This file is indexed.

/usr/lib/open-axiom/src/algebra/fspace.spad is in open-axiom-source 1.4.1+svn~2626-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2009, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

-- SPAD files for the functional world should be compiled in the
-- following order:
--
--   op  kl  FSPACE  expr funcpkgs

)abbrev category ES ExpressionSpace
++ Category for domains on which operators can be applied
++ Author: Manuel Bronstein
++ Date Created: 22 March 1988
++ Date Last Updated: 27 May 1994
++ Description:
++ An expression space is a set which is closed under certain operators;
++ Keywords: operator, kernel, expression, space.
ExpressionSpace(): Category == Defn where
  N   ==> NonNegativeInteger
  K   ==> Kernel %
  OP  ==> BasicOperator
  SY  ==> Symbol

  Defn ==> Join(SetCategory, RetractableTo K,
                InnerEvalable(K, %), Evalable %) with
    elt          : (OP, %) -> %
      ++ elt(op,x) or op(x) applies the unary operator op to x.
    elt          : (OP, %, %) -> %
      ++ elt(op,x,y) or op(x, y) applies the binary operator op to x and y.
    elt          : (OP, %, %, %) -> %
      ++ elt(op,x,y,z) or op(x, y, z) applies the ternary operator op to x, y and z.
    elt          : (OP, %, %, %, %) -> %
      ++ elt(op,x,y,z,t) or op(x, y, z, t) applies the 4-ary operator op to x, y, z and t.
    elt          : (OP, List %) -> %
      ++ elt(op,[x1,...,xn]) or op([x1,...,xn]) applies the n-ary operator op to x1,...,xn.
    subst        : (%, Equation %) -> %
      ++ subst(f, k = g) replaces the kernel k by g formally in f.
    subst        : (%, List Equation %) -> %
      ++ subst(f, [k1 = g1,...,kn = gn]) replaces the kernels k1,...,kn
      ++ by g1,...,gn formally in f.
    subst        : (%, List K, List %) -> %
      ++ subst(f, [k1...,kn], [g1,...,gn]) replaces the kernels k1,...,kn
      ++ by g1,...,gn formally in f.
    box          : % -> %
      ++ box(f) returns f with a 'box' around it that prevents f from
      ++ being evaluated when operators are applied to it. For example,
      ++ \spad{log(1)} returns 0, but \spad{log(box 1)}
      ++ returns the formal kernel log(1).
    box          : List % -> %
      ++ box([f1,...,fn]) returns \spad{(f1,...,fn)} with a 'box'
      ++ around them that
      ++ prevents the fi from being evaluated when operators are applied to
      ++ them, and makes them applicable to a unary operator. For example,
      ++ \spad{atan(box [x, 2])} returns the formal kernel \spad{atan(x, 2)}.
    paren        : % -> %
      ++ paren(f) returns (f). This prevents f from
      ++ being evaluated when operators are applied to it. For example,
      ++ \spad{log(1)} returns 0, but \spad{log(paren 1)} returns the
      ++ formal kernel log((1)).
    paren        : List % -> %
      ++ paren([f1,...,fn]) returns \spad{(f1,...,fn)}. This
      ++ prevents the fi from being evaluated when operators are applied to
      ++ them, and makes them applicable to a unary operator. For example,
      ++ \spad{atan(paren [x, 2])} returns the formal
      ++ kernel \spad{atan((x, 2))}.
    distribute   : % -> %
      ++ distribute(f) expands all the kernels in f that are
      ++ formally enclosed by a \spadfunFrom{box}{ExpressionSpace}
      ++ or \spadfunFrom{paren}{ExpressionSpace} expression.
    distribute   : (%, %) -> %
      ++ distribute(f, g) expands all the kernels in f that contain g in their
      ++ arguments and that are formally
      ++ enclosed by a \spadfunFrom{box}{ExpressionSpace}
      ++ or a \spadfunFrom{paren}{ExpressionSpace} expression.
    height       : %  -> N
      ++ height(f) returns the highest nesting level appearing in f.
      ++ Constants have height 0. Symbols have height 1. For any
