This file is indexed.

/usr/lib/open-axiom/src/algebra/ffpoly.spad is in open-axiom-source 1.4.1+svn~2626-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

)abbrev package FFPOLY FiniteFieldPolynomialPackage
++ Author: A. Bouyer, J. Grabmeier, A. Scheerhorn, R. Sutor, B. Trager
++ Date Created: January 1991
++ Date Last Updated: 1 June 1994
++ Basic Operations:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: finite field, polynomial, irreducible polynomial, normal
++   polynomial, primitive polynomial, random polynomials
++ References:
++   [LS] Lenstra, H. W. & Schoof, R. J., "Primitivive Normal Bases
++        for Finite Fields", Math. Comp. 48, 1987, pp. 217-231
++   [LN] Lidl, R. & Niederreiter, H., "Finite Fields",
++        Encycl. of Math. 20, Addison-Wesley, 1983
++  J. Grabmeier, A. Scheerhorn: Finite Fields in Axiom.
++   Axiom Technical Report Series, to appear.
++ Description:
++   This package provides a number of functions for generating, counting
++   and testing irreducible, normal, primitive, random polynomials
++   over finite fields.

FiniteFieldPolynomialPackage GF : Exports == Implementation where

  GF : FiniteFieldCategory

  I    ==> Integer
  L    ==> List
  NNI  ==> NonNegativeInteger
  PI   ==> PositiveInteger
  Rec  ==> Record(expnt:NNI, coeff:GF)
  Repr ==> L Rec
  SUP  ==> SparseUnivariatePolynomial GF

  Exports ==> with
 --    qEulerPhiCyclotomic : PI -> PI
--      ++ qEulerPhiCyclotomic(n)$FFPOLY(GF) yields the q-Euler's function
--      ++ of the n-th cyclotomic polynomial over the field {\em GF} of
--      ++ order q (cf. [LN] p.122);
--      ++ error if n is a multiple of the field characteristic.
    primitive? : SUP -> Boolean
      ++ primitive?(f) tests whether the polynomial f over a finite
      ++ field is primitive, i.e. all its roots are primitive.
    normal? : SUP -> Boolean
      ++ normal?(f) tests whether the polynomial f over a finite field is
      ++ normal, i.e. its roots are linearly independent over the field.
    numberOfIrreduciblePoly : PI -> PI
      ++ numberOfIrreduciblePoly(n)$FFPOLY(GF) yields the number of
      ++ monic irreducible univariate polynomials of degree n
      ++ over the finite field {\em GF}.
    numberOfPrimitivePoly : PI -> PI
      ++ numberOfPrimitivePoly(n)$FFPOLY(GF) yields the number of
      ++ primitive polynomials of degree n over the finite field {\em GF}.
    numberOfNormalPoly : PI -> PI
      ++ numberOfNormalPoly(n)$FFPOLY(GF) yields the number of
      ++ normal polynomials of degree n over the finite field {\em GF}.
    createIrreduciblePoly : PI -> SUP
      ++ createIrreduciblePoly(n)$FFPOLY(GF) generates a monic irreducible
      ++ univariate polynomial of degree n over the finite field {\em GF}.
    createPrimitivePoly : PI -> SUP
      ++ createPrimitivePoly(n)$FFPOLY(GF) generates a primitive polynomial
      ++ of degree n over the finite field {\em GF}.
    createNormalPoly : PI -> SUP
      ++ createNormalPoly(n)$FFPOLY(GF) generates a normal polynomial
      ++ of degree n over the finite field {\em GF}.
    createNormalPrimitivePoly : PI -> SUP
      ++ createNormalPrimitivePoly(n)$FFPOLY(GF) generates a normal and
      ++ primitive polynomial of degree n over the field {\em GF}.
      ++ Note: this function is equivalent to createPrimitiveNormalPoly(n)
    createPrimitiveNormalPoly : PI -> SUP
      ++ createPrimitiveNormalPoly(n)$FFPOLY(GF) generates a normal and
      ++ primitive polynomial of degree n over the field {\em GF}.
      ++ polynomial of degree n over the field {\em GF}.
    nextIrreduciblePoly : SUP -> Union(SUP, "failed")
      ++ nextIrreduciblePoly(f) yields the next monic irreducible polynomial
      ++ over a finite field {\em GF} of the same degree as f in the following
      ++ order, or "failed" if there are no greater ones.
      ++ Error: if f has degree 0.
      ++ Note: the input polynomial f is made monic.
      ++ Also, \spad{f < g} if
      ++ the number of monomials of f is less
      ++ than this number for g.
      ++ If f and g have the same number of monomials,
      ++ the lists of exponents are compared lexicographically.
      ++ If these lists are also equal, the lists of coefficients
      ++ are compared according to the lexicographic ordering induced by
      ++ the ordering of the elements of {\em GF} given by {\em lookup}.
    nextPrimitivePoly : SUP -> Union(SUP, "failed")
      ++ nextPrimitivePoly(f) yields the next primitive polynomial over
      ++ a finite field {\em GF} of the same degree as f in the following
      ++ order, or "failed" if there are no greater ones.
      ++ Error: if f has degree 0.
      ++ Note: the input polynomial f is made monic.
      ++ Also, \spad{f < g} if the {\em lookup} of the constant term
      ++ of f is less than
      ++ this number for g.
      ++ If these values are equal, then \spad{f < g} if
      ++ if the number of monomials of f is less than that for g or if
      ++ the lists of exponents of f are lexicographically less than the
      ++ corresponding list for g.
      ++ If these lists are also equal, the lists of coefficients are
      ++ compared according to the lexicographic ordering induced by
      ++ the ordering of the elements of {\em GF} given by {\em lookup}.
    nextNormalPoly : SUP -> Union(SUP, "failed")
      ++ nextNormalPoly(f) yields the next normal polynomial over
      ++ a finite field {\em GF} of the same degree as f in the following
      ++ order, or "failed" if there are no greater ones.
      ++ Error: if f has degree 0.
      ++ Note: the input polynomial f is made monic.
      ++ Also, \spad{f < g} if the {\em lookup} of the coefficient
      ++ of the term of degree
      ++ {\em n-1} of f is less than that for g.
      ++ In case these numbers are equal, \spad{f < g} if
      ++ if the number of monomials of f is less that for g or if
      ++ the list of exponents of f are lexicographically less than the
      ++ corresponding list for g.
      ++ If these lists are also equal, the lists of coefficients are
      ++ compared according to the lexicographic ordering induced by
      ++ the ordering of the elements of {\em GF} given by {\em lookup}.
    nextNormalPrimitivePoly : SUP -> Union(SUP, "failed")
      ++ nextNormalPrimitivePoly(f) yields the next normal primitive polynomial
      ++ over a finite field {\em GF} of the same degree as f in the following
      ++ order, or "failed" if there are no greater ones.
      ++ Error: if f has degree 0.
      ++ Note: the input polynomial f is made monic.
      ++ Also, \spad{f < g} if the {\em lookup} of the constant
      ++ term of f is less than
      ++ this number for g or if
      ++ {\em lookup} of the coefficient of the term of degree {\em n-1}
      ++ of f is less than this number for g.
      ++ Otherwise, \spad{f < g}
      ++ if the number of monomials of f is less than
      ++ that for g or if the lists of exponents for f are
      ++ lexicographically less than those for g.
      ++ If these lists are also equal, the lists of coefficients are
      ++ compared according to the lexicographic ordering induced by
      ++ the ordering of the elements of {\em GF} given by {\em lookup}.
      ++ This operation is equivalent to nextPrimitiveNormalPoly(f).
    nextPrimitiveNormalPoly : SUP -> Union(SUP, "failed")
      ++ nextPrimitiveNormalPoly(f) yields the next primitive normal polynomial
      ++ over a finite field {\em GF} of the same degree as f in the following
      ++ order, or "failed" if there are no greater ones.
      ++ Error: if f has degree 0.
      ++ Note: the input polynomial f is made monic.
      ++ Also, \spad{f < g} if the {\em lookup} of the
      ++ constant term of f is less than
      ++ this number for g or, in case these numbers are equal, if the
      ++ {\em lookup} of the coefficient of the term of degree {\em n-1}
      ++ of f is less than this number for g.
      ++ If these numbers are equals, \spad{f < g}
      ++ if the number of monomials of f is less than
      ++ that for g, or if the lists of exponents for f are lexicographically
      ++ less than those for g.
      ++ If these lists are also equal, the lists of coefficients are
      ++ coefficients according to the lexicographic ordering induced by
      ++ the ordering of the elements of {\em GF} given by {\em lookup}.
      ++ This operation is equivalent to nextNormalPrimitivePoly(f).
--    random : () -> SUP
--      ++ random()$FFPOLY(GF) generates a random monic polynomial
--      ++ of random degree over the field {\em GF}
    random : PI -> SUP
      ++ random(n)$FFPOLY(GF) generates a random monic polynomial
      ++ of degree n over the finite field {\em GF}.
    random : (PI, PI) -> SUP
      ++ random(m,n)$FFPOLY(GF) generates a random monic polynomial
      ++ of degree d over the finite field {\em GF}, d between m and n.
    leastAffineMultiple: SUP  -> SUP
      ++ leastAffineMultiple(f) computes the least affine polynomial which
      ++ is divisible by the polynomial f over the finite field {\em GF},
      ++ i.e. a polynomial whose exponents are 0 or a power of q, the
      ++ size of {\em GF}.
    reducedQPowers: SUP  -> PrimitiveArray SUP
      ++ reducedQPowers(f)
      ++ generates \spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]}
      ++ reduced modulo f where \spad{q = size()$GF} and \spad{n = degree f}.
    --
    -- we intend to implement also the functions
    -- cyclotomicPoly: PI -> SUP, order: SUP -> PI,
    -- and maybe a new version of irreducible?


