This file is indexed.

/usr/lib/open-axiom/src/algebra/catdef.spad is in open-axiom-source 1.4.1+svn~2626-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2012, Gabriel Dos Reis.
--All rights reversed.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

)abbrev category BINOPC BinaryOperatorCategory
++ Author: Gabriel Dos Reis
++ Date Created: February 24, 2012
++ Date Last Modified: February 24, 2012
++ Description:
++   This is the category of all domains that implement binary operations.
BinaryOperatorCategory(T: Type): Category == MappingCategory(T,T,T)

)abbrev domain BINOP BinaryOperation
++ Author: Gabriel Dos Reis
++ Date Created: February 24, 2012
++ Date Last Modified: February 24, 2012
++ Description:
++   This domain implements binary operations.
BinaryOperation(T: Type): Join(BinaryOperatorCategory T, SetCategory) with
    binaryOperation: ((T,T) -> T) -> %
      ++ \spad{binaryOperation f} constructs a binary operation value
      ++ out of any homogeneous mapping of arity 2.
  == (T,T) -> T add
    binaryOperation f == per f
    elt(f,x,y) == rep(f)(x,y)

)abbrev category IDEMOPC IdempotentOperatorCategory
++ Author: Gabriel Dos Reis
++ Date Created: February 24, 2012
++ Date Last Modified: February 24, 2012
++ Description:
++   This is the category of all domains that implement idempotent operations.
IdempotentOperatorCategory(T: BasicType): Category ==
  BinaryOperatorCategory T with
    assume idempotence ==
      forall(f: %, x: T) . f(x,x) = x
)abbrev category SGPOPC SemiGroupOperatorCategory
++ Author: Gabriel Dos Reis
++ Date Created: February 24, 2012
++ Date Last Modified: February 24, 2012
++ Description:
++   This is the category of all domains that implement semigroup operations
SemiGroupOperatorCategory(T: BasicType): Category ==
  BinaryOperatorCategory T with
    assume associativity ==
      forall(f: %, x: T, y:T, z: T) . f(f(x,y),z) = f(x,f(y,z))

)abbrev domain SGPOP SemiGroupOperation
++ Author: Gabriel Dos Reis
++ Date Created: February 24, 2012
++ Date Last Modified: February 24, 2012
++ Description:
++   This domain implements semigroup operations.
SemiGroupOperation(T: BasicType): Public == Private where
  Public == Join(SemiGroupOperatorCategory T,SetCategory) with
    semiGroupOperation: ((T,T) -> T) -> %
      ++ \spad{semiGroupOperation f} constructs a semigroup operation
      ++ out of a binary homogeneous mapping known to be associative.
  Private == BinaryOperation T

)abbrev category MONOPC MonoidOperatorCategory
++ Author: Gabriel Dos Reis
++ Date Created: February 24, 2012
++ Date Last Modified: February 24, 2012
++ Description:
++   This is the category of all domains that implement monoid operations
MonoidOperatorCategory(T: BasicType): Category ==
  SemiGroupOperatorCategory T with
    neutralValue: % -> T
      ++ \spad{neutralValue f} returns the neutral value of the
      ++ monoid operation \spad{f}.
    assume neutrality ==
      forall(f: %, x: T) .
         f(x, neutralValue f) = x
         f(neutralValue f, x) = x

)abbrev domain MONOP MonoidOperation
++ Author: Gabriel Dos Reis
++ Date Created: February 24, 2012
++ Date Last Modified: February 24, 2012
++ Description:
++   This domain implements monoid operations.
MonoidOperation(T: BasicType): Public == Private where
  Public == Join(MonoidOperatorCategory T,SetCategory,_
              CoercibleTo SemiGroupOperation T) with
    monoidOperation: ((T,T) -> T, T) -> %
      ++ \spad{monoidOperation(f,e)} constructs a operation from
      ++ the binary mapping \spad{f} with neutral value \spad{e}.
  Private == Pair(SemiGroupOperation T,T) add
    monoidOperation(f,e) == per pair(semiGroupOperation f,e)
    elt(op,x,y) == first(rep op)(x,y)
    neutralValue op == second rep op
    coerce(f: %): SemiGroupOperation T == first rep f


import Boolean
)abbrev category BASTYPE BasicType
--% BasicType
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ \spadtype{BasicType} is the basic category for describing a collection
++ of elements with \spadop{=} (equality).
BasicType(): Category == Type with
      =: (%,%) -> Boolean    ++ x=y tests if x and y are equal.
      ~=: (%,%) -> Boolean   ++ x~=y tests if x and y are not equal.
      before?: (%,%) -> Boolean
        ++ \spad{before?(x,y)} holds if the system representation
        ++ of \spad{x} comes before that of \spad{y} in a
        ++ an implementation defined manner.
   add
      x = y == not before?(x,y) and not before?(y,x)
      x:% ~= y:% == not(x=y)
      before?(x,y) == %before?(x,y)$Foreign(Builtin)

)abbrev category ORDTYPE OrderedType
++ Author: Gabriel Dos Reis
++ Date Created: June 28, 2010
++ Date Last Modified: June 28, 2010
++ See Also: OrderedSet
++ Description:
++   Category of types equipped with a total ordering.
++ Axioms:
++   forall(x,y)
++     x > y  <=> y < x
++     x <= y <=> not(y > x)
++     x >= y <=> not(x < y)
++     x <= y and x >= y => x = y
OrderedType(): Category == BasicType with
    <  : (%,%) -> Boolean
      ++ \spad{x < y} holds if \spad{x} is less than \spad{y} in the
      ++ current domain.
    >  : (%,%) -> Boolean
      ++ \spad{x > y} holds if \spad{x} is greater than \spad{y} in the
      ++ current domain.
    <= : (%,%) -> Boolean
      ++ \spad{x <= y} holds if \spad{x} is less or equal than \spad{y}
      ++ in the current domain.
    >= : (%,%) -> Boolean
      ++ \spad{x <= y} holds if \spad{x} is greater or equal than \spad{y}
      ++ in the current domain.
    max: (%,%) -> %
      ++ \spad{max(x,y)} returns the maximum of \spad{x} and \spad{y}
      ++ relative to the ordering.
    min: (%,%) -> %
      ++ \spad{min(x,y)} returns the minimum of \spad{x} and \spad{y}
      ++ relative to the ordering.
  add
    x > y  == y < x
    x <= y == not(y < x)
    x >= y == not(x < y)
    x = y  == not(x < y or y < x)
    max(x,y) ==
      x < y => y
      x
    min(x,y) ==
      x < y => x
      y
    before?(x,y) == x < y

++ Author: Gabriel Dos Reis
++ Date Created: June 28, 2010
++ Date Last Modified: June 28, 2010
++ See Also: OrderedType
++ Description:
++   This domain turns any total ordering \spad{f} on a type \spad{T} into
++   a model of the category \spadtype{OrderedType}.
)abbrev domain ORDSTRCT OrderedStructure
OrderedStructure(T: Type,f: (T,T) -> Boolean): Public == Private where
  Public == Join(OrderedType,HomotopicTo T) with
    if T has CoercibleTo OutputForm then CoercibleTo OutputForm
  Private == add
    Rep == T
    coerce(x: %): T == rep x
    coerce(y: T): % == per y
    x < y  == f(rep x,rep y)
    if T has CoercibleTo OutputForm then
      coerce(x: %): OutputForm == rep(x)::OutputForm