      ++ operator op and expressions f1,...,fn, \spad{op(f1,...,fn)} has
      ++ height equal to \spad{1 + max(height(f1),...,height(fn))}.
    mainKernel   : %  -> Union(K, "failed")
      ++ mainKernel(f) returns a kernel of f with maximum nesting level, or
      ++ if f has no kernels (i.e. f is a constant).
    kernels      : %  -> List K
      ++ kernels(f) returns the list of all the top-level kernels
      ++ appearing in f, but not the ones appearing in the arguments
      ++ of the top-level kernels.
    tower        : %  -> List K
      ++ tower(f) returns all the kernels appearing in f, no matter
      ++ what their levels are.
    operators    : %  -> List OP
      ++ operators(f) returns all the basic operators appearing in f,
      ++ no matter what their levels are.
    operator     : OP -> OP
      ++ operator(op) returns a copy of op with the domain-dependent
      ++ properties appropriate for %.
    belong?      : OP -> Boolean
      ++ belong?(op) tests if % accepts op as applicable to its
      ++ elements.
    is?          : (%, OP)     -> Boolean
      ++ is?(x, op) tests if x is a kernel and is its operator is op.
    is?          : (%, SY) -> Boolean
      ++ is?(x, s) tests if x is a kernel and is the name of its
      ++ operator is s.
    kernel       : (OP, %) -> %
      ++ kernel(op, x) constructs op(x) without evaluating it.
    kernel       : (OP, List %) -> %
      ++ kernel(op, [f1,...,fn]) constructs \spad{op(f1,...,fn)} without
      ++ evaluating it.
    map          : (% -> %, K) -> %
      ++ map(f, k) returns \spad{op(f(x1),...,f(xn))} where
      ++ \spad{k = op(x1,...,xn)}.
    freeOf?      : (%, %)  -> Boolean
      ++ freeOf?(x, y) tests if x does not contain any occurrence of y,
      ++ where y is a single kernel.
    freeOf?      : (%, SY) -> Boolean
      ++ freeOf?(x, s) tests if x does not contain any operator
      ++ whose name is s.
    eval         : (%, List SY, List(% -> %)) -> %
      ++ eval(x, [s1,...,sm], [f1,...,fm]) replaces
      ++ every \spad{si(a)} in x by \spad{fi(a)} for any \spad{a}.
    eval         : (%, List SY, List(List % -> %)) -> %
      ++ eval(x, [s1,...,sm], [f1,...,fm]) replaces
      ++ every \spad{si(a1,...,an)} in x by
      ++ \spad{fi(a1,...,an)} for any \spad{a1},...,\spad{an}.
    eval         : (%, SY, List % -> %) -> %
      ++ eval(x, s, f) replaces every \spad{s(a1,..,am)} in x
      ++ by \spad{f(a1,..,am)} for any \spad{a1},...,\spad{am}.
    eval         : (%, SY, % -> %) -> %
      ++ eval(x, s, f) replaces every \spad{s(a)} in x by \spad{f(a)}
      ++ for any \spad{a}.
    eval         : (%, List OP, List(% -> %)) -> %
      ++ eval(x, [s1,...,sm], [f1,...,fm]) replaces
      ++ every \spad{si(a)} in x by \spad{fi(a)} for any \spad{a}.
    eval         : (%, List OP, List(List % -> %)) -> %
      ++ eval(x, [s1,...,sm], [f1,...,fm]) replaces
      ++ every \spad{si(a1,...,an)} in x by
      ++ \spad{fi(a1,...,an)} for any \spad{a1},...,\spad{an}.
    eval         : (%, OP, List % -> %) -> %
      ++ eval(x, s, f) replaces every \spad{s(a1,..,am)} in x
      ++ by \spad{f(a1,..,am)} for any \spad{a1},...,\spad{am}.
    eval         : (%, OP, % -> %) -> %
      ++ eval(x, s, f) replaces every \spad{s(a)} in x by \spad{f(a)}
      ++ for any \spad{a}.
    if % has Ring then
      minPoly: K -> SparseUnivariatePolynomial %
        ++ minPoly(k) returns p such that \spad{p(k) = 0}.
      definingPolynomial: % -> %
        ++ definingPolynomial(x) returns an expression p such that
        ++ \spad{p(x) = 0}.
    if % has RetractableTo Integer then
      even?: % -> Boolean
        ++ even? x is true if x is an even integer.
      odd? : % -> Boolean
        ++ odd? x is true if x is an odd integer.