  Implementation ==> add

    import IntegerNumberTheoryFunctions
    import DistinctDegreeFactorize(GF, SUP)


    MM := ModMonic(GF, SUP)

    sizeGF : PI := size()$GF :: PI

    revListToSUP(l:Repr):SUP ==
        newl:Repr := empty()
        -- cannot use map since copy for Record is an XLAM
        for t in l repeat newl := cons(copy t, newl)
        newl pretend SUP

    listToSUP(l:Repr):SUP ==
        newl:Repr := [copy t for t in l]
        newl pretend SUP

    nextSubset : (L NNI, NNI) -> Union(L NNI, "failed")
      -- for a list s of length m with 1 <= s.1 < ... < s.m <= bound,
      -- nextSubset(s, bound) yields the immediate successor of s
      -- (resp. "failed" if s = [1,...,bound])
      -- where s < t if and only if:
      -- (i)  #s < #t; or
      -- (ii) #s = #t and s < t in the lexicographical order;
      -- (we have chosen to fix the signature with NNI instead of PI
      --  to avoid coercions in the main functions)

    reducedQPowers(f) ==
      m:PI:=degree(f)$SUP pretend PI
      m1:I:=m-1
      setPoly(f)$MM
      e:=reduce(monomial(1,1)$SUP)$MM ** sizeGF
      w:=1$MM
      qpow:PrimitiveArray SUP:=new(m,0)
      qpow.0:=1$SUP
      for i in 1..m1 repeat  qpow.i:=lift(w:=w*e)$MM
      qexp:PrimitiveArray SUP:=new(m,0)
      m = 1 =>
        qexp.(0$I):= (-coefficient(f,0$NNI)$SUP)::SUP
        qexp
      qexp.0$I:=monomial(1,1)$SUP
      h:=qpow.1
      qexp.1:=h
      for i in 2..m1 repeat
        g:=0$SUP
        while h ~= 0 repeat
          g:=g + leadingCoefficient(h) * qpow.degree(h)
          h:=reductum(h)
        qexp.i:=(h:=g)
      qexp