)abbrev category SETCAT SetCategory
++ Author:
++ Date Created:
++ Date Last Updated:
++   09/09/92   RSS   added latex and hash
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ \spadtype{SetCategory} is the basic category for describing a collection
++ of elements with \spadop{=} (equality) and \spadfun{coerce} to output form.
++
++ Conditional Attributes:
++    canonical\tab{15}data structure equality is the same as \spadop{=}
SetCategory(): Category == Join(BasicType,CoercibleTo OutputForm) with
    --operations
      hash: % -> SingleInteger  ++ hash(s) calculates a hash code for s.
      latex: % -> String       ++ latex(s) returns a LaTeX-printable output
                               ++ representation of s.
  add
      import %hash: % -> SingleInteger from Foreign Builtin

      hash(s : %):  SingleInteger == %hash s
      latex(s : %): String       == "\mbox{\bf Unimplemented}"
)abbrev category STEP StepThrough
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A class of objects which can be 'stepped through'.
++ Repeated applications of \spadfun{nextItem} is guaranteed never to
++ return duplicate items and only return "failed" after exhausting
++ all elements of the domain.
++ This assumes that the sequence starts with \spad{init()}.
++ For non-fiinite domains, repeated application
++ of \spadfun{nextItem} is not required to reach all possible domain elements
++ starting from any initial element.
++
StepThrough(): Category == SetCategory with
    --operations
      init:             %
        ++ init() chooses an initial object for stepping.
      nextItem: % -> Maybe %
        ++ \spad{nextItem(x)} returns the next item, or \spad{failed}
        ++ if domain is exhausted.

import PositiveInteger
)abbrev category SGROUP SemiGroup
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ the class of all multiplicative semigroups, i.e. a set
++ with an associative operation \spadop{*}.
++
++ Axioms:
++    \spad{associative("*":(%,%)->%)}\tab{30}\spad{ (x*y)*z = x*(y*z)}
++
++ Conditional attributes:
++    \spad{commutative("*":(%,%)->%)}\tab{30}\spad{ x*y = y*x }
SemiGroup(): Category == SetCategory with
    --operations
      *: (%,%) -> %                  ++ x*y returns the product of x and y.
      **: (%,PositiveInteger) -> %   ++ x**n returns the repeated product
                                     ++ of x n times, i.e. exponentiation.
    add
      import RepeatedSquaring(%)
      x:% ** n:PositiveInteger == expt(x,n)

)abbrev category MONOID Monoid
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The class of multiplicative monoids, i.e. semigroups with a
++ multiplicative identity element.
++
++ Axioms:
++    \spad{leftIdentity("*":(%,%)->%,1)}\tab{30}\spad{1*x=x}
++    \spad{rightIdentity("*":(%,%)->%,1)}\tab{30}\spad{x*1=x}
++
++ Conditional attributes:
++    unitsKnown\tab{15}\spadfun{recip} only returns "failed" on non-units
Monoid(): Category == SemiGroup with
    --operations
      1:              %                   ++ 1 is the multiplicative identity.
      sample:             %               ++ sample yields a value of type %
      one?: % -> Boolean                  ++ one?(x) tests if x is equal to 1.
      **: (%,NonNegativeInteger) -> %     ++ x**n returns the repeated product
                                          ++ of x n times, i.e. exponentiation.
      recip: % -> Union(%,"failed")
          ++ recip(x) tries to compute the multiplicative inverse for x
          ++ or "failed" if it cannot find the inverse (see unitsKnown).
    add
      import RepeatedSquaring(%)
      one? x == x = 1
      sample() == 1
      recip x ==
       one? x => x
       "failed"
      x:% ** n:NonNegativeInteger ==
         zero? n => 1
         expt(x,n pretend PositiveInteger)

)abbrev category GROUP Group
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The class of multiplicative groups, i.e. monoids with
++ multiplicative inverses.
++
++ Axioms:
++   \spad{leftInverse("*":(%,%)->%,inv)}\tab{30}\spad{ inv(x)*x = 1 }
++   \spad{rightInverse("*":(%,%)->%,inv)}\tab{30}\spad{ x*inv(x) = 1 }
Group(): Category == Monoid with
    --operations
      inv: % -> %             ++ inv(x) returns the inverse of x.
      /: (%,%) -> %           ++ x/y is the same as x times the inverse of y.
      **: (%,Integer) -> %    ++ x**n returns x raised to the integer power n.
      unitsKnown                ++ unitsKnown asserts that recip only returns
                                ++ "failed" for non-units.
      conjugate: (%,%) -> %
        ++ conjugate(p,q) computes \spad{inv(q) * p * q}; this is 'right action
        ++ by conjugation'.
      commutator: (%,%) -> %
        ++ commutator(p,q) computes \spad{inv(p) * inv(q) * p * q}.
    add
      import RepeatedSquaring(%)
      x:% / y:% == x*inv(y)
      recip(x:%) == inv(x)
      x:% ** n:Integer ==
         zero? n => 1
         negative? n => expt(inv(x),(-n) pretend PositiveInteger)
         expt(x,n pretend PositiveInteger)
      conjugate(p,q) == inv(q) * p * q
      commutator(p,q) == inv(p) * inv(q) * p * q

import PositiveInteger
)abbrev category ABELSG AbelianSemiGroup
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ the class of all additive (commutative) semigroups, i.e.
++ a set with a commutative and associative operation \spadop{+}.
++
++ Axioms:
++   \spad{associative("+":(%,%)->%)}\tab{30}\spad{ (x+y)+z = x+(y+z) }
++   \spad{commutative("+":(%,%)->%)}\tab{30}\spad{ x+y = y+x }
AbelianSemiGroup(): Category == SetCategory with
    --operations
      +: (%,%) -> %                  ++ x+y computes the sum of x and y.
      *: (PositiveInteger,%) -> %
        ++ n*x computes the left-multiplication of x by the positive integer n.
        ++ This is equivalent to adding x to itself n times.
    add
      import RepeatedDoubling(%)
      if not (% has Ring) then
        n:PositiveInteger * x:% == double(n,x)

)abbrev category ABELMON AbelianMonoid
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The class of multiplicative monoids, i.e. semigroups with an
++ additive identity element.
++
++ Axioms:
++   \spad{leftIdentity("+":(%,%)->%,0)}\tab{30}\spad{ 0+x=x }
++   \spad{rightIdentity("+":(%,%)->%,0)}\tab{30}\spad{ x+0=x }
-- following domain must be compiled with subsumption disabled
-- define SourceLevelSubset to be EQUAL
AbelianMonoid(): Category == AbelianSemiGroup with
    --operations
      0: % 
	++ 0 is the additive identity element.
      sample: %
	++ sample yields a value of type %
      zero?: % -> Boolean
	++ zero?(x) tests if x is equal to 0.
      *: (NonNegativeInteger,%) -> %
        ++ n * x is left-multiplication by a non negative integer
    add
      import RepeatedDoubling(%)
      zero? x == x = 0
      n:PositiveInteger * x:% == (n::NonNegativeInteger) * x
      sample() == 0
      if not (% has Ring) then
        n:NonNegativeInteger * x:% ==
          zero? n => 0
          double(n pretend PositiveInteger,x)

)abbrev category CABMON CancellationAbelianMonoid
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References: Davenport & Trager I
++ Description:
++ This is an \spadtype{AbelianMonoid} with the cancellation property, i.e.
++ \spad{ a+b = a+c => b=c }.
++ This is formalised by the partial subtraction operator,
++ which satisfies the axioms listed below:
++
++ Axioms:
++   \spad{c = a+b <=> c-b = a}
CancellationAbelianMonoid(): Category == AbelianMonoid with
    --operations
      subtractIfCan: (%,%) -> Union(%,"failed")
         ++ subtractIfCan(x, y) returns an element z such that \spad{z+y=x}
         ++ or "failed" if no such element exists.

