This file is indexed.

/usr/lib/open-axiom/src/algebra/combfunc.spad is in open-axiom-source 1.4.1+svn~2626-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2009, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

-- SPAD files for the functional world should be compiled in the
-- following order:
--
--   op  kl  function  funcpkgs  manip  algfunc
--   elemntry  constant  funceval  COMBFUNC  fe

)abbrev category COMBOPC CombinatorialOpsCategory
++ Category for summations and products
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 22 February 1993 (JHD/BMT)
++ Description:
++   CombinatorialOpsCategory is the category obtaining by adjoining
++   summations and products to the usual combinatorial operations;
CombinatorialOpsCategory(): Category ==
  CombinatorialFunctionCategory with
    factorials : $ -> $
      ++ factorials(f) rewrites the permutations and binomials in f
      ++ in terms of factorials;
    factorials : ($, Symbol) -> $
      ++ factorials(f, x) rewrites the permutations and binomials in f
      ++ involving x in terms of factorials;
    summation  : ($, Symbol)            -> $
      ++ summation(f(n), n) returns the formal sum S(n) which verifies
      ++ S(n+1) - S(n) = f(n);
    summation  : ($, SegmentBinding $)  -> $
      ++ summation(f(n), n = a..b) returns f(a) + ... + f(b) as a
      ++ formal sum;
    product    : ($, Symbol)            -> $
      ++ product(f(n), n) returns the formal product P(n) which verifies
      ++ P(n+1)/P(n) = f(n);
    product    : ($, SegmentBinding  $) -> $
      ++ product(f(n), n = a..b) returns f(a) * ... * f(b) as a
      ++ formal product;

)abbrev package COMBF CombinatorialFunction
++ Provides the usual combinatorial functions
++ Author: Manuel Bronstein, Martin Rubey
++ Date Created: 2 Aug 1988
++ Date Last Updated: 30 October 2005
++ Description:
++   Provides combinatorial functions over an integral domain.
++ Keywords: combinatorial, function, factorial.
++ Examples:  )r COMBF INPUT



CombinatorialFunction(R, F): Exports == Implementation where
  R: IntegralDomain
  F: FunctionSpace R

  OP  ==> BasicOperator
  K   ==> Kernel F
  SE  ==> Symbol
  O   ==> OutputForm
  SMP ==> SparseMultivariatePolynomial(R, K)
  Z   ==> Integer

  POWER        ==> '%power
  OPEXP        ==> 'exp
  SPECIALDIFF  ==> "%specialDiff"
  SPECIALDISP  ==> "%specialDisp"
  SPECIALEQUAL ==> "%specialEqual"

  Exports ==> with
    belong?    : OP -> Boolean
      ++ belong?(op) is true if op is a combinatorial operator;
    operator   : OP -> OP
      ++ operator(op) returns a copy of op with the domain-dependent
      ++ properties appropriate for F;
      ++ error if op is not a combinatorial operator;
    **       : (F, F) -> F
      ++ a ** b is the formal exponential a**b;
    binomial   : (F, F) -> F
      ++ binomial(n, r) returns the number of subsets of r objects
      ++ taken among n objects, i.e. n!/(r! * (n-r)!);
    permutation: (F, F) -> F
      ++ permutation(n, r) returns the number of permutations of
      ++ n objects taken r at a time, i.e. n!/(n-r)!;
    factorial  : F -> F
      ++ factorial(n) returns the factorial of n, i.e. n!;
    factorials : F -> F
      ++ factorials(f) rewrites the permutations and binomials in f
      ++ in terms of factorials;
    factorials : (F, SE) -> F
      ++ factorials(f, x) rewrites the permutations and binomials in f
      ++ involving x in terms of factorials;
    summation  : (F, SE) -> F
      ++ summation(f(n), n) returns the formal sum S(n) which verifies
      ++ S(n+1) - S(n) = f(n);
    summation  : (F, SegmentBinding F)  -> F
      ++ summation(f(n), n = a..b) returns f(a) + ... + f(b) as a
      ++ formal sum;
    product    : (F, SE) -> F
      ++ product(f(n), n) returns the formal product P(n) which verifies
      ++ P(n+1)/P(n) = f(n);
    product    : (F, SegmentBinding  F) -> F
      ++ product(f(n), n = a..b) returns f(a) * ... * f(b) as a
      ++ formal product;
    iifact     : F -> F
      ++ iifact(x) should be local but conditional;
    iibinom    : List F -> F
      ++ iibinom(l) should be local but conditional;
    iiperm     : List F -> F
      ++ iiperm(l) should be local but conditional;
    iipow      : List F -> F
      ++ iipow(l) should be local but conditional;
    iidsum     : List F -> F
      ++ iidsum(l) should be local but conditional;
    iidprod    : List F -> F
      ++ iidprod(l) should be local but conditional;
    ipow       : List F -> F
      ++ ipow(l) should be local but conditional;