   add

-- the 7 functions not provided are:
--        kernels   minPoly   definingPolynomial
--        coerce:K -> %  eval:(%, List K, List %) -> %
--        subst:(%, List K, List %) -> %
--        eval:(%, List Symbol, List(List % -> %)) -> %

    macro PAREN  == '%paren
    macro BOX == '%box
    macro DUMMYVAR == '%dummyVar
    allKernels: %      -> List K
    allk      : List % -> List K
    unwrap    : (List K, %) -> %
    okkernel  : (OP, List %) -> %
    mkKerLists: List Equation % -> Record(lstk: List K, lstv:List %)

    oppren := operator(PAREN)$CommonOperators()
    opbox  := operator(BOX)$CommonOperators()

    box(x:%)     == box [x]
    paren(x:%)   == paren [x]
    belong? op   == op = oppren or op = opbox
    tower f      == sort! allKernels f
    allk l       == reduce("setUnion", [allKernels f for f in l], nil$List(K))
    operators f  == [operator k for k in allKernels f]
    height f     == reduce("max", [height k for k in kernels f], 0)
    freeOf?(x:%, s:SY) == 
      not member?(s, [name operator k for k in allKernels x])
    distribute x == unwrap([k for k in allKernels x | is?(k, oppren)], x)
    box(l:List %)                  == opbox l
    paren(l:List %)                == oppren l
    freeOf?(x:%, k:%)              == not member?(retract k, allKernels x)
    kernel(op:OP, arg:%)           == kernel(op, [arg])
    elt(op:OP, x:%)                == op [x]
    elt(op:OP, x:%, y:%)           == op [x, y]
    elt(op:OP, x:%, y:%, z:%)      == op [x, y, z]
    elt(op:OP, x:%, y:%, z:%, t:%) == op [x, y, z, t]
    eval(x:%, s:SY, f:List % -> %) == eval(x, [s], [f])
    eval(x:%, s:OP, f:List % -> %) == eval(x, [name s], [f])
    eval(x:%, s:SY, f:% -> %)      == eval(x, [s], [f first #1])
    eval(x:%, s:OP, f:% -> %)      == eval(x, [s], [f first #1])
    subst(x:%, e:Equation %)       == subst(x, [e])

    eval(x:%, ls:List OP, lf:List(% -> %)) ==
      eval(x, ls, [f first #1 for f in lf]$List(List % -> %))

    eval(x:%, ls:List SY, lf:List(% -> %)) ==
      eval(x, ls, [f first #1 for f in lf]$List(List % -> %))

    eval(x:%, ls:List OP, lf:List(List % -> %)) ==
      eval(x, [name s for s in ls]$List(SY), lf)

    map(fn, k) ==
      (l := [fn x for x in argument k]$List(%)) = argument k => k::%
      (operator k) l

    operator op ==
      is?(op, PAREN) => oppren
      is?(op, BOX) => opbox
      error "Unknown operator"

    mainKernel x ==
      empty?(l := kernels x) => "failed"
      n := height(k := first l)
      for kk in rest l repeat
        if height(kk) > n then
          n := height kk
          k := kk
      k