)abbrev category ABELGRP AbelianGroup
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The class of abelian groups, i.e. additive monoids where
++ each element has an additive inverse.
++
++ Axioms:
++   \spad{-(-x) = x}
++   \spad{x+(-x) = 0}
-- following domain must be compiled with subsumption disabled
AbelianGroup(): Category == Join(CancellationAbelianMonoid, LeftLinearSet Integer) with
      -: % -> %           ++ \spad{-x} is the additive inverse of \spad{x}    
      "-": (%,%) -> %     ++ \spad{x-y} is the difference of \spad{x} 
                          ++ and \spad{y} i.e. \spad{x + (-y)}.
    add
      (x:% - y:%):% == x+(-y)
      subtractIfCan(x:%, y:%):Union(%, "failed") == (x-y) :: Union(%,"failed")
      n:NonNegativeInteger * x:% == (n::Integer) * x
      import RepeatedDoubling(%)
      if not (% has Ring) then
        n:Integer * x:% ==
          zero? n => 0
          positive? n => double(n pretend PositiveInteger,x)
          double((-n) pretend PositiveInteger,-x)

)abbrev category RNG Rng
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of associative rings, not necessarily commutative, and not
++ necessarily with a 1. This is a combination of an abelian group
++ and a semigroup, with multiplication distributing over addition.
++
++ Axioms:
++   \spad{ x*(y+z) = x*y + x*z}
++   \spad{ (x+y)*z = x*z + y*z }
++
++ Conditional attributes:
++   \spadnoZeroDivisors\tab{25}\spad{  ab = 0 => a=0 or b=0}
Rng(): Category == Join(AbelianGroup,SemiGroup)

)abbrev category LLINSET LeftLinearSet
++ Author: Gabriel Dos Reis
++ Date Created: May 31, 2009
++ Date Last Modified: May 31, 2009
++ Description:
++   A set is an \spad{S}-left linear set if it is stable by left-dilation
++   by elements in the semigroup \spad{S}.  
++ See Also: RightLinearSet.
LeftLinearSet(S: SemiGroup): Category == SetCategory with
   *: (S,%) -> %       
     ++ \spad{s*x} is the left-dilation of \spad{x} by \spad{s}.

)abbrev category RLINSET RightLinearSet
++ Author: Gabriel Dos Reis
++ Date Created: May 31, 2009
++ Date Last Modified: May 31, 2009
++ Description:
++   A set is an \spad{S}-right linear set if it is stable by right-dilation
++   by elements in the semigroup \spad{S}.
++ See Also: LeftLinearSet.
RightLinearSet(S: SemiGroup): Category == SetCategory with
   *: (%,S) -> %       
     ++ \spad{x*s} is the right-dilation of \spad{x} by \spad{s}.

)abbrev category LINSET LinearSet
++ Author: Gabriel Dos Reis
++ Date Created: May 31, 2009
++ Date Last Modified: May 31, 2009
++ Description:
++   A set is an \spad{S}-linear set if it is stable by dilation
++   by elements in the semigroup \spad{S}.
++ See Also: LeftLinearSet, RightLinearSet.
LinearSet(S: SemiGroup): Category == Join(LeftLinearSet S, RightLinearSet S)

)abbrev category LMODULE LeftModule
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of left modules over an rng (ring not necessarily with unit).
++ This is an abelian group which supports left multiplation by elements of
++ the rng.
++
++ Axioms:
++   \spad{ (a*b)*x = a*(b*x) }
++   \spad{ (a+b)*x = (a*x)+(b*x) }
++   \spad{ a*(x+y) = (a*x)+(a*y) }
LeftModule(R:Rng):Category == Join(AbelianGroup, LeftLinearSet R)

)abbrev category RMODULE RightModule
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of right modules over an rng (ring not necessarily with unit).
++ This is an abelian group which supports right multiplation by elements of
++ the rng.
++
++ Axioms:
++   \spad{ x*(a*b) = (x*a)*b }
++   \spad{ x*(a+b) = (x*a)+(x*b) }
++   \spad{ (x+y)*x = (x*a)+(y*a) }
RightModule(R:Rng):Category == Join(AbelianGroup, RightLinearSet R)

)abbrev category SRING SemiRing
++ Author: Gabriel Dos Reis
++ Date Created: March 7, 2011
++ Date Last Modified: March 7, 2011
++ Description:
++   The category of all semiring structures, e.g. triples (D,+,*)
++   such that (D,+) is an Abelian monoid and (D,*) is a monoid
++   with the following laws:
++ Axioms:
++    a * (b + c) = (a * b) + (a * c)
++    (b + c) * a = (b * a) + (c * a)
++    0 * a = 0
++    a * 0 = 0
SemiRing(): Category == Join(AbelianMonoid,Monoid)
)abbrev category RING Ring
++ Author:
++ Date Created:
++ Date Last Updated: February 14, 2012
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of rings with unity, always associative, but
++ not necessarily commutative.

Ring(): Category == Join(Rng,SemiRing,LeftModule(%),CoercibleFrom Integer) with
    --operations
      characteristic: NonNegativeInteger
        ++ characteristic() returns the characteristic of the ring
        ++ this is the smallest positive integer n such that
        ++ \spad{n*x=0} for all x in the ring, or zero if no such n
        ++ exists.
        --We can not make this a constant, since some domains are mutable
      unitsKnown
        ++ recip truly yields
        ++ reciprocal or "failed" if not a unit.
        ++ Note: \spad{recip(0) = "failed"}.
   add
      n:Integer
      coerce(n) == n * 1$%

)abbrev category DIOID Dioid
++ Author: Gabriel Dos Reis
++ Date Created: February 14, 2012
++ Date Last Modified: February 14, 2012
++ Description:
++   Dioid is the class of semirings where the addition operation
++   induces a canonical order relation.
Dioid(): Category == Join(OrderedAbelianMonoid,SemiRing)

)abbrev category BMODULE BiModule
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A \spadtype{BiModule} is both a left and right module with respect
++ to potentially different rings.
++
++ Axiom:
++   \spad{ r*(x*s) = (r*x)*s }
BiModule(R:Ring,S:Ring):Category ==
  Join(LeftModule(R),RightModule(S)) with
     leftUnitary ++ \spad{1 * x = x}
     rightUnitary ++ \spad{x * 1 = x}

)abbrev category ENTIRER EntireRing
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Entire Rings (non-commutative Integral Domains), i.e. a ring
++ not necessarily commutative which has no zero divisors.
++
++ Axioms:
++   \spad{ab=0 => a=0 or b=0}  -- known as noZeroDivisors
++   \spad{not(1=0)}
EntireRing():Category == Join(Ring,BiModule(%,%)) with
      noZeroDivisors  ++ if a product is zero then one of the factors
                      ++ must be zero.

)abbrev category CHARZ CharacteristicZero
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Rings of Characteristic Zero.
CharacteristicZero():Category == Ring

)abbrev category CHARNZ CharacteristicNonZero
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Rings of Characteristic Non Zero
CharacteristicNonZero():Category == Ring with
    charthRoot: % -> Maybe %
       ++ charthRoot(x) returns the pth root of x
       ++ where p is the characteristic of the ring.

)abbrev category COMRING CommutativeRing
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of commutative rings with unity, i.e. rings where
++ \spadop{*} is commutative, and which have a multiplicative identity.
++ element.
--CommutativeRing():Category == Join(Ring,BiModule(%:Ring,%:Ring)) with
CommutativeRing():Category == Join(Ring,BiModule(%,%)) with
    commutative("*")  ++ multiplication is commutative.