    leastAffineMultiple(f) ==
    -- [LS] p.112
      qexp:=reducedQPowers(f)
      n:=degree(f)$SUP
      b:Matrix GF:= transpose matrix [entries vectorise
           (qexp.i,n) for i in 0..n-1]
      col1:Matrix GF:= new(n,1,0)
      col1(1,1)  := 1
      ns : List Vector GF := nullSpace (horizConcat(col1,b) )
      ----------------------------------------------------------------
      -- perhaps one should use that the first vector in ns is already
      -- the right one
      ----------------------------------------------------------------
      dim:=n+2
      coeffVector : Vector GF
      until empty? ns repeat
        newCoeffVector := ns.1
        i : PI :=(n+1) pretend PI
        while newCoeffVector(i) = 0 repeat
          i := (i - 1) pretend PI
        if i < dim then
          dim := i
          coeffVector := newCoeffVector
        ns := rest ns
      (coeffVector(1)::SUP) +(+/[monomial(coeffVector.k, _
               sizeGF**((k-2)::NNI))$SUP for k in 2..dim])

--    qEulerPhiCyclotomic n ==
--      n = 1 => (sizeGF - 1) pretend PI
--      p : PI := characteristic$GF :: PI
--      (n rem p) = 0 => error
--        "cyclotomic polynomial not defined for this argument value"
--      q  : PI := sizeGF
--      -- determine the multiplicative order of q modulo n
--      e  : PI := 1
--      qe : PI := q
--      while (qe rem n) ~= 1 repeat
--        e  := e + 1
--        qe := qe * q
--      ((qe - 1) ** ((eulerPhi(n) quo e) pretend PI) ) pretend PI

    numberOfIrreduciblePoly n ==
      -- we compute the number Nq(n) of monic irreducible polynomials
      -- of degree n over the field GF of order q by the formula
      -- Nq(n) = (1/n)* sum(moebiusMu(n/d)*q**d) where the sum extends
      -- over all divisors d of n (cf. [LN] p.93, Th. 3.25)
      n = 1 => sizeGF
      -- the contribution of d = 1 :
      lastd : PI  := 1
      qd    : PI  := sizeGF
      sum   :  I  := moebiusMu(n) * qd
      -- the divisors d > 1 of n :
      divisorsOfn : L PI := rest(divisors n) pretend L PI
      for d in divisorsOfn repeat
        qd := qd * (sizeGF) ** ((d - lastd) pretend PI)
        sum := sum + moebiusMu(n quo d) * qd
        lastd := d
      (sum quo n) :: PI

    numberOfPrimitivePoly n == (eulerPhi((sizeGF ** n) - 1) quo n) :: PI
      -- [each root of a primitive polynomial of degree n over a field
      --  with q elements is a generator of the multiplicative group
      --  of a field of order q**n (definition), and the number of such
      --  generators is precisely eulerPhi(q**n - 1)]

    numberOfNormalPoly n ==
      -- we compute the number Nq(n) of normal polynomials of degree n
      -- in GF[X], with GF of order q, by the formula
      -- Nq(n) = (1/n) * qPhi(X**n - 1) (cf. [LN] p.124) where,
      -- for any polynomial f in GF[X] of positive degree n,
      -- qPhi(f) = q**n * (1 - q**(-n1)) *...* (1 - q**(-nr)) =
      -- q**n * ((q**(n1)-1) / q**(n1)) *...* ((q**(nr)-1) / q**(n_r)),
      -- the ni being the degrees of the distinct irreducible factors
      -- of f in its canonical factorization over GF
      -- ([LN] p.122, Lemma 3.69).
      -- hence, if n = m * p**r where p is the characteristic of GF
      -- and gcd(m,p) = 1, we get
      -- Nq(n) = (1/n)* q**(n-m) * qPhi(X**m - 1)
      -- now X**m - 1 is the product of the (pairwise relatively prime)
      -- cyclotomic polynomials Qd(X) for which d divides m
      -- ([LN] p.64, Th. 2.45), and each Qd(X) factors into
      -- eulerPhi(d)/e (distinct) monic irreducible polynomials in GF[X]
      -- of the same degree e, where e is the least positive integer k
      -- such that d divides q**k - 1 ([LN] p.65, Th. 2.47)
      n = 1 => (sizeGF - 1) :: NNI :: PI
      m : PI := n
      p : PI := characteristic$GF :: PI
      q : PI := sizeGF
      while (m rem p) = 0 repeat   -- find m such that
        m := (m quo p) :: PI       -- n = m * p**r and gcd(m,p) = 1
      m = 1 =>
         -- know that n is a power of p
        (((q ** ((n-1)::NNI) )  * (q - 1) ) quo n) :: PI
      prod : I := q - 1
      divisorsOfm : L PI := rest(divisors m) pretend L PI
      for d in divisorsOfm repeat
        -- determine the multiplicative order of q modulo d
        e  : PI := 1
        qe : PI := q
        while not one?(qe rem d) repeat
          e  := e + 1
          qe := qe * q
        prod := prod * _
          ((qe - 1) ** ((eulerPhi(d) quo e) pretend PI) ) pretend PI
      (q**((n-m) pretend PI) * prod quo n) pretend PI