-- takes all the kernels except for the dummy variables, which are second
-- arguments of rootOf's, integrals, sums and products which appear only in
-- their first arguments
    allKernels f ==
      s := removeDuplicates(l := kernels f)
      for k in l repeat
          t :=
              (u := property(operator k, DUMMYVAR)) case None =>
                  arg := argument k
                  s0  := remove!(retract(second arg)@K, allKernels first arg)
                  arg := rest rest arg
                  n   := (u::None) pretend N
                  if n > 1 then arg := rest arg
                  setUnion(s0, allk arg)
              allk argument k
          s := setUnion(s, t)
      s

    kernel(op:OP, args:List %) ==
      not belong? op => error "Unknown operator"
      okkernel(op, args)

    okkernel(op, l) ==
      kernel(op, l, 1 + reduce("max", [height f for f in l], 0))$K :: %

    elt(op:OP, args:List %) ==
      not belong? op => error "Unknown operator"
      (#args)::Arity ~= arity op and (arity op ~= arbitrary()) =>
        error "Wrong number of arguments"
      (v := evaluate(op,args)$BasicOperatorFunctions1(%)) case % => v::%
      okkernel(op, args)

    retract f ==
      (k := mainKernel f) case "failed" => error "not a kernel"
      k::K::% ~= f => error "not a kernel"
      k::K

    retractIfCan f ==
      (k := mainKernel f) case "failed" => "failed"
      k::K::% ~= f => "failed"
      k

    is?(f:%, s:SY) ==
      (k := retractIfCan f) case "failed" => false
      is?(k::K, s)

    is?(f:%, op:OP) ==
      (k := retractIfCan f) case "failed" => false
      is?(k::K, op)

    unwrap(l, x) ==
      for k in reverse! l repeat
        x := eval(x, k, first argument k)
      x

    distribute(x, y) ==
      ky := retract y
      unwrap([k for k in allKernels x |
              is?(k, '%paren) and member?(ky, allKernels(k::%))], x)

    -- in case of conflicting substitutions e.g. [x = a, x = b],
    -- the first one prevails.
    -- this is not part of the semantics of the function, but just
    -- a feature of this implementation.
    eval(f:%, leq:List Equation %) ==
      rec := mkKerLists leq
      eval(f, rec.lstk, rec.lstv)

    subst(f:%, leq:List Equation %) ==
      rec := mkKerLists leq
      subst(f, rec.lstk, rec.lstv)

    mkKerLists leq ==
      lk := empty()$List(K)
      lv := empty()$List(%)
      for eq in leq repeat
        (k := retractIfCan(lhs eq)@Union(K, "failed")) case "failed" =>
                          error "left hand side must be a single kernel"
        if not member?(k::K, lk) then
          lk := concat(k::K, lk)
          lv := concat(rhs eq, lv)
      [lk, lv]

    if % has RetractableTo Integer then
       intpred?: (%, Integer -> Boolean) -> Boolean

       even? x == intpred?(x, even?)
       odd? x  == intpred?(x, odd?)

       intpred?(x, pred?) ==
           (u := retractIfCan(x)@Union(Integer, "failed")) case Integer
                  and pred?(u::Integer)

)abbrev package ES1 ExpressionSpaceFunctions1
++ Lifting of maps from expression spaces to kernels over them
++ Author: Manuel Bronstein
++ Date Created: 23 March 1988
++ Date Last Updated: 19 April 1991
++ Description:
++   This package allows a map from any expression space into any object
++   to be lifted to a kernel over the expression set, using a given
++   property of the operator of the kernel.
-- should not be exposed
ExpressionSpaceFunctions1(F:ExpressionSpace, S:Type): with
    map: (F -> S, String, Kernel F) -> S
      ++ map(f, p, k) uses the property p of the operator
      ++ of k, in order to lift f and apply it to k.

  == add
    --  prop  contains an evaluation function List S -> S
    map(F2S, prop, k) ==
      args := [F2S x for x in argument k]$List(S)
      (p := property(operator k, prop)) case None =>
                                  ((p::None) pretend (List S -> S)) args
      error "Operator does not have required property"

)abbrev package ES2 ExpressionSpaceFunctions2
++ Lifting of maps from expression spaces to kernels over them
++ Author: Manuel Bronstein
++ Date Created: 23 March 1988
++ Date Last Updated: 19 April 1991
++ Description:
++ This package allows a mapping E -> F to be lifted to a kernel over E;
++ This lifting can fail if the operator of the kernel cannot be applied
++ in F; Do not use this package with E = F, since this may
++ drop some properties of the operators.
ExpressionSpaceFunctions2(E:ExpressionSpace, F:ExpressionSpace): with
    map: (E -> F, Kernel E) -> F
      ++ map(f, k) returns \spad{g = op(f(a1),...,f(an))} where
      ++ \spad{k = op(a1,...,an)}.
  == add
    map(f, k) ==
      (operator(operator k)$F) [f x for x in argument k]$List(F)