)abbrev category MODULE Module
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of modules over a commutative ring.
++
++ Axioms:
++   \spad{1*x = x}
++   \spad{(a*b)*x = a*(b*x)}
++   \spad{(a+b)*x = (a*x)+(b*x)}
++   \spad{a*(x+y) = (a*x)+(a*y)}
Module(R:CommutativeRing): Category == Join(BiModule(R,R), LinearSet R)
  add
    if not(R is %) then x:%*r:R == r*x

)abbrev category ALGEBRA Algebra
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of associative algebras (modules which are themselves rings).
++
++ Axioms:
++   \spad{(b+c)::% = (b::%) + (c::%)}
++   \spad{(b*c)::% = (b::%) * (c::%)}
++   \spad{(1::R)::% = 1::%}
++   \spad{b*x = (b::%)*x}
++   \spad{r*(a*b) = (r*a)*b = a*(r*b)}
Algebra(R:CommutativeRing): Category ==
  Join(Ring, Module R, CoercibleFrom R)
 add
  coerce(x:R):% == x * 1$%

)abbrev category LINEXP LinearlyExplicitRingOver
++ Author:
++ Date Created:
++ Date Last Updated: June 18, 2010
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++    An extension of left-module with an explicit linear dependence test.
LinearlyExplicitRingOver(R:Ring): Category == LeftModule R with
  leftReducedSystem: Vector % -> Matrix R
    ++ \spad{leftReducedSystem [v1,...,vn]} returns a matrix \spad{M}
    ++ with coefficients in \spad{R} such that the system of equations
    ++ \spad{c1*v1 + ... + cn*vn = 0$%} has the same solution as
    ++ \spad{c * M = 0} where \spad{c} is the row vector \spad{[c1,...cn]}.
  leftReducedSystem: (Vector %,%) -> Record(mat: Matrix R,vec: Vector R)
    ++ \spad{reducedSystem([v1,...,vn],u)} returns a matrix \spad{M}
    ++ with coefficients in \spad{R} and a vector \spad{w} such
    ++ that the system of equations \spad{c1*v1 + ... + cn*vn = u}
    ++ has the same solution as \spad{c * M = w} where \spad{c}
    ++ is the row vector \spad{[c1,...cn]}.
  reducedSystem: Matrix % -> Matrix R
    ++ reducedSystem(A) returns a matrix B such that \spad{A x = 0} and \spad{B x = 0}
    ++ have the same solutions in R.
  reducedSystem: (Matrix %,Vector %) -> Record(mat:Matrix R,vec:Vector R)
    ++ reducedSystem(A, v) returns a matrix B and a vector w such that
    ++ \spad{A x = v} and \spad{B x = w} have the same solutions in R.

)abbrev category FLINEXP FullyLinearlyExplicitRingOver
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ S is \spadtype{FullyLinearlyExplicitRingOver R} means that S is a
++ \spadtype{LinearlyExplicitRingOver R} and, in addition, if R is a
++ \spadtype{LinearlyExplicitRingOver Integer}, then so is S
FullyLinearlyExplicitRingOver(R:Ring):Category ==
  LinearlyExplicitRingOver R with
    if (R has LinearlyExplicitRingOver Integer) then
            LinearlyExplicitRingOver Integer
 add
  if not(R is Integer) then
    if (R has LinearlyExplicitRingOver Integer) then
      reducedSystem(m:Matrix %):Matrix(Integer) ==
        reducedSystem(reducedSystem(m)@Matrix(R))

      reducedSystem(m:Matrix %, v:Vector %):
        Record(mat:Matrix(Integer), vec:Vector(Integer)) ==
          rec := reducedSystem(m, v)@Record(mat:Matrix R, vec:Vector R)
          reducedSystem(rec.mat, rec.vec)

)abbrev category INTDOM IntegralDomain
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References: Davenport & Trager I
++ Description:
++ The category of commutative integral domains, i.e. commutative
++ rings with no zero divisors.
++
++ Conditional attributes:
++   canonicalUnitNormal\tab{20}the canonical field is the same for all associates
++   canonicalsClosed\tab{20}the product of two canonicals is itself canonical

IntegralDomain(): Category ==
--  Join(CommutativeRing, Algebra(%:CommutativeRing), EntireRing) with
  Join(CommutativeRing, Algebra(%), EntireRing) with
    --operations
      exquo: (%,%) -> Union(%,"failed")
            ++ exquo(a,b) either returns an element c such that
            ++ \spad{c*b=a} or "failed" if no such element can be found.
      unitNormal: % -> Record(unit:%,canonical:%,associate:%)
            ++ unitNormal(x) tries to choose a canonical element
            ++ from the associate class of x.
            ++ The attribute canonicalUnitNormal, if asserted, means that
            ++ the "canonical" element is the same across all associates of x
            ++ if \spad{unitNormal(x) = [u,c,a]} then
            ++ \spad{u*c = x}, \spad{a*u = 1}.
      unitCanonical: % -> %
            ++ \spad{unitCanonical(x)} returns \spad{unitNormal(x).canonical}.
      associates?: (%,%) -> Boolean
        ++ associates?(x,y) tests whether x and y are associates, i.e.
        ++ differ by a unit factor.
      unit?: % -> Boolean
        ++ unit?(x) tests whether x is a unit, i.e. is invertible.
 add
      -- declaration
      x,y: %
      -- definitions
      UCA ==> Record(unit:%,canonical:%,associate:%)
      if not (% has Field) then
        unitNormal(x) == [1$%,x,1$%]$UCA -- the non-canonical definition
      unitCanonical(x) == unitNormal(x).canonical -- always true
      recip(x) == if zero? x then "failed" else 1$% exquo x
      unit?(x) == (recip x case "failed" => false; true)
      if % has canonicalUnitNormal then
         associates?(x,y) ==
           (unitNormal x).canonical = (unitNormal y).canonical
       else
         associates?(x,y) ==
           zero? x => zero? y
           zero? y => false
           x exquo y case "failed" => false
           y exquo x case "failed" => false
           true

)abbrev category GCDDOM GcdDomain
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References: Davenport & Trager 1
++ Description:
++ This category describes domains where
++ \spadfun{gcd} can be computed but where there is no guarantee
++ of the existence of \spadfun{factor} operation for factorisation into irreducibles.
++ However, if such a \spadfun{factor} operation exist, factorization will be
++ unique up to order and units.

GcdDomain(): Category == IntegralDomain with
    --operations
      gcd: (%,%) -> %
            ++ gcd(x,y) returns the greatest common divisor of x and y.
            -- gcd(x,y) = gcd(y,x) in the presence of canonicalUnitNormal,
            -- but not necessarily elsewhere
      gcd: List(%) -> %
            ++ gcd(l) returns the common gcd of the elements in the list l.
      lcm: (%,%) -> %
            ++ lcm(x,y) returns the least common multiple of x and y.
            -- lcm(x,y) = lcm(y,x) in the presence of canonicalUnitNormal,
            -- but not necessarily elsewhere
      lcm: List(%) -> %
            ++ lcm(l) returns the least common multiple of the elements of the list l.
      gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) ->
           SparseUnivariatePolynomial %
	    ++ gcdPolynomial(p,q) returns the greatest common divisor (gcd) of 
	    ++ univariate polynomials over the domain
    add
      lcm(x: %,y: %) ==
        zero? y => 0
        zero? x => 0
        LCM : Union(%,"failed") := y exquo gcd(x,y)
        LCM case % =>  x * LCM
        error "bad gcd in lcm computation"
      lcm(l:List %) == reduce(lcm,l,1,0)
      gcd(l:List %) == reduce(gcd,l,0,1)
      SUP ==> SparseUnivariatePolynomial
      gcdPolynomial(p1,p2) ==
        zero? p1 => unitCanonical p2
        zero? p2 => unitCanonical p1
        c1:= content(p1); c2:= content(p2)
        p1:= (p1 exquo c1)::SUP %
        p2:= (p2 exquo c2)::SUP %
        if positive?(e1:=minimumDegree p1) then
          p1:=(p1 exquo monomial(1,e1))::SUP %
        if positive?(e2:=minimumDegree p2) then
          p2:=(p2 exquo monomial(1,e2))::SUP %
        e1:=min(e1,e2); c1:=gcd(c1,c2)
        p1:=
           zero? degree p1 or zero? degree p2 => monomial(c1,0)
           p:= subResultantGcd(p1,p2)
           zero? degree p => monomial(c1,0)
           c2:= gcd(leadingCoefficient p1,leadingCoefficient p2)
           unitCanonical(c1 * primitivePart(((c2*p) exquo leadingCoefficient p)::SUP %))
        zero? e1 => p1
        monomial(1,e1)*p1

)abbrev category UFD UniqueFactorizationDomain
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A constructive unique factorization domain, i.e. where
++ we can constructively factor members into a product of
++ a finite number of irreducible elements.