  Implementation ==> add
    ifact     : F -> F
    iiipow    : List F -> F
    iperm     : List F -> F
    ibinom    : List F -> F
    isum      : List F -> F
    idsum     : List F -> F
    iprod     : List F -> F
    idprod    : List F -> F
    dsum      : List F -> O
    ddsum     : List F -> O
    dprod     : List F -> O
    ddprod    : List F -> O
    equalsumprod  : (K, K) -> Boolean 
    equaldsumprod : (K, K) -> Boolean 
    fourth    : List F -> F
    dvpow1    : List F -> F
    dvpow2    : List F -> F
    summand   : List F -> F
    dvsum     : (List F, SE) -> F
    dvdsum    : (List F, SE) -> F
    dvprod    : (List F, SE) -> F
    dvdprod   : (List F, SE) -> F
    facts     : (F, List SE) -> F
    K2fact    : (K, List SE) -> F
    smpfact   : (SMP, List SE) -> F

    dummy == new()$SE :: F
    opfact  := operator('factorial)$CommonOperators
    opperm  := operator('permutation)$CommonOperators
    opbinom := operator('binomial)$CommonOperators
    opsum   := operator('summation)$CommonOperators
    opdsum  := operator('%defsum)$CommonOperators
    opprod  := operator('product)$CommonOperators
    opdprod := operator('%defprod)$CommonOperators
    oppow   := operator(POWER)$CommonOperators

    factorial x          == opfact x
    binomial(x, y)       == opbinom [x, y]
    permutation(x, y)    == opperm [x, y]

    import F
    import Kernel F

    number?(x:F):Boolean ==
      if R has RetractableTo(Z) then
        ground?(x) or
         ((retractIfCan(x)@Union(Fraction(Z),"failed")) case Fraction(Z))
      else
        ground?(x)

    x ** y               == 
      -- Do some basic simplifications
      is?(x,POWER) =>
        args : List F := argument first kernels x
        not(#args = 2) => error "Too many arguments to **"
        number?(first args) and number?(y) =>
          oppow [first(args)**y, second args]
        oppow [first args, (second args)* y]
      -- Generic case
      exp : Union(Record(val:F,exponent:Z),"failed") := isPower x
      exp case Record(val:F,exponent:Z) =>
        expr := exp::Record(val:F,exponent:Z)
        oppow [expr.val, (expr.exponent)*y]
      oppow [x, y]

    belong? op           == has?(op, 'comb)
    fourth l             == third rest l
    dvpow1 l             == second(l) * first(l) ** (second l - 1)
    factorials x         == facts(x, variables x)
    factorials(x, v)     == facts(x, [v])
    facts(x, l)          == smpfact(numer x, l) / smpfact(denom x, l)
    summand l            == eval(first l, retract(second l)@K, third l)

    product(x:F, i:SE) ==
      dm := dummy
      opprod [eval(x, k := kernel(i)$K, dm), dm, k::F]

    summation(x:F, i:SE) ==
      dm := dummy
      opsum [eval(x, k := kernel(i)$K, dm), dm, k::F]

    dvsum(l, x) ==
      opsum [differentiate(first l, x), second l, third l]

    dvdsum(l, x) ==
      x = retract(y := third l)@SE => 0
      if member?(x, variables(h := third rest rest l)) or 
         member?(x, variables(g := third rest l)) then
        error "a sum cannot be differentiated with respect to a bound"
      else
        opdsum [differentiate(first l, x), second l, y, g, h]

    dvprod(l, x) ==
      dm := retract(dummy)@SE
      f := eval(first l, retract(second l)@K, dm::F)
      p := product(f, dm)

      opsum [differentiate(first l, x)/first l * p, second l, third l]


    dvdprod(l, x) ==
      x = retract(y := third l)@SE => 0
      if member?(x, variables(h := third rest rest l)) or 
         member?(x, variables(g := third rest l)) then
        error "a product cannot be differentiated with respect to a bound"
      else
        opdsum cons(differentiate(first l, x)/first l, rest l) * opdprod l 

    dprod l ==
      prod(summand(l)::O, third(l)::O)