)abbrev category FS FunctionSpace
++ Category for formal functions
++ Author: Manuel Bronstein
++ Date Created: 22 March 1988
++ Date Last Updated: 14 February 1994
++ Description:
++   A space of formal functions with arguments in an arbitrary
++   ordered set.
++ Keywords: operator, kernel, function.
FunctionSpace(R: SetCategory): Category == Definition where
  OP ==> BasicOperator
  O  ==> OutputForm
  SY ==> Symbol
  N  ==> NonNegativeInteger
  Z  ==> Integer
  K  ==> Kernel %
  Q  ==> Fraction R
  PR ==> Polynomial R
  MP ==> SparseMultivariatePolynomial(R, K)
  QF==> PolynomialCategoryQuotientFunctions(IndexedExponents K,K,R,MP,%)

  Definition ==> Join(ExpressionSpace, RetractableTo SY, Patternable R,
                     FullyPatternMatchable R, FullyRetractableTo R) with
       ground?   : % -> Boolean
         ++ ground?(f) tests if f is an element of R.
       ground    : % -> R
         ++ ground(f) returns f as an element of R.
         ++ An error occurs if f is not an element of R.
       variables : %  -> List SY
         ++ variables(f) returns the list of all the variables of f.
       applyQuote: (SY, %) -> %
         ++ applyQuote(foo, x) returns \spad{'foo(x)}.
       applyQuote: (SY, %, %) -> %
         ++ applyQuote(foo, x, y) returns \spad{'foo(x,y)}.
       applyQuote: (SY, %, %, %) -> %
         ++ applyQuote(foo, x, y, z) returns \spad{'foo(x,y,z)}.
       applyQuote: (SY, %, %, %, %) -> %
         ++ applyQuote(foo, x, y, z, t) returns \spad{'foo(x,y,z,t)}.
       applyQuote: (SY, List %) -> %
         ++ applyQuote(foo, [x1,...,xn]) returns \spad{'foo(x1,...,xn)}.
       if R has ConvertibleTo InputForm then
         ConvertibleTo InputForm
         eval     : (%, SY) -> %
           ++ eval(f, foo) unquotes all the foo's in f.
         eval     : (%, List SY) -> %
           ++ eval(f, [foo1,...,foon]) unquotes all the \spad{fooi}'s in f.
         eval     : % -> %
           ++ eval(f) unquotes all the quoted operators in f.
         eval     : (%, OP, %, SY) -> %
           ++ eval(x, s, f, y) replaces every \spad{s(a)} in x by \spad{f(y)}
           ++ with \spad{y} replaced by \spad{a} for any \spad{a}.
         eval     : (%, List OP, List %, SY) -> %
           ++ eval(x, [s1,...,sm], [f1,...,fm], y) replaces every
           ++ \spad{si(a)} in x by \spad{fi(y)}
           ++ with \spad{y} replaced by \spad{a} for any \spad{a}.
       if R has SemiGroup then
         Monoid
         -- the following line is necessary because of a compiler bug
         **   : (%, N) -> %
           ++ x**n returns x * x * x * ... * x (n times).
         isTimes: % -> Union(List %, "failed")
           ++ isTimes(p) returns \spad{[a1,...,an]}
           ++ if \spad{p = a1*...*an} and \spad{n > 1}.
         isExpt : % -> Union(Record(var:K,exponent:Z),"failed")
           ++ isExpt(p) returns \spad{[x, n]} if \spad{p = x**n}
           ++ and \spad{n <> 0}.
       if R has Group then Group
       if R has AbelianSemiGroup then
         AbelianMonoid
         isPlus: % -> Union(List %, "failed")
           ++ isPlus(p) returns \spad{[m1,...,mn]}
           ++ if \spad{p = m1 +...+ mn} and \spad{n > 1}.
         isMult: % -> Union(Record(coef:Z, var:K),"failed")
           ++ isMult(p) returns \spad{[n, x]} if \spad{p = n * x}
           ++ and \spad{n <> 0}.
       if R has AbelianGroup then AbelianGroup
       if R has Ring then
         Ring
         RetractableTo PR
         PartialDifferentialRing SY