UniqueFactorizationDomain(): Category == GcdDomain with
    --operations
      prime?: % -> Boolean
            ++ prime?(x) tests if x can never be written as the product of two
            ++ non-units of the ring,
            ++ i.e., x is an irreducible element.
      squareFree    : % -> Factored(%)
            ++ squareFree(x) returns the square-free factorization of x
            ++ i.e. such that the factors are pairwise relatively prime
            ++ and each has multiple prime factors.
      squareFreePart: % -> %
            ++ squareFreePart(x) returns a product of prime factors of
            ++ x each taken with multiplicity one.
      factor: % -> Factored(%)
            ++ factor(x) returns the factorization of x into irreducibles.
 add
  squareFreePart x ==
    unit(s := squareFree x) * _*/[f.factor for f in factors s]

  prime? x == one?(# factorList factor x)

)abbrev category PFECAT PolynomialFactorizationExplicit
++ Author: James Davenport
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This is the category of domains that know "enough" about
++ themselves in order to factor univariate polynomials over themselves.
++ This will be used in future releases for supporting factorization
++ over finitely generated coefficient fields, it is not yet available
++ in the current release of axiom.

PolynomialFactorizationExplicit(): Category == Definition where
  P ==> SparseUnivariatePolynomial %
  Definition ==>
    UniqueFactorizationDomain with
    -- operations
       squareFreePolynomial: P -> Factored(P)
              ++ squareFreePolynomial(p) returns the
              ++ square-free factorization of the
              ++ univariate polynomial p.
       factorPolynomial: P -> Factored(P)
              ++ factorPolynomial(p) returns the factorization
              ++ into irreducibles of the univariate polynomial p.
       factorSquareFreePolynomial: P -> Factored(P)
              ++ factorSquareFreePolynomial(p) factors the
              ++ univariate polynomial p into irreducibles
              ++ where p is known to be square free
              ++ and primitive with respect to its main variable.
       gcdPolynomial: (P, P) -> P
              ++ gcdPolynomial(p,q) returns the gcd of the univariate
              ++ polynomials p qnd q.
              -- defaults to Euclidean, but should be implemented via
              -- modular or p-adic methods.
       solveLinearPolynomialEquation: (List P, P) -> Union(List P,"failed")
              ++ solveLinearPolynomialEquation([f1, ..., fn], g)
              ++ (where the fi are relatively prime to each other)
              ++ returns a list of ai such that
              ++ \spad{g/prod fi = sum ai/fi}
              ++ or returns "failed" if no such list of ai's exists.
       if % has CharacteristicNonZero then
         conditionP: Matrix % -> Union(Vector %,"failed")
              ++ conditionP(m) returns a vector of elements, not all zero,
              ++ whose \spad{p}-th powers (p is the characteristic of the domain)
              ++ are a solution of the homogenous linear system represented
              ++ by m, or "failed" is there is no such vector.
         charthRoot: % -> Maybe %
              ++ charthRoot(r) returns the \spad{p}-th root of r, or
              ++ \spad{nothing} if none exists in the domain.
              -- this is a special case of conditionP, but often the one we want
      add
        gcdPolynomial(f,g) ==
           zero? f => g
           zero? g => f
           cf:=content f
           if not one? cf then f:=(f exquo cf)::P
           cg:=content g
           if not one? cg then g:=(g exquo cg)::P
           ans:=subResultantGcd(f,g)$P
           gcd(cf,cg)*(ans exquo content ans)::P
        if % has CharacteristicNonZero then
          charthRoot f ==
             -- to take p'th root of f, solve the system X-fY=0,
             -- so solution is [x,y]
             -- with x^p=X and y^p=Y, then (x/y)^p = f
             zero? f => just 0
             m:Matrix % := matrix [[1,-f]]
             ans:= conditionP m
             ans case "failed" => nothing
             r := (ans.1) exquo (ans.2)
             r case "failed" => nothing
             just r
        if % has Field then
          solveLinearPolynomialEquation(lf,g) ==
            multiEuclidean(lf,g)$P
        else solveLinearPolynomialEquation(lf,g) ==
               LPE ==> LinearPolynomialEquationByFractions %
               solveLinearPolynomialEquationByFractions(lf,g)$LPE

)abbrev category PID PrincipalIdealDomain
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of constructive principal ideal domains, i.e.
++ where a single generator can be constructively found for
++ any ideal given by a finite set of generators.
++ Note that this constructive definition only implies that
++ finitely generated ideals are principal. It is not clear
++ what we would mean by an infinitely generated ideal.

PrincipalIdealDomain(): Category == GcdDomain with
    --operations
      principalIdeal: List % -> Record(coef:List %,generator:%)
         ++ principalIdeal([f1,...,fn]) returns a record whose
         ++ generator component is a generator of the ideal
         ++ generated by \spad{[f1,...,fn]} whose coef component satisfies
         ++ \spad{generator = sum (input.i * coef.i)}
      expressIdealMember: (List %,%) -> Maybe List %
         ++ \spad{expressIdealMember([f1,...,fn],h)} returns a representation
         ++ of h as a linear combination of the fi or \spad{nothing} if h
         ++ is not in the ideal generated by the fi.

)abbrev category EUCDOM EuclideanDomain
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A constructive euclidean domain, i.e. one can divide producing
++ a quotient and a remainder where the remainder is either zero
++ or is smaller (\spadfun{euclideanSize}) than the divisor.
++
++ Conditional attributes:
++   multiplicativeValuation\tab{25}\spad{Size(a*b)=Size(a)*Size(b)}
++   additiveValuation\tab{25}\spad{Size(a*b)=Size(a)+Size(b)}