    primitive? f ==
      -- let GF be a field of order q; a monic polynomial f in GF[X]
      -- of degree n is primitive over GF if and only if its constant
      -- term is non-zero, f divides X**(q**n - 1) - 1 and,
      -- for each prime divisor d of q**n - 1,
      -- f does not divide X**((q**n - 1) / d) - 1
      -- (cf. [LN] p.89, Th. 3.16, and p.87, following Th. 3.11)
      n : NNI := degree f
      n = 0 => false
      not one? leadingCoefficient f => false
      coefficient(f, 0) = 0 => false
      q  : PI := sizeGF
      qn1: PI := (q**n - 1) :: NNI :: PI
      setPoly f
      x := reduce(monomial(1,1)$SUP)$MM -- X rem f represented in MM
      --
      -- may be improved by tabulating the residues x**(i*q)
      -- for i = 0,...,n-1 :
      --
      not one? lift(x ** qn1)$MM => false -- X**(q**n - 1) rem f in GF[X]
      lrec  : L Record(factor:I, exponent:I) := factors(factor qn1)
      lfact : L PI := []              -- collect the prime factors
      for rec in lrec repeat          -- of q**n - 1
        lfact := cons((rec.factor) :: PI, lfact)
      for d in lfact repeat
        if (expt := (qn1 quo d)) >= n then
          lift(x ** expt)$MM = 1 => return false
      true

    normal? f ==
      -- let GF be a field with q elements; a monic irreducible
      -- polynomial f in GF[X] of degree n is normal if its roots
      -- x, x**q, ... , x**(q**(n-1)) are linearly independent over GF
      n : NNI := degree f
      n = 0 => false
      not one? leadingCoefficient f => false
      coefficient(f, 0) = 0 => false
      n = 1 => true
      not irreducible? f => false
      g:=reducedQPowers(f)
      l:=[entries vectorise(g.i,n)$SUP for i in 0..(n-1)::NNI]
      rank(matrix(l)$Matrix(GF)) = n => true
      false

    nextSubset(s, bound) ==
      m : NNI := #(s)
      m = 0 => [1]
      -- find the first element s(i) of s such that s(i) + 1 < s(i+1) :
      noGap : Boolean := true
      i : NNI := 0
      restOfs : L NNI
      while noGap and not empty?(restOfs := rest s) repeat
      -- after i steps (0 <= i <= m-1) we have s = [s(i), ... , s(m)]
      -- and restOfs = [s(i+1), ... , s(m)]
        secondOfs := first restOfs    -- s(i+1)
        firstOfsPlus1 := first s + 1  -- s(i) + 1
        secondOfs = firstOfsPlus1 =>
          s := restOfs
          i := i + 1
        setfirst!(s, firstOfsPlus1)  -- s := [s(i)+1, s(i+1),..., s(m)]
        noGap := false
      if noGap then                   -- here s = [s(m)]
        firstOfs := first s
        firstOfs < bound => setfirst!(s, firstOfs + 1) -- s := [s(m)+1]
        m < bound =>
            setfirst!(s, m + 1)      -- s := [m+1]
            i := m
        return "failed"               -- (here m = s(m) = bound)
      for j in i..1 by -1 repeat  -- reconstruct the destroyed
        s := cons(j, s)           -- initial part of s
      s

    nextIrreduciblePoly f ==
      n : NNI := degree f
      n = 0 => error "polynomial must have positive degree"
      -- make f monic
      if not one?(lcf := leadingCoefficient f) then f := (inv lcf) * f
      -- if f = fn*X**n + ... + f{i0}*X**{i0} with the fi non-zero
      -- then fRepr := [[n,fn], ... , [i0,f{i0}]]
      fRepr : Repr := f pretend Repr
      fcopy : Repr := []
      -- we can not simply write fcopy := copy fRepr because
      -- the input(!) f would be modified by assigning
      -- a new value to one of its records
      term : Rec
      for term: free in fRepr repeat
        fcopy := cons(copy term, fcopy)
      if term.expnt ~= 0 then
        fcopy := cons([0,0]$Rec, fcopy)
      tailpol : Repr := []
      headpol : Repr := fcopy  -- [[0,f0], ... , [n,fn]] where
                               -- fi is non-zero for i > 0
      fcopy   := reverse fcopy
      weight  : NNI := (#(fcopy) - 1) :: NNI -- #s(f) as explained above
      taillookuplist : L NNI := []
      -- the zeroes in the headlookuplist stand for the fi
      -- whose lookup's were not yet computed :
      headlookuplist : L NNI := new(weight, 0)
      s  : L NNI := [] -- we will compute s(f) only if necessary
      n1 : NNI := (n - 1) :: NNI
      repeat
        -- (run through the possible weights)
        while not empty? headlookuplist repeat
          -- find next polynomial in the above order with fixed weight;
          -- assume at this point we have
          -- headpol = [[i1,f{i1}], [i2,f{i2}], ... , [n,1]]
          -- and tailpol = [[k,fk], ... , [0,f0]] (with k < i1)
          term := first headpol
          j := first headlookuplist
          if j = 0 then j := lookup(term.coeff)$GF
          j := j + 1 -- lookup(f{i1})$GF + 1
          j rem sizeGF = 0 =>
            -- in this case one has to increase f{i2}
            tailpol := cons(term, tailpol) -- [[i1,f{i1}],...,[0,f0]]
            headpol := rest headpol        -- [[i2,f{i2}],...,[n,1]]
            taillookuplist := cons(j, taillookuplist)
            headlookuplist := rest headlookuplist
          -- otherwise set f{i1} := index(j)$GF
          setelt(first headpol, coeff, index(j :: PI)$GF)
          setfirst!(headlookuplist, j)
          if empty? taillookuplist then
            pol := revListToSUP(headpol)
            --
            -- may be improved by excluding reciprocal polynomials
            --
            irreducible? pol => return pol
          else
            -- go back to fk
            headpol := cons(first tailpol, headpol) -- [[k,fk],...,[n,1]]
            tailpol := rest tailpol
            headlookuplist := cons(first taillookuplist, headlookuplist)
            taillookuplist := rest taillookuplist
        -- must search for polynomial with greater weight
        if empty? s then -- compute s(f)
          restfcopy := rest fcopy
          for entry in restfcopy repeat s := cons(entry.expnt, s)
        weight = n => return "failed"
        s1 := nextSubset(rest s, n1) :: L NNI
        s := cons(0, s1)
        weight := #s
        taillookuplist := []
        headlookuplist := cons(sizeGF, new((weight-1) :: NNI, 1))
        tailpol := []
        headpol := [] -- [[0,0], [s.2,1], ... , [s.weight,1], [n,1]] :
        s1 := cons(n, reverse s1)
        while not empty? s1 repeat
          headpol := cons([first s1, 1]$Rec, headpol)
          s1 := rest s1
        headpol := cons([0, 0]$Rec, headpol)