    ddprod l ==
      prod(summand(l)::O, third(l)::O = fourth(l)::O, fourth(rest l)::O)

    dsum l ==
      sum(summand(l)::O, third(l)::O)

    ddsum l ==
      sum(summand(l)::O, third(l)::O = fourth(l)::O, fourth(rest l)::O)

    equalsumprod(s1, s2) ==
      l1 := argument s1
      l2 := argument s2

      (eval(first l1, retract(second l1)@K, second l2) = first l2)

    equaldsumprod(s1, s2) ==
      l1 := argument s1
      l2 := argument s2

      ((third rest l1 = third rest l2) and
       (third rest rest l1 = third rest rest l2) and
       (eval(first l1, retract(second l1)@K, second l2) = first l2))

    product(x:F, s:SegmentBinding F) ==
      k := kernel(variable s)$K
      dm := dummy
      opdprod [eval(x,k,dm), dm, k::F, lo segment s, hi segment s]

    summation(x:F, s:SegmentBinding F) ==
      k := kernel(variable s)$K
      dm := dummy
      opdsum [eval(x,k,dm), dm, k::F, lo segment s, hi segment s]

    smpfact(p, l) ==
      map(K2fact(#1, l), #1::F, p)$PolynomialCategoryLifting(
        IndexedExponents K, K, R, SMP, F)

    K2fact(k, l) ==
      kf : F
      empty? [v for v in variables(kf := k::F) | member?(v, l)] => kf
      empty?(args:List F := [facts(a, l) for a in argument k]) => kf
      is?(k, opperm) =>
        factorial(n := first args) / factorial(n - second args)
      is?(k, opbinom) =>
        n := first args
        p := second args
        factorial(n) / (factorial(p) * factorial(n-p))
      (operator k) args

    operator op ==
      is?(op,'factorial)   => opfact
      is?(op,'permutation) => opperm
      is?(op,'binomial)    => opbinom
      is?(op,'summation)   => opsum
      is?(op,'%defsum)     => opdsum
      is?(op,'product)     => opprod
      is?(op,'%defprod)    => opdprod
      is?(op, POWER)                 => oppow
      error "Not a combinatorial operator"

    iprod l ==
      zero? first l => 0
      one? first l => 1
      kernel(opprod, l)

    isum l ==
      zero? first l => 0
      kernel(opsum, l)

    idprod l ==
      member?(retract(second l)@SE, variables first l) =>
        kernel(opdprod, l)
      first(l) ** (fourth rest l - fourth l + 1)

    idsum l ==
      member?(retract(second l)@SE, variables first l) =>
        kernel(opdsum, l)
      first(l) * (fourth rest l - fourth l + 1)

    ifact x ==
      zero? x or one? x => 1
      kernel(opfact, x)

    ibinom l ==
      n := first l
      ((p := second l) = 0) or (p = n) => 1
      one? p or (p = n - 1) => n
      kernel(opbinom, l)

    iperm l ==
      zero? second l => 1
      kernel(opperm, l)

    if R has RetractableTo Z then
      iidsum l ==
        (r1:=retractIfCan(fourth l)@Union(Z,"failed"))
         case "failed" or
          (r2:=retractIfCan(fourth rest l)@Union(Z,"failed"))
            case "failed" or
             (k:=retractIfCan(second l)@Union(K,"failed")) case "failed"
               => idsum l
        +/[eval(first l,k::K,i::F) for i in r1::Z .. r2::Z]

      iidprod l ==
        (r1:=retractIfCan(fourth l)@Union(Z,"failed"))
         case "failed" or
          (r2:=retractIfCan(fourth rest l)@Union(Z,"failed"))
            case "failed" or
             (k:=retractIfCan(second l)@Union(K,"failed")) case "failed"
               => idprod l
        */[eval(first l,k::K,i::F) for i in r1::Z .. r2::Z]

      iiipow l ==
          (u := isExpt(x := first l, OPEXP)) case "failed" => kernel(oppow, l)
          rec := u::Record(var: K, exponent: Z)
          y := first argument(rec.var)
          (r := retractIfCan(y)@Union(Fraction Z, "failed")) case
              "failed" => kernel(oppow, l)
          (operator(rec.var)) (rec.exponent * y * second l)

      if F has RadicalCategory then
        ipow l ==
          (r := retractIfCan(second l)@Union(Fraction Z,"failed"))
            case "failed" => iiipow l
          first(l) ** (r::Fraction(Z))
      else
        ipow l ==
          (r := retractIfCan(second l)@Union(Z, "failed"))
            case "failed" => iiipow l
          first(l) ** (r::Z)