EuclideanDomain(): Category == PrincipalIdealDomain with
    --operations
      sizeLess?: (%,%) -> Boolean
         ++ sizeLess?(x,y) tests whether x is strictly
         ++ smaller than y with respect to the \spadfunFrom{euclideanSize}{EuclideanDomain}.
      euclideanSize: % -> NonNegativeInteger
         ++ euclideanSize(x) returns the euclidean size of the element x.
         ++ Error: if x is zero.
      divide: (%,%) -> Record(quotient:%,remainder:%)
         ++ divide(x,y) divides x by y producing a record containing a
         ++ \spad{quotient} and \spad{remainder},
         ++ where the remainder is smaller (see \spadfunFrom{sizeLess?}{EuclideanDomain})
         ++ than the divisor y.
      quo : (%,%) -> %
         ++ x quo y is the same as \spad{divide(x,y).quotient}.
         ++ See \spadfunFrom{divide}{EuclideanDomain}.
      rem: (%,%) -> %
         ++ x rem y is the same as \spad{divide(x,y).remainder}.
         ++ See \spadfunFrom{divide}{EuclideanDomain}.
      extendedEuclidean: (%,%) -> Record(coef1:%,coef2:%,generator:%)
                     -- formerly called princIdeal
            ++ extendedEuclidean(x,y) returns a record rec where
            ++ \spad{rec.coef1*x+rec.coef2*y = rec.generator} and
            ++ rec.generator is a gcd of x and y.
            ++ The gcd is unique only
            ++ up to associates if \spadatt{canonicalUnitNormal} is not asserted.
            ++ \spadfun{principalIdeal} provides a version of this operation
            ++ which accepts an arbitrary length list of arguments.
      extendedEuclidean: (%,%,%) -> Union(Record(coef1:%,coef2:%),"failed")
                     -- formerly called expressIdealElt
          ++ extendedEuclidean(x,y,z) either returns a record rec
          ++ where \spad{rec.coef1*x+rec.coef2*y=z} or returns "failed"
          ++ if z cannot be expressed as a linear combination of x and y.
      multiEuclidean: (List %,%) -> Union(List %,"failed")
          ++ multiEuclidean([f1,...,fn],z) returns a list of coefficients
          ++ \spad{[a1, ..., an]} such that
          ++ \spad{ z / prod fi = sum aj/fj}.
          ++ If no such list of coefficients exists, "failed" is returned.
    add
      -- declarations
      x,y,z: %
      l: List %
      -- definitions
      sizeLess?(x,y) ==
            zero? y => false
            zero? x => true
            euclideanSize(x)<euclideanSize(y)
      x quo y == divide(x,y).quotient --divide must be user-supplied
      x rem y == divide(x,y).remainder
      x exquo y ==
         zero? x => 0
         zero? y => "failed"
         qr:=divide(x,y)
         zero?(qr.remainder) => qr.quotient
         "failed"
      gcd(x,y) ==                --Euclidean Algorithm
         x:=unitCanonical x
         y:=unitCanonical y
         while not zero? y repeat
            (x,y):= (y,x rem y)
            y:=unitCanonical y             -- this doesn't affect the
                                           -- correctness of Euclid's algorithm,
                                           -- but
                                           -- a) may improve performance
                                           -- b) ensures gcd(x,y)=gcd(y,x)
                                           --    if canonicalUnitNormal
         x
      IdealElt ==> Record(coef1:%,coef2:%,generator:%)
      unitNormalizeIdealElt(s:IdealElt):IdealElt ==
         (u,c,a):=unitNormal(s.generator)
         one? a => s
         [a*s.coef1,a*s.coef2,c]$IdealElt
      extendedEuclidean(x,y) ==         --Extended Euclidean Algorithm
         s1:=unitNormalizeIdealElt([1$%,0$%,x]$IdealElt)
         s2:=unitNormalizeIdealElt([0$%,1$%,y]$IdealElt)
         zero? y => s1
         zero? x => s2
         while not zero?(s2.generator) repeat
            qr:= divide(s1.generator, s2.generator)
            s3:=[s1.coef1 - qr.quotient * s2.coef1,
                 s1.coef2 - qr.quotient * s2.coef2, qr.remainder]$IdealElt
            s1:=s2
            s2:=unitNormalizeIdealElt s3
         if not(zero?(s1.coef1)) and not sizeLess?(s1.coef1,y)
           then
              qr:= divide(s1.coef1,y)
              s1.coef1:= qr.remainder
              s1.coef2:= s1.coef2 + qr.quotient * x
              s1 := unitNormalizeIdealElt s1
         s1

      TwoCoefs ==> Record(coef1:%,coef2:%)
      extendedEuclidean(x,y,z) ==
         zero? z => [0,0]$TwoCoefs
         s:= extendedEuclidean(x,y)
         (w:= z exquo s.generator) case "failed" => "failed"
         zero? y =>
            [s.coef1 * w, s.coef2 * w]$TwoCoefs
         qr:= divide((s.coef1 * w), y)
         [qr.remainder, s.coef2 * w + qr.quotient * x]$TwoCoefs
      principalIdeal l ==
         l = [] => error "empty list passed to principalIdeal"
         rest l = [] =>
              uca:=unitNormal(first l)
              [[uca.unit],uca.canonical]
         rest rest l = [] =>
             u:= extendedEuclidean(first l,second l)
             [[u.coef1, u.coef2], u.generator]
         v:=principalIdeal rest l
         u:= extendedEuclidean(first l,v.generator)
         [[u.coef1,:[u.coef2*vv for vv in v.coef]],u.generator]
      expressIdealMember(l,z) ==
         zero? z => just [0 for v in l]
         pid := principalIdeal l
         (q := z exquo (pid.generator)) case "failed" => nothing
         just [q*v for v in pid.coef]
      multiEuclidean(l,z) ==
         n := #l
         zero? n => error "empty list passed to multiEuclidean"
         one? n => [z]
         l1 := copy l
         l2 := split!(l1, n quo 2)
         u:= extendedEuclidean(*/l1, */l2, z)
         u case "failed" => "failed"
         v1 := multiEuclidean(l1,u.coef2)
         v1 case "failed" => "failed"
         v2 := multiEuclidean(l2,u.coef1)
         v2 case "failed" => "failed"
         concat(v1,v2)

)abbrev category DIVRING DivisionRing
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A division ring (sometimes called a skew field),
++ i.e. a not necessarily commutative ring where
++ all non-zero elements have multiplicative inverses.

DivisionRing(): Category ==
 Join(EntireRing, Algebra Fraction Integer) with
      **: (%,Integer) -> %
          ++ x**n returns x raised to the integer power n.
      inv : % -> %
          ++ inv x returns the multiplicative inverse of x.
          ++ Error: if x is 0.
-- Q-algebra is a lie, should be conditional on characteristic 0,
-- but knownInfo cannot handle the following commented
--    if % has CharacteristicZero then Algebra Fraction Integer
    add
      n: Integer
      x: %
      import RepeatedSquaring(%)
      x ** n: Integer ==
         zero? n => 1
         zero? x =>
            negative? n => error "division by zero"
            x
         negative? n =>
            expt(inv x,(-n) pretend PositiveInteger)
         expt(x,n pretend PositiveInteger)
--    if % has CharacteristicZero() then
      q:Fraction(Integer) * x:% == numer(q) * inv(denom(q)::%) * x

)abbrev category FIELD Field
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of commutative fields, i.e. commutative rings
++ where all non-zero elements have multiplicative inverses.
++ The \spadfun{factor} operation while trivial is useful to have defined.
++
++ Axioms:
++   \spad{a*(b/a) = b}
++   \spad{inv(a) = 1/a}

Field(): Category == Join(EuclideanDomain,UniqueFactorizationDomain,
  DivisionRing) with
    --operations
      /: (%,%) -> %
        ++ x/y divides the element x by the element y.
        ++ Error: if y is 0.
      canonicalUnitNormal  ++ either 0 or 1.
      canonicalsClosed     ++ since \spad{0*0=0}, \spad{1*1=1}
    add
      --declarations
      x,y: %
      n: Integer
      -- definitions
      UCA ==> Record(unit:%,canonical:%,associate:%)
      unitNormal(x) ==
          if zero? x then [1$%,0$%,1$%]$UCA else [x,1$%,inv(x)]$UCA
      unitCanonical(x) == if zero? x then x else 1
      associates?(x,y) == if zero? x then zero? y else not(zero? y)
      inv x ==((u:=recip x) case "failed" => error "not invertible"; u)
      x exquo y == (zero? y => "failed"; x / y)
      gcd(x,y) == 1
      euclideanSize(x) == 0
      prime? x == false
      squareFree x == x::Factored(%)
      factor x == x::Factored(%)
      x / y == (zero? y => error "catdef: division by zero"; x * inv(y))
      divide(x,y) == [x / y,0]

)abbrev category FINITE Finite
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of domains composed of a finite set of elements.
++ We include the functions \spadfun{lookup} and \spadfun{index} to give a bijection
++ between the finite set and an initial segment of positive integers.
++
++ Axioms:
++   \spad{lookup(index(n)) = n}
++   \spad{index(lookup(s)) = s}

Finite(): Category == SetCategory with
      size: () ->  NonNegativeInteger
        ++ size() returns the number of elements in the set.
      index: PositiveInteger -> %
        ++ index(i) takes a positive integer i less than or equal
        ++ to \spad{size()} and
        ++ returns the \spad{i}-th element of the set. This operation establishs a bijection
        ++ between the elements of the finite set and \spad{1..size()}.
      lookup: % -> PositiveInteger
        ++ lookup(x) returns a positive integer such that
        ++ \spad{x = index lookup x}.
      random: () -> %
        ++ random() returns a random element from the set.
  add
      --FIXME: Tthe only purpose of this local function is to bring
      --FIXME: the compiler to admission that the successor of a
      --FIXME: nonnegative integer has positive value.
      --FIXME: Take it out when the its logic is sufficiently advanced.
      succ(x: NonNegativeInteger): PositiveInteger ==
        (1 + x) : PositiveInteger
      random() ==
        index succ random(size())$NonNegativeInteger
)abbrev category VSPACE VectorSpace
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Vector Spaces (not necessarily finite dimensional) over a field.