         FullyLinearlyExplicitRingOver R
         coerce    : MP -> %
           ++ coerce(p) returns p as an element of %.
         numer     : %  -> MP
           ++ numer(f) returns the
           ++ numerator of f viewed as a polynomial in the kernels over R
           ++ if R is an integral domain. If not, then numer(f) = f viewed
           ++ as a polynomial in the kernels over R.
           -- DO NOT change this meaning of numer!  MB 1/90
         numerator : % -> %
           ++ numerator(f) returns the numerator of \spad{f} converted to %.
         isExpt:(%,OP) -> Union(Record(var:K,exponent:Z),"failed")
           ++ isExpt(p,op) returns \spad{[x, n]} if \spad{p = x**n}
           ++ and \spad{n <> 0} and \spad{x = op(a)}.
         isExpt:(%,SY) -> Union(Record(var:K,exponent:Z),"failed")
           ++ isExpt(p,f) returns \spad{[x, n]} if \spad{p = x**n}
           ++ and \spad{n <> 0} and \spad{x = f(a)}.
         isPower   : % -> Union(Record(val:%,exponent:Z),"failed")
           ++ isPower(p) returns \spad{[x, n]} if \spad{p = x**n}
           ++ and \spad{n <> 0}.
         eval: (%, List SY, List N, List(% -> %)) -> %
           ++ eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm]) replaces
           ++ every \spad{si(a)**ni} in x by \spad{fi(a)} for any \spad{a}.
         eval: (%, List SY, List N, List(List % -> %)) -> %
           ++ eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm]) replaces
           ++ every \spad{si(a1,...,an)**ni} in x by \spad{fi(a1,...,an)}
           ++ for any a1,...,am.
         eval: (%, SY, N, List % -> %) -> %
           ++ eval(x, s, n, f) replaces every \spad{s(a1,...,am)**n} in x
           ++ by \spad{f(a1,...,am)} for any a1,...,am.
         eval: (%, SY, N, % -> %) -> %
           ++ eval(x, s, n, f) replaces every \spad{s(a)**n} in x
           ++ by \spad{f(a)} for any \spad{a}.
       if R has CharacteristicZero then CharacteristicZero
       if R has CharacteristicNonZero then CharacteristicNonZero
       if R has CommutativeRing then
         Algebra R
       if R has IntegralDomain then
         Field
         RetractableTo Fraction PR
         convert   : Factored % -> %
           ++ convert(f1\^e1 ... fm\^em) returns \spad{(f1)\^e1 ... (fm)\^em}
           ++ as an element of %, using formal kernels
           ++ created using a \spadfunFrom{paren}{ExpressionSpace}.
         denom     : %  -> MP
           ++ denom(f) returns the denominator of f viewed as a
           ++ polynomial in the kernels over R.
         denominator : % -> %
           ++ denominator(f) returns the denominator of \spad{f} converted to %.
         /       : (MP, MP) -> %
           ++ p1/p2 returns the quotient of p1 and p2 as an element of %.
         coerce    : Q  -> %
           ++ coerce(q) returns q as an element of %.
         coerce    : Polynomial Q -> %
           ++ coerce(p) returns p as an element of %.
         coerce    : Fraction Polynomial Q -> %
           ++ coerce(f) returns f as an element of %.
         univariate: (%, K) -> Fraction SparseUnivariatePolynomial %
           ++ univariate(f, k) returns f viewed as a univariate fraction in k.
         if R has RetractableTo Z then RetractableTo Fraction Z
   add
    macro ODD  == 'odd
    macro EVEN == 'even

    macro SPECIALDIFF  == '%specialDiff
    macro SPECIALDISP  == '%specialDisp
    macro SPECIALEQUAL == '%specialEqual
    macro SPECIALINPUT == '%specialInput

    import BasicOperatorFunctions1(%)