    else
      ipow l ==
        zero?(x := first l) =>
          zero? second l => error "0 ** 0"
          0
        one? x or zero?(n := second l) => 1
        one? n => x
        (u := isExpt(x, OPEXP)) case "failed" => kernel(oppow, l)
        rec := u::Record(var: K, exponent: Z)
        one?(y := first argument(rec.var)) or y = -1 =>
            (operator(rec.var)) (rec.exponent * y * n)
        kernel(oppow, l)

    if R has CombinatorialFunctionCategory then
      iifact x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => ifact x
        factorial(r::R)::F

      iiperm l ==
        (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
          (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
            => iperm l
        permutation(r1::R, r2::R)::F

      if R has RetractableTo(Z) and F has Algebra(Fraction(Z)) then
         iibinom l ==
           (s:=retractIfCan(first l-second l)@Union(R,"failed")) case R and
             (t:=retractIfCan(s)@Union(Z,"failed")) case Z and positive? t =>
              ans:=1::F
              for i in 1..t repeat
                  ans:=ans*(second l+i::R::F)
              (1/factorial t) * ans
           (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
             (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
               => ibinom l
           binomial(r1::R, r2::R)::F

      else
         iibinom l ==
           (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
             (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
               => ibinom l
           binomial(r1::R, r2::R)::F

    else
      iifact x  == ifact x
      iibinom l == ibinom l
      iiperm l  == iperm l

    if R has ElementaryFunctionCategory then
      iipow l ==
        (r1:=retractIfCan(first l)@Union(R,"failed")) case "failed" or
          (r2:=retractIfCan(second l)@Union(R,"failed")) case "failed"
            => ipow l
        (r1::R ** r2::R)::F
    else
      iipow l == ipow l

    if F has ElementaryFunctionCategory then
      dvpow2 l == if zero?(first l) then
                    0
                  else
                    log(first l) * first(l) ** second(l)

    evaluate(opfact, iifact)$BasicOperatorFunctions1(F)
    evaluate(oppow, iipow)
    evaluate(opperm, iiperm)
    evaluate(opbinom, iibinom)
    evaluate(opsum, isum)
    evaluate(opdsum, iidsum)
    evaluate(opprod, iprod)
    evaluate(opdprod, iidprod)
    derivative(oppow, [dvpow1, dvpow2])
    setProperty(opsum,   SPECIALDIFF, dvsum@((List F, SE) -> F) pretend None)
    setProperty(opdsum,  SPECIALDIFF, dvdsum@((List F, SE)->F) pretend None)
    setProperty(opprod,  SPECIALDIFF, dvprod@((List F, SE)->F) pretend None)
    setProperty(opdprod, SPECIALDIFF, dvdprod@((List F, SE)->F) pretend None)
    setProperty(opsum,   SPECIALDISP, dsum@(List F -> O) pretend None)
    setProperty(opdsum,  SPECIALDISP, ddsum@(List F -> O) pretend None)
    setProperty(opprod,  SPECIALDISP, dprod@(List F -> O) pretend None)
    setProperty(opdprod, SPECIALDISP, ddprod@(List F -> O) pretend None)
    setProperty(opsum,   SPECIALEQUAL, equalsumprod@((K,K) -> Boolean) pretend None)
    setProperty(opdsum,  SPECIALEQUAL, equaldsumprod@((K,K) -> Boolean) pretend None)
    setProperty(opprod,  SPECIALEQUAL, equalsumprod@((K,K) -> Boolean) pretend None)
    setProperty(opdprod, SPECIALEQUAL, equaldsumprod@((K,K) -> Boolean) pretend None)

)abbrev package FSPECF FunctionalSpecialFunction
++ Provides the special functions
++ Author: Manuel Bronstein
++ Date Created: 18 Apr 1989
++ Date Last Updated: 4 October 1993
++ Description: Provides some special functions over an integral domain.
++ Keywords: special, function.
FunctionalSpecialFunction(R, F): Exports == Implementation where
  R: IntegralDomain
  F: FunctionSpace R