VectorSpace(S:Field): Category ==  Module(S) with
    /      : (%, S) -> %
      ++ x/y divides the vector x by the scalar y.
    dimension: () -> CardinalNumber
      ++ dimension() returns the dimensionality of the vector space.
  add
    (v:% / s:S):% == inv(s) * v

import Boolean
)abbrev category ORDSET OrderedSet
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The class of totally ordered sets, that is, sets such that for each pair of elements \spad{(a,b)}
++ exactly one of the following relations holds \spad{a<b or a=b or b<a}
++ and the relation is transitive, i.e.  \spad{a<b and b<c => a<c}.

OrderedSet(): Category == Join(SetCategory,OrderedType) 

)abbrev category ORDFIN OrderedFinite
++ Author:
++ Date Created:
++ Date Last Updated: December 27, 2008
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Ordered finite sets.

OrderedFinite(): Category == Join(OrderedSet, Finite) with
     min: % ++ \spad{min} is the minimum value of %.
     max: % ++ \spad{max} is the maximum value of %.

)abbrev category OSGROUP OrderedSemiGroup
++ Author: Gabriel Dos Reis
++ Date Create May 25, 2008
++ Date Last Updated: May 25, 2008
++ Description:  Semigroups with compatible ordering.
OrderedSemiGroup(): Category == Join(OrderedSet, SemiGroup)
)abbrev category ORDMON OrderedMonoid
++ Author:
++ Date Created:
++ Date Last Updated: May 28, 2008
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Ordered sets which are also monoids, such that multiplication
++ preserves the ordering.
++
++ Axioms:
++   \spad{x < y => x*z < y*z}
++   \spad{x < y => z*x < z*y}

OrderedMonoid(): Category == Join(OrderedSemiGroup, Monoid)

)abbrev category OASGP OrderedAbelianSemiGroup
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Ordered sets which are also abelian semigroups, such that the addition
++ preserves the ordering.
++   \spad{ x < y => x+z < y+z}

OrderedAbelianSemiGroup(): Category == Join(OrderedSet, AbelianSemiGroup)

)abbrev category OAMON OrderedAbelianMonoid
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Ordered sets which are also abelian monoids, such that the addition
++ preserves the ordering.

OrderedAbelianMonoid(): Category ==
    Join(OrderedAbelianSemiGroup, AbelianMonoid) with
      positive?: % -> Boolean
        ++ \spad{positive?(x)} holds when \spad{x} is greater
        ++ than \spad{0}.
  add    
    positive? x == 0 < x

)abbrev category OCAMON OrderedCancellationAbelianMonoid
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Ordered sets which are also abelian cancellation monoids, such that the addition
++ preserves the ordering.

OrderedCancellationAbelianMonoid(): Category ==
        Join(OrderedAbelianMonoid, CancellationAbelianMonoid)

)abbrev category OAGROUP OrderedAbelianGroup
++ Author:
++ Date Created:
++ Date Last Updated: March 10, 2011
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Ordered sets which are also abelian groups, such that the addition preserves
++ the ordering.

OrderedAbelianGroup(): Category ==
    Join(OrderedCancellationAbelianMonoid, AbelianGroup) with
      negative?: % -> Boolean
        ++ \spad{negative?(x)} holds when \spad{x} is less than \spad{0}.
      sign: % -> Integer
        ++ \spad{sign(x)} is \spad{1} if \spad{x} is positive,
        ++ \spad{-1} if \spad{x} is negative, and \spad{0} otherwise.
      abs: % -> %
        ++ \spad{abs(x)} returns the absolute value of \spad{x}.
  add
    negative? x == x < 0
    sign x ==
      positive? x => 1
      negative? x => -1
      0
    abs x ==
      positive? x => x
      negative? x => -x
      0
)abbrev category ORDRING OrderedRing
++ Author:
++ Date Created:
++ Date Last Updated: March 10, 2011
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Ordered sets which are also rings, that is, domains where the ring
++ operations are compatible with the ordering.
++
++ Axiom:
++   \spad{0<a and b<c => ab< ac}

OrderedRing(): Category == Join(OrderedAbelianGroup,Ring,Monoid)

)abbrev category OINTDOM OrderedIntegralDomain
++ Author: JH Davenport (after L Gonzalez-Vega)
++ Date Created: 30.1.96
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Description:
++ The category of ordered commutative integral domains, where ordering
++ and the arithmetic operations are compatible
++

OrderedIntegralDomain(): Category ==
  Join(IntegralDomain, OrderedRing) 

)abbrev category OAMONS OrderedAbelianMonoidSup
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This domain is an OrderedAbelianMonoid with a \spadfun{sup} operation added.
++ The purpose of the \spadfun{sup} operator in this domain is to act as a supremum
++ with respect to the partial order imposed by \spadop{-}, rather than with respect to
++ the total \spad{>} order (since that is "max").
++
++ Axioms:
++   \spad{sup(a,b)-a \~~= "failed"}
++   \spad{sup(a,b)-b \~~= "failed"}
++   \spad{x-a \~~= "failed" and x-b \~~= "failed" => x >= sup(a,b)}

OrderedAbelianMonoidSup(): Category == OrderedCancellationAbelianMonoid with
    --operation
      sup: (%,%) -> %
        ++ sup(x,y) returns the least element from which both
        ++ x and y can be subtracted.

)abbrev category DIFFDOM DifferentialDomain
++ Author: Gabriel Dos Reis
++ Date Created: June 13, 2010
++ Date Last Modified: June 13, 2010
++ Description:
++   This category captures the interface of domains with a distinguished
++   operation named \spad{differentiate}.  Usually, additional properties
++   are wanted.  For example, that it obeys the usual Leibniz identity
++   of differentiation of product, in case of differential rings. One
++   could also want \spad{differentiate} to obey the chain rule when
++   considering differential manifolds.
++   The lack of specific requirement in this category is an implicit
++   admission that currently \Language{} is not expressive enough to
++   express the most general notion of differentiation in an adequate
++   manner, suitable for computational purposes.
DifferentialDomain(T: Type): Category == Type with
    differentiate: % -> T
      ++ \spad{differentiate x} compute the derivative of \spad{x}.
    D: % -> T
      ++ \spad{D x} is a shorthand for \spad{differentiate x}
  add
    D x ==
      differentiate x

)abbrev category DIFFSPC DifferentialSpace
++ Author: Gabriel Dos Reis
++ Date Created: June 13, 2010
++ Date Last Modified: June 15, 2010
++ Description:
++   This category is like \spadtype{DifferentialDomain} where the
++   target of the differentiation operator is the same as its source.
DifferentialSpace(): Category == DifferentialDomain % with
    differentiate: (%, NonNegativeInteger) -> %
      ++ \spad{differentiate(x,n)} returns the \spad{n}-th
      ++ derivative of \spad{x}.
    D: (%, NonNegativeInteger) -> %
      ++ \spad{D(x, n)} returns the \spad{n}-th derivative of \spad{x}.
  add
    differentiate(r, n) ==
      for i in 1..n repeat r := differentiate r
      r
    D(r,n) ==
      differentiate(r,n)

)abbrev category DIFRING DifferentialRing
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ An ordinary differential ring, that is, a ring with an operation
++ \spadfun{differentiate}.
++
++ Axioms:
++   \spad{differentiate(x+y) = differentiate(x)+differentiate(y)}
++   \spad{differentiate(x*y) = x*differentiate(y) + differentiate(x)*y}

DifferentialRing(): Category == Join(Ring,DifferentialSpace)