    nextPrimitivePoly f ==
      n : NNI := degree f
      n = 0 => error "polynomial must have positive degree"
      -- make f monic
      if not one?(lcf := leadingCoefficient f) then f := (inv lcf) * f
      -- if f = fn*X**n + ... + f{i0}*X**{i0} with the fi non-zero
      -- then fRepr := [[n,fn], ... , [i0,f{i0}]]
      fRepr : Repr := f pretend Repr
      fcopy : Repr := []
      -- we can not simply write fcopy := copy fRepr because
      -- the input(!) f would be modified by assigning
      -- a new value to one of its records
      term : Rec
      for term: free in fRepr repeat
        fcopy := cons(copy term, fcopy)
      if term.expnt ~= 0 then
        term  := [0,0]$Rec
        fcopy := cons(term, fcopy)
      fcopy   := reverse fcopy
      xn : Rec := first fcopy
      c0 : GF  := term.coeff
      l  : NNI := lookup(c0)$GF rem sizeGF
      n = 1 =>
        -- the polynomial X + c is primitive if and only if -c
        -- is a primitive element of GF
        q1 : NNI  := (sizeGF - 1) :: NNI
        while l < q1 repeat -- find next c such that -c is primitive
          l := l + 1
          c := index(l :: PI)$GF
          primitive?(-c)$GF =>
            return [xn, [0,c]$Rec] pretend SUP
        "failed"
      weight : NNI := (#(fcopy) - 1) :: NNI -- #s(f)+1 as explained above
      s  : L NNI := [] -- we will compute s(f) only if necessary
      n1 : NNI := (n - 1) :: NNI
      -- a necessary condition for a monic polynomial f of degree n
      -- over GF to be primitive is that (-1)**n * f(0) be a
      -- primitive element of GF (cf. [LN] p.90, Th. 3.18)
      c  : GF  := c0
      while l < sizeGF repeat
        -- (run through the possible values of the constant term)
        noGenerator : Boolean := true
        while noGenerator and l < sizeGF repeat
          -- find least c >= c0 such that (-1)^n c0 is primitive
          primitive?((-1)**n * c)$GF => noGenerator := false
          l := l + 1
          c := index(l :: PI)$GF
        noGenerator => return "failed"
        constterm : Rec := [0, c]$Rec
        if c = c0 and weight > 1 then
          headpol : Repr := rest reverse fcopy -- [[i0,f{i0}],...,[n,1]]
                                               -- fi is non-zero for i>0
          -- the zeroes in the headlookuplist stand for the fi
          -- whose lookup's were not yet computed :
          headlookuplist : L NNI := new(weight, 0)
        else
          -- X**n + c can not be primitive for n > 1 (cf. [LN] p.90,
          -- Th. 3.18); next possible polynomial is X**n + X + c
          headpol : Repr := [[1,0]$Rec, xn] -- 0*X + X**n
          headlookuplist : L NNI := [sizeGF]
          s := [0,1]
          weight := 2
        tailpol : Repr := []
        taillookuplist : L NNI := []
        notReady : Boolean := true
        while notReady repeat
          -- (run through the possible weights)
          while not empty? headlookuplist repeat
            -- find next polynomial in the above order with fixed
            -- constant term and weight; assume at this point we have
            -- headpol = [[i1,f{i1}], [i2,f{i2}], ... , [n,1]] and
            -- tailpol = [[k,fk],...,[k0,fk0]] (k0<...<k<i1<i2<...<n)
            term := first headpol
            j := first headlookuplist
            if j = 0 then j := lookup(term.coeff)$GF
            j := j + 1 -- lookup(f{i1})$GF + 1
            j rem sizeGF = 0 =>
              -- in this case one has to increase f{i2}
              tailpol := cons(term, tailpol) -- [[i1,f{i1}],...,[k0,f{k0}]]
              headpol := rest headpol        -- [[i2,f{i2}],...,[n,1]]
              taillookuplist := cons(j, taillookuplist)
              headlookuplist := rest headlookuplist
            -- otherwise set f{i1} := index(j)$GF
            setelt(first headpol, coeff, index(j :: PI)$GF)
            setfirst!(headlookuplist, j)
            if empty? taillookuplist then
              pol := revListToSUP cons(constterm, headpol)
              --
              -- may be improved by excluding reciprocal polynomials
              --
              primitive? pol => return pol
            else
              -- go back to fk
              headpol := cons(first tailpol, headpol) -- [[k,fk],...,[n,1]]
              tailpol := rest tailpol
              headlookuplist := cons(first taillookuplist,
                                              headlookuplist)
              taillookuplist := rest taillookuplist
          if weight = n then notReady := false
          else
            -- must search for polynomial with greater weight
            if empty? s then -- compute s(f)
              restfcopy := rest fcopy
              for entry in restfcopy repeat s := cons(entry.expnt, s)
            s1 := nextSubset(rest s, n1) :: L NNI
            s  := cons(0, s1)
            weight := #s
            taillookuplist := []
            headlookuplist := cons(sizeGF, new((weight-2) :: NNI, 1))
            tailpol := []
            -- headpol = [[s.2,0], [s.3,1], ... , [s.weight,1], [n,1]] :
            headpol := [[first s1, 0]$Rec]
            while not empty? (s1 := rest s1) repeat
              headpol := cons([first s1, 1]$Rec, headpol)
            headpol := reverse cons([n, 1]$Rec, headpol)
        -- next polynomial must have greater constant term
        l := l + 1
        c := index(l :: PI)$GF
      "failed"