  OP  ==> BasicOperator
  K   ==> Kernel F
  SE  ==> Symbol

  Exports ==> with
    belong? : OP -> Boolean
      ++ belong?(op) is true if op is a special function operator;
    operator: OP -> OP
      ++ operator(op) returns a copy of op with the domain-dependent
      ++ properties appropriate for F;
      ++ error if op is not a special function operator
    abs     : F -> F
      ++ abs(f) returns the absolute value operator applied to f
    Gamma   : F -> F
      ++ Gamma(f) returns the formal Gamma function applied to f
    Gamma   : (F,F) -> F
      ++ Gamma(a,x) returns the incomplete Gamma function applied to a and x
    Beta:      (F,F) -> F
      ++ Beta(x,y) returns the beta function applied to x and y
    digamma:   F->F
      ++ digamma(x) returns the digamma function applied to x 
    polygamma: (F,F) ->F
      ++ polygamma(x,y) returns the polygamma function applied to x and y
    besselJ:   (F,F) -> F
      ++ besselJ(x,y) returns the besselj function applied to x and y
    besselY:   (F,F) -> F
      ++ besselY(x,y) returns the bessely function applied to x and y
    besselI:   (F,F) -> F
      ++ besselI(x,y) returns the besseli function applied to x and y
    besselK:   (F,F) -> F
      ++ besselK(x,y) returns the besselk function applied to x and y
    airyAi:    F -> F
      ++ airyAi(x) returns the airyai function applied to x 
    airyBi:    F -> F
      ++ airyBi(x) returns the airybi function applied to x

    iiGamma : F -> F
      ++ iiGamma(x) should be local but conditional;
    iiabs     : F -> F
      ++ iiabs(x) should be local but conditional;

  Implementation ==> add
    iabs     : F -> F
    iGamma:     F -> F

    opabs       := operator('abs)$CommonOperators
    opGamma     := operator('Gamma)$CommonOperators
    opGamma2    := operator('Gamma2)$CommonOperators
    opBeta      := operator('Beta)$CommonOperators
    opdigamma   := operator('digamma)$CommonOperators
    oppolygamma := operator('polygamma)$CommonOperators
    opBesselJ   := operator('besselJ)$CommonOperators
    opBesselY   := operator('besselY)$CommonOperators
    opBesselI   := operator('besselI)$CommonOperators
    opBesselK   := operator('besselK)$CommonOperators
    opAiryAi    := operator('airyAi)$CommonOperators
    opAiryBi    := operator('airyBi)$CommonOperators

    abs x         == opabs x
    Gamma(x)      == opGamma(x)
    Gamma(a,x)    == opGamma2(a,x)
    Beta(x,y)     == opBeta(x,y)
    digamma x     == opdigamma(x)
    polygamma(k,x)== oppolygamma(k,x)
    besselJ(a,x)  == opBesselJ(a,x)
    besselY(a,x)  == opBesselY(a,x)
    besselI(a,x)  == opBesselI(a,x)
    besselK(a,x)  == opBesselK(a,x)
    airyAi(x)     == opAiryAi(x)
    airyBi(x)     == opAiryBi(x)

    belong? op == has?(op, 'special)

    operator op ==
      is?(op,'abs)      => opabs
      is?(op,'Gamma)    => opGamma
      is?(op,'Gamma2)   => opGamma2
      is?(op,'Beta)     => opBeta
      is?(op,'digamma)  => opdigamma
      is?(op,'polygamma)=> oppolygamma
      is?(op,'besselJ)  => opBesselJ
      is?(op,'besselY)  => opBesselY
      is?(op,'besselI)  => opBesselI
      is?(op,'besselK)  => opBesselK
      is?(op,'airyAi)   => opAiryAi
      is?(op,'airyBi)   => opAiryBi

      error "Not a special operator"

    -- Could put more unconditional special rules for other functions here
    iGamma x ==
      one? x => x
      kernel(opGamma, x)

    iabs x ==
      zero? x => 0
      is?(x, opabs) => x
      before?(x,0) => kernel(opabs, -x)
      kernel(opabs, x)

    -- Could put more conditional special rules for other functions here

    if R has abs : R -> R then
      iiabs x ==
        (r := retractIfCan(x)@Union(Fraction Polynomial R, "failed"))
          case "failed" => iabs x
        f := r::Fraction Polynomial R
        (a := retractIfCan(numer f)@Union(R, "failed")) case "failed" or
          (b := retractIfCan(denom f)@Union(R,"failed")) case "failed" => iabs x
        abs(a::R)::F / abs(b::R)::F

    else iiabs x == iabs x

    if R has SpecialFunctionCategory then
      iiGamma x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iGamma x
        Gamma(r::R)::F

    else
      if R has RetractableTo Integer then
        iiGamma x ==
          (r := retractIfCan(x)@Union(Integer, "failed")) case Integer
            and (r::Integer >= 1) => factorial(r::Integer - 1)::F
          iGamma x
      else
        iiGamma x == iGamma x

