/usr/share/octave/packages/splines-1.2.6/tpaps.m is in octave-splines 1.2.6-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 | ## Copyright (C) 2013 Nir Krakauer
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File}{[@var{yi} @var{p}] =} tpaps(@var{x}, @var{y}, @var{p}, @var{xi})
## @deftypefnx{Function File}{[@var{coefs} @var{p}] =} tpaps(@var{x}, @var{y}, @var{p}, [])
##
## Thin plate smoothing of scattered values in multi-D @*
## approximately interpolate [@var{x},@var{y}] at @var{xi}
##
## The chosen thin plate spline minimizes the sum of squared deviations from the given points plus a penalty term proportional to the curvature of the spline function
##
## @var{x} should be @var{n} by @var{d} in size, where @var{n} is the number of points and @var{d} the number of dimensions; @var{y} and @var{w} should be @var{n} by 1; @var{xi} should be @var{k} by @var{d}; the points in @var{x} should be distinct
##
## @table @asis
## @item @var{p}=0
## maximum smoothing: flat surface
## @item @var{p}=1
## no smoothing: interpolation
## @item @var{p}<0 or not given
## an intermediate amount of smoothing is chosen (such that the smoothing term and the interpolation term are of the same magnitude)
## @end table
##
## If @var{xi} is not specified, returns a vector @var{coefs} of the @var{n} + @var{d} + 1 fitted thin plate spline coefficients.
## Given @var{coefs}, the value of the thin-plate spline at any @var{xi} can be determined with @code{tps_val}
##
## Note: Computes the pseudoinverse of an @var{n} by @var{n} matrix, so not recommended for very large @var{n}
##
## Example usages:
## @example
## x = ([1:10 10.5 11.3])'; y = sin(x); xi = (0:0.1:12)';
## yi = tpaps(x, y, 0.5, xi);
## plot(x, y, xi, yi)
## @end example
##
## @example
## x = rand(100, 2)*2 - 1;
## y = x(:, 1) .^ 2 + x(:, 2) .^ 2;
## scatter(x(:, 1), x(:, 2), 10, y, "filled")
## [x1 y1] = meshgrid((-1:0.2:1)', (-1:0.2:1)');
## xi = [x1(:) y1(:)];
## yi = tpaps(x, y, 1, xi);
## contourf(x1, y1, reshape(yi, 11, 11))
## @end example
##
## Reference:
## David Eberly (2011), Thin-Plate Splines, www.geometrictools.com/Documentation/ThinPlateSplines.pdf
## Bouhamidi, A. (2005) Weighted thin plate splines, Analysis and Applications, 3: 297-324
##
## @end deftypefn
## @seealso{csaps, tps_val}
## Author: Nir Krakauer <nkrakauer@ccny.cuny.edu>
function [ret, p]=tpaps(x,y,p,xi)
if(nargin < 4)
xi = [];
if(nargin < 3) || p < 0
p = [];
endif
endif
[n d] = size(x); #d: number of dimensions; n: number of points [y should be n*1]
dist = @(x1, x2) norm(x2 - x1, 2, "rows"); #Euclidian distance between points in d-dimensional space
#form of the Green's function for solutions
G = @(r) merge(r == 0, 0, r .^ 2 .* log(r));
N = [ones(n, 1) x];
if p == 0 #infinite regularization (no curvature allowed), solution is a regression plane
b = N \ y;
a = zeros(n, 1);
else
#coefficient matrices
#need pairwise distances between points
M = zeros(n);
warn_state = warning ("query", "Octave:broadcast").state;
warning ("off", "Octave:broadcast"); #turn off warning message for automatic broadcasting when dist is called
unwind_protect
for i = 1:(n-1) #M is symmetric, so only need to compute half
M(i, (i+1):n) = G(dist(x(i, :), x((i+1):n, :)));
endfor
unwind_protect_cleanup
warning (warn_state, "Octave:broadcast");
end_unwind_protect
M = M + M';
if isempty(p) #choose an intermediate value for the regularization parameter
lambda = mean(spdiags(M, 1:min(n, 3))(:));
p = 1 / (lambda + 1);
else #use the given value
lambda = (1 - p) / p;
endif
M = M + lambda*eye(n); #add regularization term
M_inv = pinv(M);
b = pinv(N' * M_inv * N) * N' * M_inv * y;
a = M_inv * (y - N*b);
endif
if isempty(xi) #return the coefficients
ret = [a' b']';
else #return the thin plate spline values at xi
k = size(xi, 1);
ret = [ones(k, 1) xi] * b;
if p ~= 0
warn_state = warning ("query", "Octave:broadcast").state;
warning ("off", "Octave:broadcast"); #turn off warning message for automatic broadcasting when dist is called
unwind_protect
if k > n ##choose from either of two ways of computing the values of the thin plate spline at xi
for i = 1:n
ret = ret + a(i)*G(dist(x(i, :), xi));
endfor
else
for i = 1:k
ret(i) = ret(i) + dot(a, G(dist(x, xi(i, :))));
endfor
endif
unwind_protect_cleanup
warning (warn_state, "Octave:broadcast");
end_unwind_protect
endif
endif
endfunction
%!shared x,y
%! x = ([1:10 10.5 11.3])'; y = sin(x);
%!assert (tpaps(x,y,1,x), y, 1E-13);
%! x = rand(100, 2)*2 - 1;
%! y = x(:, 1) .^ 2 + x(:, 2) .^ 2;
%!assert (tpaps(x,y,1,x), y, 1E-11);
|