] from statistical learning
     theory); 'aicc' (corrected Akaike information criterion, the
     default); 'aic' (original Akaike information criterion); 'gcv'
     (generalized cross validation).  If CRIT is a scalar instead of a
     string, then P is chosen to so that the mean square scaled residual
     Mean_i (W_i*(Y_i - PP(X_i))^2) is approximately equal to CRIT.

     X and W should be N by 1 in size; Y should be N by M; XI should be
     K by 1; the values in X should be distinct and in ascending order;
     the values in W should be nonzero.

     Returns the selected P, the estimated data scatter (variance from
     the smooth trend) SIGMA2, and the estimated uncertainty (SD) of the
     smoothing spline fit at each X value, UNC_Y.

     For small N, the optimization uses singular value decomposition of
     an N by N matrix in order to quickly compute the residual size and
     model degrees of freedom for many P values for the optimization
     (Craven and Wahba 1979).  For large N (currently >300), an
     asymptotically more computation and storage efficient method that
     takes advantage of the sparsity of the problem's coefficient
     matrices is used (Hutchinson and de Hoog 1985).

     References:

     Vladimir Cherkassky and Filip Mulier (2007), Learning from Data:
     Concepts, Theory, and Methods.  Wiley, Chapter 4

     Carl de Boor (1978), A Practical Guide to Splines, Springer,
     Chapter XIV

     Clifford M. Hurvich, Jeffrey S. Simonoff, Chih-Ling Tsai (1998),
     Smoothing parameter selection in nonparametric regression using an
     improved Akaike information criterion, J. Royal Statistical
     Society, 60B:271-293

     M. F. Hutchinson and F. R. de Hoog (1985), Smoothing noisy data
     with spline functions, Numerische Mathematik, 47:99-106

     M. F. Hutchinson (1986), Algorithm 642: A fast procedure for
     calculating minimum cross-validation cubic smoothing splines, ACM
     Transactions on Mathematical Software, 12:150-153

     Grace Wahba (1983), Bayesian "confidence intervals" for the
     cross-validated smoothing spline, J Royal Statistical Society,
     45B:133-150

   See also: csaps, spline, csapi, ppval, dedup, bin_values, gcvspl




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Cubic spline approximation with smoothing parameter estimation
Approximately int



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
dedup


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 811
 -- Function File: [X_NEW Y_NEW W_NEW] = dedup( X, Y, W, TOL,
          NAN_REMOVE=true)

     De-duplication and sorting to facilitate spline smoothing
     Points are sorted in ascending order of X, with each set of
     duplicates (values with the same X, within TOL) replaced by a
     weighted average.  Any NaN values are removed (if the flag
     NAN_REMOVE is set).

     Useful, for example, as a preprocessor to spline smoothing

     Inputs:
     X: N*1 real array
     Y: N*M array of values at the coordinates X
     W: N*1 array of positive weights (inverse error variances);
     'ones(size(x))' by default
     TOL: if the difference between two X values is no more than this
     scalar, merge them; 0 by default

     Outputs: De-duplicated and sorted X, Y, W

   See also: csaps, bin_values




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
De-duplication and sorting to facilitate spline smoothing
Points are sorted in a



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fnder


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 101
 -- Function File: fnder (PP, ORDER)
     differentiate the spline in pp-form

     See also: ppval




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
differentiate the spline in pp-form




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fnplt


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
 -- Function File: fnplt (PP, 'PLT')
     plots spline

     See also: ppval, spline, csape




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
plots spline




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fnval


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
 r = fnval(pp,x) or r = fnval(x,pp)
 Compute the value of the piece-wise polynomial pp at points x.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 r = fnval(pp,x) or r = fnval(x,pp)
 Compute the value of the piece-wise polynom



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
tpaps


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1865
 -- Function File: [YI P] = tpaps( X, Y, P, XI)
 -- Function File: [COEFS P] = tpaps( X, Y, P, [])

     Thin plate smoothing of scattered values in multi-D
     approximately interpolate [X,Y] at XI

     The chosen thin plate spline minimizes the sum of squared
     deviations from the given points plus a penalty term proportional
     to the curvature of the spline function

     X should be N by D in size, where N is the number of points and D
     the number of dimensions; Y and W should be N by 1; XI should be K
     by D; the points in X should be distinct

     P=0
          maximum smoothing: flat surface
     P=1
          no smoothing: interpolation
     P<0 or not given
          an intermediate amount of smoothing is chosen (such that the
          smoothing term and the interpolation term are of the same
          magnitude)

     If XI is not specified, returns a vector COEFS of the N + D + 1
     fitted thin plate spline coefficients.  Given COEFS, the value of
     the thin-plate spline at any XI can be determined with 'tps_val'

     Note: Computes the pseudoinverse of an N by N matrix, so not
     recommended for very large N

     Example usages:
          x = ([1:10 10.5 11.3])'; y = sin(x); xi = (0:0.1:12)';
          yi = tpaps(x, y, 0.5, xi);
          plot(x, y, xi, yi)

          x = rand(100, 2)*2 - 1;
          y = x(:, 1) .^ 2 + x(:, 2) .^ 2;
          scatter(x(:, 1), x(:, 2), 10, y, "filled")
          [x1 y1] = meshgrid((-1:0.2:1)', (-1:0.2:1)');
          xi = [x1(:) y1(:)];
          yi = tpaps(x, y, 1, xi);
          contourf(x1, y1, reshape(yi, 11, 11))

     Reference: David Eberly (2011), Thin-Plate Splines,
     www.geometrictools.com/Documentation/ThinPlateSplines.pdf
     Bouhamidi, A. (2005) Weighted thin plate splines, Analysis and
     Applications, 3: 297-324

   See also: csaps, tps_val




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Thin plate smoothing of scattered values in multi-D
approximately interpolate [X



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
tps_val


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 444
 -- Function File: [YI] = tps_val( X, COEFS, XI)

     Evaluates a thin plate spline at given points
     XI

     COEFS should be the vector of fitted coefficients returned from
     'tpaps(x, y, [p])'

     X should be N by D in size, where N is the number of points and D
     the number of dimensions; COEFS should be N + D + 1 by 1; XI should
     be K by D

     See the documentation to 'tpaps' for more information

   See also: tpaps




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Evaluates a thin plate spline at given points
XI