    -- Default behaviour is to build a kernel
    evaluate(opGamma, iiGamma)$BasicOperatorFunctions1(F)
    evaluate(opabs, iiabs)$BasicOperatorFunctions1(F)

    import Fraction Integer
    ahalf:  F    := recip(2::F)::F
    athird: F    := recip(2::F)::F
    twothirds: F := 2*recip(3::F)::F

    lzero(l: List F): F == 0

    iBesselJGrad(l: List F): F ==
        n := first l; x := second l
        ahalf * (besselJ (n-1,x) - besselJ (n+1,x))
    iBesselYGrad(l: List F): F ==
        n := first l; x := second l
        ahalf * (besselY (n-1,x) - besselY (n+1,x))
    iBesselIGrad(l: List F): F ==
        n := first l; x := second l
        ahalf * (besselI (n-1,x) + besselI (n+1,x))
    iBesselKGrad(l: List F): F ==
        n := first l; x := second l
        ahalf * (besselK (n-1,x) + besselK (n+1,x))
    ipolygammaGrad(l: List F): F ==
        n := first l; x := second l
        polygamma(n+1, x)
    iBetaGrad1(l: List F): F ==
        x := first l; y := second l
        Beta(x,y)*(digamma x - digamma(x+y))
    iBetaGrad2(l: List F): F ==
        x := first l; y := second l
        Beta(x,y)*(digamma y - digamma(x+y))

    if F has ElementaryFunctionCategory then
      iGamma2Grad(l: List F):F ==
        a := first l; x := second l
        - x ** (a - 1) * exp(-x)
      derivative(opGamma2, [lzero, iGamma2Grad])

    derivative(opabs,       abs(#1) * inv(#1))
    derivative(opGamma,     digamma #1 * Gamma #1)
    derivative(opBeta,      [iBetaGrad1, iBetaGrad2])
    derivative(opdigamma,   polygamma(1, #1))
    derivative(oppolygamma, [lzero, ipolygammaGrad])
    derivative(opBesselJ,   [lzero, iBesselJGrad])
    derivative(opBesselY,   [lzero, iBesselYGrad])
    derivative(opBesselI,   [lzero, iBesselIGrad])
    derivative(opBesselK,   [lzero, iBesselKGrad])

)abbrev package SUMFS FunctionSpaceSum
++ Top-level sum function
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 19 April 1991
++ Description: computes sums of top-level expressions;
FunctionSpaceSum(R, F): Exports == Implementation where
  R: Join(IntegralDomain,
          RetractableTo Integer, LinearlyExplicitRingOver Integer)
  F: Join(FunctionSpace R, CombinatorialOpsCategory,
          AlgebraicallyClosedField, TranscendentalFunctionCategory)

  SE  ==> Symbol
  K   ==> Kernel F

  Exports ==> with
    sum: (F, SE) -> F
      ++ sum(a(n), n) returns A(n) such that A(n+1) - A(n) = a(n);
    sum: (F, SegmentBinding F) -> F
      ++ sum(f(n), n = a..b) returns f(a) + f(a+1) + ... + f(b);

  Implementation ==> add
    import ElementaryFunctionStructurePackage(R, F)
    import GosperSummationMethod(IndexedExponents K, K, R,
                                 SparseMultivariatePolynomial(R, K), F)

    innersum: (F, K) -> Union(F, "failed")
    notRF?  : (F, K) -> Boolean
    newk    : () -> K

    newk() == kernel(new()$SE)

    sum(x:F, s:SegmentBinding F) ==
      k := kernel(variable s)@K
      (u := innersum(x, k)) case "failed" => summation(x, s)
      eval(u::F, k, 1 + hi segment s) - eval(u::F, k, lo segment s)

    sum(x:F, v:SE) ==
      (u := innersum(x, kernel(v)@K)) case "failed" => summation(x,v)
      u::F

    notRF?(f, k) ==
      for kk in tower f repeat
        member?(k, tower(kk::F)) and (symbolIfCan(kk) case "failed") =>
          return true
      false

    innersum(x, k) ==
      zero? x => 0
      notRF?(f := normalize(x / (x1 := eval(x, k, k::F - 1))), k) =>
        "failed"
      (u := GospersMethod(f, k, newk)) case "failed" => "failed"
      x1 * eval(u::F, k, k::F - 1)