    -- these are needed in Ring only, but need to be declared here
    -- because of compiler bug: if they are declared inside the Ring
    -- case, then they are not visible inside the IntegralDomain case.
    smpIsMult : MP -> Union(Record(coef:Z, var:K),"failed")
    smpret    : MP -> Union(PR, "failed")
    smpeval   : (MP, List K, List %) -> %
    smpsubst  : (MP, List K, List %) -> %
    smpderiv  : (MP, SY) -> %
    smpunq    : (MP, List SY, Boolean) -> %
    kerderiv  : (K, SY)  -> %
    kderiv    : K -> List %
    opderiv   : (OP, N) -> List(List % -> %)
    smp2O     : MP -> O
    bestKernel: List K -> K
    worse?    : (K, K) -> Boolean
    diffArg   : (List %, OP, N) -> List %
    substArg  : (OP, List %, Z, %) -> %
    dispdiff  : List % -> Record(name:O, sub:O, arg:List O, level:N)
    ddiff     : List % -> O
    diffEval  : List % -> %
    dfeval    : (List %, K) -> %
    smprep    : (List SY, List N, List(List % -> %), MP) -> %
    diffdiff  : (List %, SY) -> %
    diffdiff0 : (List %, SY, %, K, List %) -> %
    subs      : (% -> %, K) -> %
    symsub    : (SY, Z) -> SY
    kunq      : (K, List SY, Boolean) -> %
    pushunq   : (List SY, List %) -> List %
    notfound  : (K -> %, List K, K) -> %

    equaldiff : (K,K)->Boolean
    debugA: (List % ,List %,Boolean) -> Boolean
    opdiff := operator('%diff)$CommonOperators()
    opquote := operator('applyQuote)$CommonOperators

    ground? x                == retractIfCan(x)@Union(R,"failed") case R
    ground  x                == retract x
    coerce(x:SY):%             == kernel(x)@K :: %
    retract(x:%):SY            == symbolIfCan(retract(x)@K)::SY
    applyQuote(s:SY, x:%)      == applyQuote(s, [x])
    applyQuote(s, x, y)        == applyQuote(s, [x, y])
    applyQuote(s, x, y, z)     == applyQuote(s, [x, y, z])
    applyQuote(s, x, y, z, t)  == applyQuote(s, [x, y, z, t])
    applyQuote(s:SY, l:List %) == opquote concat(s::%, l)
    belong? op                 == op = opdiff or op = opquote
    subs(fn, k) == kernel(operator k,[fn x for x in argument k]$List(%))

    operator op ==
      is?(op, '%diff) => opdiff
      is?(op, '%quote) => opquote
      error "Unknown operator"

    if R has ConvertibleTo InputForm then
      INP==>InputForm
      import MakeUnaryCompiledFunction(%, %, %)
      indiff: List % -> INP
      pint  : List INP-> INP
      differentiand: List % -> %

      differentiand l    == eval(first l, retract(second l)@K, third l)
      pint l  == convert concat(convert("D"::SY)@INP, l)
      indiff l ==
         r2:= convert([convert("::"::SY)@INP,convert(third l)@INP,convert("Symbol"::SY)@INP]@List INP)@INP
         pint [convert(differentiand l)@INP, r2] 
      eval(f:%, s:SY)            == eval(f, [s])
      eval(f:%, s:OP, g:%, x:SY) == eval(f, [s], [g], x)

      eval(f:%, ls:List OP, lg:List %, x:SY) ==
        eval(f, ls, [compiledFunction(g, x) for g in lg])

      setProperty(opdiff,SPECIALINPUT,indiff@(List % -> InputForm) pretend None)

    variables x ==
      l := empty()$List(SY)
      for k in tower x repeat
        if ((s := symbolIfCan k) case SY) then l := concat(s::SY, l)
      reverse! l

    retractIfCan(x:%):Union(SY, "failed") ==
      (k := retractIfCan(x)@Union(K,"failed")) case "failed" => "failed"
      symbolIfCan(k::K)

    if R has Ring then
      import UserDefinedPartialOrdering(SY)