    nextNormalPoly f ==
      n : NNI := degree f
      n = 0 => error "polynomial must have positive degree"
      -- make f monic
      if not one?(lcf := leadingCoefficient f) then f := (inv lcf) * f
      -- if f = fn*X**n + ... + f{i0}*X**{i0} with the fi non-zero
      -- then fRepr := [[n,fn], ... , [i0,f{i0}]]
      fRepr : Repr := f pretend Repr
      fcopy : Repr := []
      -- we can not simply write fcopy := copy fRepr because
      -- the input(!) f would be modified by assigning
      -- a new value to one of its records
      term : Rec
      for term: free in fRepr repeat
        fcopy := cons(copy term, fcopy)
      if term.expnt ~= 0 then
        term  := [0,0]$Rec
        fcopy := cons(term, fcopy)
      fcopy     := reverse fcopy -- [[n,1], [r,fr], ... , [0,f0]]
      xn : Rec  := first fcopy
      middlepol : Repr := rest fcopy -- [[r,fr], ... , [0,f0]]
      a0 : GF  := (first middlepol).coeff -- fr
      l  : NNI := lookup(a0)$GF rem sizeGF
      n = 1 =>
        -- the polynomial X + a is normal if and only if a is not zero
        l = sizeGF - 1 => "failed"
        [xn, [0, index((l+1) :: PI)$GF]$Rec] pretend SUP
      n1 : NNI := (n  - 1) :: NNI
      n2 : NNI := (n1 - 1) :: NNI
      -- if the polynomial X**n + a * X**(n-1) + ... is normal then
      -- a = -(x + x**q +...+ x**(q**n)) can not be zero (where q = #GF)
      a  : GF  := a0
      -- if a = 0 then set a := 1
      if l = 0 then
        l := 1
        a := 1$GF
      while l < sizeGF repeat
        -- (run through the possible values of a)
        if a = a0 then
          -- middlepol = [[0,f0], ... , [m,fm]] with m < n-1
          middlepol := reverse rest middlepol
          weight : NNI := #middlepol -- #s(f) as explained above
          -- the zeroes in the middlelookuplist stand for the fi
          -- whose lookup's were not yet computed :
          middlelookuplist : L NNI := new(weight, 0)
          s : L NNI := [] -- we will compute s(f) only if necessary
        else
          middlepol := [[0,0]$Rec]
          middlelookuplist : L NNI := [sizeGF]
          s : L NNI := [0]
          weight : NNI := 1
        headpol : Repr := [xn, [n1, a]$Rec] -- X**n + a * X**(n-1)
        tailpol : Repr := []
        taillookuplist : L NNI := []
        notReady : Boolean := true
        while notReady repeat
          -- (run through the possible weights)
          while not empty? middlelookuplist repeat
            -- find next polynomial in the above order with fixed
            -- a and weight; assume at this point we have
            -- middlepol = [[i1,f{i1}], [i2,f{i2}], ... , [m,fm]] and
            -- tailpol = [[k,fk],...,[0,f0]] ( with k<i1<i2<...<m)
            term := first middlepol
            j := first middlelookuplist
            if j = 0 then j := lookup(term.coeff)$GF
            j := j + 1 -- lookup(f{i1})$GF + 1
            j rem sizeGF = 0 =>
              -- in this case one has to increase f{i2}
              -- tailpol = [[i1,f{i1}],...,[0,f0]]
              tailpol   := cons(term, tailpol)
              middlepol := rest middlepol -- [[i2,f{i2}],...,[m,fm]]
              taillookuplist   := cons(j, taillookuplist)
              middlelookuplist := rest middlelookuplist
            -- otherwise set f{i1} := index(j)$GF
            setelt(first middlepol, coeff, index(j :: PI)$GF)
            setfirst!(middlelookuplist, j)
            if empty? taillookuplist then
              pol := listToSUP append(headpol, reverse middlepol)
              --
              -- may be improved by excluding reciprocal polynomials
              --
              normal? pol => return pol
            else
              -- go back to fk
              -- middlepol = [[k,fk],...,[m,fm]]
              middlepol := cons(first tailpol, middlepol)
              tailpol := rest tailpol
              middlelookuplist := cons(first taillookuplist,
                                               middlelookuplist)
              taillookuplist := rest taillookuplist
          if weight = n1 then notReady := false
          else
            -- must search for polynomial with greater weight
            if empty? s then -- compute s(f)
              restfcopy := rest rest fcopy
              for entry in restfcopy repeat s := cons(entry.expnt, s)
            s1 := nextSubset(rest s, n2) :: L NNI
            s  := cons(0, s1)
            weight := #s
            taillookuplist := []
            middlelookuplist := cons(sizeGF, new((weight-1) :: NNI, 1))
            tailpol   := []
            -- middlepol = [[0,0], [s.2,1], ... , [s.weight,1]] :
            middlepol := []
            s1 := reverse s1
            while not empty? s1 repeat
              middlepol := cons([first s1, 1]$Rec, middlepol)
              s1 := rest s1
            middlepol := cons([0,0]$Rec, middlepol)
        -- next polynomial must have greater a
        l := l + 1
        a := index(l :: PI)$GF
      "failed"