)abbrev category DIFFMOD DifferentialModule
++ Author:  Gabriel Dos Reis
++ Date Created: June 14, 2010
++ Date Last Updated: Jun 16, 2010
++ Related Constructors: Module, DifferentialSpace
++ Also See:
++ Description:
++   An R-module equipped with a distinguised differential operator.
++   If R is a differential ring, then differentiation on the module
++   should extend differentiation on the differential ring R.  The
++   latter can be the null operator. In that case, the differentiation
++   operator on the module is just an R-linear operator.  For that
++   reason, we do not require that the ring R be a DifferentialRing; 
++
++ Axioms:
++   \spad{differentiate(x + y) = differentiate(x) + differentiate(x)}
++   \spad{differentiate(r*y) = r*differentiate(y) + differentiate(r)*y}

DifferentialModule(R: Ring): Category ==
  Join(BiModule(R,R), DifferentialSpace) with
    if R has CommutativeRing then Module R
)abbrev category DMEXT DifferentialModuleExtension
++ Author:  Gabriel Dos Reis
++ Date Created: June 16, 2010
++ Date Last Updated: Jun 16, 2010
++ Related Constructors: Module, DifferentialSpaceExtension
++ Also See:
++   DifferentialExtension
++ Description:
++   Category of modules that extend differential rings.
++
DifferentialModuleExtension(R: Ring): Category ==
  Join(BiModule(R,R),DifferentialSpaceExtension R) with
    if R has DifferentialSpace then DifferentialModule R
    if R has PartialDifferentialSpace Symbol then
      PartialDifferentialModule(R,Symbol)
)abbrev category PDDOM PartialDifferentialDomain
++ Author: Gabriel Dos Reis
++ Date Created: June 16, 2010
++ Date Last Modified: June 16, 2010
++ Description:
++   This category captures the interface of domains with a distinguished
++   operation named \spad{differentiate} for partial differentiation with
++   respect to some domain of variables.
++ See Also:
++   DifferentialDomain, PartialDifferentialSpace
PartialDifferentialDomain(T: Type, S: Type): Category == Type with
    differentiate: (%,S) -> T
      ++ \spad{differentiate(x,v)} computes the partial derivative
      ++ of \spad{x} with respect to \spad{v}.
    D: (%,S) -> T
      ++ \spad{D(x,v)} is a shorthand for \spad{differentiate(x,v)}
  add
    D(x,v) ==
      differentiate(x,v)

)abbrev category PDSPC PartialDifferentialSpace
++ Author: Gabriel Dos Reis
++ Date Created: June 16, 2010
++ Date Last Modified: June 16, 2010
++ Description:
++   This category captures the interface of domains stable by partial
++   differentiation with respect to variables from some domain.
++ See Also:
++   PartialDifferentialDomain
PartialDifferentialSpace(S: SetCategory): Category ==
    PartialDifferentialDomain(%,S) with
      differentiate: (%,List S) -> %
        ++ \spad{differentiate(x,[s1,...sn])} computes successive
        ++ partial derivatives, i.e.
        ++ \spad{differentiate(...differentiate(x, s1)..., sn)}.
      differentiate: (%,S,NonNegativeInteger) -> %
        ++ \spad{differentiate(x,s,n)} computes multiple partial
        ++ derivatives, i.e. \spad{n}-th derivative of \spad{x}
        ++ with respect to \spad{s}.
      differentiate: (%,List S,List NonNegativeInteger) -> %
        ++ \spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes
        ++ multiple partial derivatives, i.e.
      D: (%,List S) -> %
        ++ \spad{D(x,[s1,...sn])} is a shorthand for
        ++ \spad{differentiate(x,[s1,...sn])}.
      D: (%,S,NonNegativeInteger) -> %
        ++ \spad{D(x,s,n)} is a shorthand for \spad{differentiate(x,s,n)}.
      D: (%,List S,List NonNegativeInteger) -> %
        ++ \spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for
        ++ \spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.
  add
    differentiate(r: %,l: List S) ==
      for s in l repeat r := differentiate(r, s)
      r

    differentiate(r: %,s: S,n: NonNegativeInteger) ==
      for i in 1..n repeat r := differentiate(r, s)
      r

    differentiate(r: %,ls: List S,ln: List NonNegativeInteger) ==
      for s in ls for n in ln repeat r := differentiate(r, s, n)
      r

    D(r: %,v: S) ==
      differentiate(r,v)

    D(r: %,lv: List S) ==
      differentiate(r,lv)
    D(r: %,v: S,n: NonNegativeInteger) ==
      differentiate(r,v,n)
    D(r: %,lv: List S,ln: List NonNegativeInteger) ==
      differentiate(r, lv, ln)

)abbrev category PDRING PartialDifferentialRing
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A partial differential ring with differentiations indexed by a parameter type S.
++
++ Axioms:
++   \spad{differentiate(x+y,e) = differentiate(x,e)+differentiate(y,e)}
++   \spad{differentiate(x*y,e) = x*differentiate(y,e) + differentiate(x,e)*y}

PartialDifferentialRing(S:SetCategory): Category ==
  Join(Ring,PartialDifferentialSpace S)

)abbrev category PDMOD PartialDifferentialModule
++ Author: Gabriel Dos Reis
++ Date Created: June 16, 2010
++ Date Last Updated: June 18, 2010
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++   A partial differential R-module with differentiations
++   indexed by a parameter type S.
++
++ Axioms:
++   \spad{differentiate(x+y,e) = differentiate(x,e)+differentiate(y,e)}
++   \spad{differentiate(r*x,e) = r*differentiate(x,e) + differentiate(r,e)*x}
++   \spad{differentiate(x*r,e) = x*differentiate(r,e) + differentiate(x,e)*r}

PartialDifferentialModule(R: Ring,S: SetCategory): Category ==
  Join(BiModule(R,R),PartialDifferentialSpace S) with
     if R has CommutativeRing then Module R

)abbrev category DIFEXT DifferentialExtension
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Differential extensions of a ring R.
++ Given a differentiation on R, extend it to a differentiation on %.

DifferentialExtension(R:Ring): Category ==
  Join(Ring,DifferentialSpaceExtension R) with
    if R has DifferentialRing then DifferentialRing
    if R has PartialDifferentialRing(Symbol) then
             PartialDifferentialRing(Symbol)

)abbrev category DSEXT DifferentialSpaceExtension
++ Author:  Gabriel Dos Reis
++ Date Created: June 16, 2010
++ Date Last Updated: Jun 16, 2010
++ Related Constructors: Module, DifferentialSpace
++ Also See:
++ Description:
++   Extension of a base differential space with a derivation.
++
DifferentialSpaceExtension(R: Type): Category == Type with
    differentiate: (%,R -> R) -> %
      ++ \spad{differentiate(x,d)} computes the derivative of
      ++ \spad{x}, extending differentiation \spad{d} on \spad{R}.
    differentiate: (%,R -> R,NonNegativeInteger) -> %
      ++ \spad{differentiate(x,d,n)} computes the \spad{n}-th derivative
      ++ of \spad{x} using a derivation extending \spad{d} on \spad{R}.
    D: (%,R -> R) -> %
      ++ \spad{D(x,d)} is a shorthand for \spad{differentiate(x,d)}.
    D: (%,R -> R,NonNegativeInteger) -> %
      ++ \spad{D(x,d,n)} is a shorthand for \spad{differentiate(x,d,n)}.
    if R has DifferentialSpace then DifferentialSpace
    if R has PartialDifferentialSpace Symbol then
      PartialDifferentialSpace Symbol
  add
    differentiate(x: %, d: R -> R, n: NonNegativeInteger):% ==
      for i in 1..n repeat x := differentiate(x,d)
      x

    D(x: %, d: R -> R) ==
      differentiate(x, d)

    D(x: %, d: R -> R, n: NonNegativeInteger) ==
      differentiate(x,d,n)

    if R has DifferentialSpace then
      differentiate x == differentiate(x, differentiate$R)

    if R has PartialDifferentialSpace Symbol then
      differentiate(x:%, v: Symbol):% ==
        differentiate(x, differentiate(#1, v)$R)