    nextNormalPrimitivePoly f ==
      n : NNI := degree f
      n = 0 => error "polynomial must have positive degree"
      -- make f monic
      if not one?(lcf := leadingCoefficient f) then f := (inv lcf) * f
      -- if f = fn*X**n + ... + f{i0}*X**{i0} with the fi non-zero
      -- then fRepr := [[n,fn], ... , [i0,f{i0}]]
      fRepr : Repr := f pretend Repr
      fcopy : Repr := []
      -- we can not simply write fcopy := copy fRepr because
      -- the input(!) f would be modified by assigning
      -- a new value to one of its records
      term : Rec
      for term: free in fRepr repeat
        fcopy := cons(copy term, fcopy)
      if term.expnt ~= 0 then
        term  := [0,0]$Rec
        fcopy := cons(term, fcopy)
      fcopy   := reverse fcopy -- [[n,1], [r,fr], ... , [0,f0]]
      xn : Rec := first fcopy
      c0 : GF  := term.coeff
      lc : NNI := lookup(c0)$GF rem sizeGF
      n = 1 =>
        -- the polynomial X + c is primitive if and only if -c
        -- is a primitive element of GF
        q1 : NNI  := (sizeGF - 1) :: NNI
        while lc < q1 repeat -- find next c such that -c is primitive
          lc := lc + 1
          c  := index(lc :: PI)$GF
          primitive?(-c)$GF =>
            return [xn, [0,c]$Rec] pretend SUP
        "failed"
      n1 : NNI := (n  - 1) :: NNI
      n2 : NNI := (n1 - 1) :: NNI
      middlepol : Repr := rest fcopy -- [[r,fr],...,[i0,f{i0}],[0,f0]]
      a0 : GF  := (first middlepol).coeff
      la : NNI := lookup(a0)$GF rem sizeGF
      -- if the polynomial X**n + a * X**(n-1) +...+ c is primitive and
      -- normal over GF then (-1)**n * c is a primitive element of GF
      -- (cf. [LN] p.90, Th. 3.18), and a = -(x + x**q +...+ x**(q**n))
      -- is not zero (where q = #GF)
      c : GF  := c0
      a : GF  := a0
      -- if a = 0 then set a := 1
      if la = 0 then
        la := 1
        a  := 1$GF
      while lc < sizeGF repeat
        -- (run through the possible values of the constant term)
        noGenerator : Boolean := true
        while noGenerator and lc < sizeGF repeat
          -- find least c >= c0 such that (-1)**n * c0 is primitive
          primitive?((-1)**n * c)$GF => noGenerator := false
          lc := lc + 1
          c  := index(lc :: PI)$GF
        noGenerator => return "failed"
        constterm : Rec := [0, c]$Rec
        while la < sizeGF repeat
        -- (run through the possible values of a)
          headpol : Repr := [xn, [n1, a]$Rec] -- X**n + a X**(n-1)
          if c = c0 and a = a0 then
            -- middlepol = [[i0,f{i0}], ... , [m,fm]] with m < n-1
            middlepol := rest reverse rest middlepol
            weight : NNI := #middlepol + 1 -- #s(f)+1 as explained above
            -- the zeroes in the middlelookuplist stand for the fi
            -- whose lookup's were not yet computed :
            middlelookuplist : L NNI := new((weight-1) :: NNI, 0)
            s : L NNI := [] -- we will compute s(f) only if necessary
          else
            pol := listToSUP append(headpol, [constterm])
            normal? pol and primitive? pol => return pol
            middlepol := [[1,0]$Rec]
            middlelookuplist : L NNI := [sizeGF]
            s : L NNI := [0,1]
            weight : NNI := 2
          tailpol : Repr := []
          taillookuplist : L NNI := []
          notReady : Boolean := true
          while notReady repeat
          -- (run through the possible weights)
            while not empty? middlelookuplist repeat
              -- find next polynomial in the above order with fixed
              -- c, a and weight; assume at this point we have
              -- middlepol = [[i1,f{i1}], [i2,f{i2}], ... , [m,fm]]
              -- tailpol = [[k,fk],...,[k0,fk0]] (k0<...<k<i1<...<m)
              term := first middlepol
              j := first middlelookuplist
              if j = 0 then j := lookup(term.coeff)$GF
              j := j + 1 -- lookup(f{i1})$GF + 1
              j rem sizeGF = 0 =>
                -- in this case one has to increase f{i2}
                -- tailpol = [[i1,f{i1}],...,[k0,f{k0}]]
                tailpol   := cons(term, tailpol)
                middlepol := rest middlepol -- [[i2,f{i2}],...,[m,fm]]
                taillookuplist   := cons(j, taillookuplist)
                middlelookuplist := rest middlelookuplist
              -- otherwise set f{i1} := index(j)$GF
              setelt(first middlepol, coeff, index(j :: PI)$GF)
              setfirst!(middlelookuplist, j)
              if empty? taillookuplist then
                pol := listToSUP append(headpol, reverse
                                cons(constterm, middlepol))
                --
                -- may be improved by excluding reciprocal polynomials
                --
                normal? pol and primitive? pol => return pol
              else
                -- go back to fk
                -- middlepol = [[k,fk],...,[m,fm]]
                middlepol := cons(first tailpol, middlepol)
                tailpol := rest tailpol
                middlelookuplist := cons(first taillookuplist,
                                                 middlelookuplist)
                taillookuplist := rest taillookuplist
            if weight = n1 then notReady := false
            else
              -- must search for polynomial with greater weight
              if empty? s then -- compute s(f)
                restfcopy := rest rest fcopy
                for entry in restfcopy repeat s := cons(entry.expnt, s)
              s1 := nextSubset(rest s, n2) :: L NNI
              s  := cons(0, s1)
              weight := #s
              taillookuplist := []
              middlelookuplist := cons(sizeGF, new((weight-2)::NNI, 1))
              tailpol   := []
              -- middlepol = [[s.2,0], [s.3,1], ... , [s.weight,1] :
              middlepol := [[first s1, 0]$Rec]
              while not empty? (s1 := rest s1) repeat
                middlepol := cons([first s1, 1]$Rec, middlepol)
              middlepol := reverse middlepol
          -- next polynomial must have greater a
          la := la + 1
          a  := index(la :: PI)$GF
        -- next polynomial must have greater constant term
        lc := lc + 1
        c  := index(lc :: PI)$GF
        la := 1
        a  := 1$GF
      "failed"

    nextPrimitiveNormalPoly f == nextNormalPrimitivePoly f

    createIrreduciblePoly n ==
      x := monomial(1,1)$SUP
      n = 1 => x
      xn := monomial(1,n)$SUP
      n >= sizeGF => nextIrreduciblePoly(xn + x) :: SUP
      -- (since in this case there is most no irreducible binomial X+a)
      odd? n => nextIrreduciblePoly(xn + 1) :: SUP
      nextIrreduciblePoly(xn) :: SUP

    createPrimitivePoly n ==
    -- (see also the comments in the code of nextPrimitivePoly)
      xn := monomial(1,n)$SUP
      n = 1 => xn + monomial(-primitiveElement()$GF, 0)$SUP
      c0 : GF := (-1)**n * primitiveElement()$GF
      constterm : Rec := [0, c0]$Rec
      -- try first (probably faster) the polynomials
      -- f = X**n + f{n-1}*X**(n-1) +...+ f1*X + c0 for which
      -- fi is 0 or 1 for i=1,...,n-1,
      -- and this in the order used to define nextPrimitivePoly
      s  : L NNI := [0,1]
      weight : NNI := 2
      s1 : L NNI := [1]
      n1 : NNI := (n - 1) :: NNI
      notReady : Boolean := true
      while notReady repeat
        polRepr : Repr := [constterm]
        while not empty? s1 repeat
          polRepr := cons([first s1, 1]$Rec, polRepr)
          s1 := rest s1
        polRepr := cons([n, 1]$Rec, polRepr)
        --
        -- may be improved by excluding reciprocal polynomials
        --
        primitive? (pol := listToSUP polRepr) => return pol
        if weight = n then notReady := false
        else
          s1 := nextSubset(rest s, n1) :: L NNI
          s  := cons(0, s1)
          weight := #s
      -- if there is no primitive f of the above form
      -- search now from the beginning, allowing arbitrary
      -- coefficients f_i, i = 1,...,n-1
      nextPrimitivePoly(xn + monomial(c0, 0)$SUP) :: SUP

    createNormalPoly n  ==
      n = 1 => monomial(1,1)$SUP + monomial(-1,0)$SUP
      -- get a normal polynomial f = X**n + a * X**(n-1) + ...
      -- with a = -1
      -- [recall that if f is normal over the field GF of order q
      -- then a = -(x + x**q +...+ x**(q**n)) can not be zero;
      -- hence the existence of such an f follows from the
      -- normal basis theorem ([LN] p.60, Th. 2.35) and the
      -- surjectivity of the trace ([LN] p.55, Th. 2.23 (iii))]
      nextNormalPoly(monomial(1,n)$SUP
                       + monomial(-1, (n-1) :: NNI)$SUP) :: SUP

    createNormalPrimitivePoly n ==
      xn := monomial(1,n)$SUP
      n = 1 => xn + monomial(-primitiveElement()$GF, 0)$SUP
      n1  : NNI := (n - 1) :: NNI
      c0  : GF  := (-1)**n * primitiveElement()$GF
      constterm  := monomial(c0, 0)$SUP
      -- try first the polynomials f = X**n + a *  X**(n-1) + ...
      -- with a = -1
      pol := xn + monomial(-1, n1)$SUP + constterm
      normal? pol and primitive? pol => pol
      res := nextNormalPrimitivePoly(pol)
      res case SUP => res
      -- if there is no normal primitive f with a = -1
      -- get now one with arbitrary (non-zero) a
      -- (the existence is proved in [LS])
      pol := xn + monomial(1, n1)$SUP + constterm
      normal? pol and primitive? pol => pol
      nextNormalPrimitivePoly(pol) :: SUP

    createPrimitiveNormalPoly n == createNormalPrimitivePoly n

--    qAdicExpansion m ==
--      ragits : List I := wholeRagits(m :: (RadixExpansion sizeGF))
--      pol  : SUP := 0
--      expt : NNI := #ragits
--      for i in ragits repeat
--        expt := (expt - 1) :: NNI
--        if i ~= 0 then pol := pol + monomial(index(i::PI)$GF, expt)
--      pol

--    random == qAdicExpansion(random()$I)

--    random n ==
--      pol := monomial(1,n)$SUP
--      n1 : NNI := (n - 1) :: NNI
--      for i in 0..n1 repeat
--        if (c := random()$GF) ~= 0 then
--          pol := pol + monomial(c, i)$SUP
--      pol

    random n ==
      polRepr : Repr := []
      n1 : NNI := (n - 1) :: NNI
      for i in 0..n1 repeat
        if (c := random()$GF) ~= 0 then
          polRepr := cons([i, c]$Rec, polRepr)
      cons([n, 1$GF]$Rec, polRepr) pretend SUP

    random(m,n) ==
      if m > n then (m,n) := (n,m)
      d : NNI := (n - m) :: NNI
      if d > 1 then n := ((random()$I rem (d::PI)) + m) :: PI
      random(n)