-- cannot use new()$Symbol because of possible re-instantiation
      gendiff := "%%0"::SY

      characteristic == characteristic$R
      coerce(k:K):%       == k::MP::%
      symsub(sy, i)       == concat(string sy, string i)::SY
      numerator x         == numer(x)::%
      eval(x:%, s:SY, n:N, f:% -> %)     == eval(x,[s],[n],[f first #1])
      eval(x:%, s:SY, n:N, f:List % -> %) == eval(x, [s], [n], [f])
      eval(x:%, l:List SY, f:List(List % -> %)) == eval(x, l, new(#l, 1), f)

      elt(op:OP, args:List %) ==
        unary? op and ((od? := has?(op, ODD)) or has?(op, EVEN)) and
          before?(leadingCoefficient(numer first args),0) =>
            x := op(- first args)
            od? => -x
            x
        elt(op, args)$ExpressionSpace_&(%)

      eval(x:%, s:List SY, n:List N, l:List(% -> %)) ==
        eval(x, s, n, [f first #1 for f in l]$List(List % -> %))

      -- op(arg)**m ==> func(arg)**(m quo n) * op(arg)**(m rem n)
      smprep(lop, lexp, lfunc, p) ==
        (v := mainVariable p) case "failed" => p::%
        k := v::K
        g := (op := operator k)
           (arg := [eval(a,lop,lexp,lfunc) for a in argument k]$List(%))
        q := map(eval(#1::%, lop, lexp, lfunc),
                 univariate(p, k))$SparseUnivariatePolynomialFunctions2(MP, %)
        (n := position(name op, lop)) < minIndex lop => q g
        a:%  := 0
        f    := eval((lfunc.n) arg, lop, lexp, lfunc)
        e    := lexp.n
        while q ~= 0 repeat
          m  := degree q
          qr := divide(m, e)
          t1 := f ** (qr.quotient)::N
          t2 := g ** (qr.remainder)::N
          a  := a + leadingCoefficient(q) * t1 * t2
          q  := reductum q
        a

      dispdiff l ==
        s := second(l)::O
        t := third(l)::O
        a := argument(k := retract(first l)@K)
        is?(k, opdiff) =>
          rec := dispdiff a
          i   := position(s, rec.arg)
          rec.arg.i := t
          [rec.name,
             hconcat(rec.sub, hconcat(","::SY::O, (i+1-minIndex a)::O)),
                        rec.arg, (zero?(rec.level) => 0; rec.level + 1)]
        i   := position(second l, a)
        m   := [x::O for x in a]$List(O)
        m.i := t
        [name(operator k)::O, hconcat(","::SY::O, (i+1-minIndex a)::O),
                                             m, (empty? rest a => 1; 0)]

      ddiff l ==
        rec := dispdiff l
        opname :=
          zero?(rec.level) => sub(rec.name, rec.sub)
          differentiate(rec.name, rec.level)
        prefix(opname, rec.arg)

      substArg(op, l, i, g) ==
        z := copy l
        z.i := g
        kernel(op, z)


      diffdiff(l, x) ==
        f := kernel(opdiff, l)
        diffdiff0(l, x, f, retract(f)@K, empty())

      diffdiff0(l, x, expr, kd, done) ==
        op  := operator(k := retract(first l)@K)
        gg  := second l
        u   := third l
        arg := argument k
        ans:% := 0
        if (not member?(u,done)) and not zero?(ans := differentiate(u,x)) then
          ans := ans * kernel(opdiff,
               [subst(expr, [kd], [kernel(opdiff, [first l, gg, gg])]),
                             gg, u])
        done := concat(gg, done)
        is?(k, opdiff) => ans + diffdiff0(arg, x, expr, k, done)
        for i in minIndex arg .. maxIndex arg for b in arg repeat
          if (not member?(b,done)) and not zero?(bp:=differentiate(b,x)) then
            g   := symsub(gendiff, i)::%
            ans := ans + bp * kernel(opdiff, [subst(expr, [kd],
             [kernel(opdiff, [substArg(op, arg, i, g), gg, u])]), g, b])
        ans

      dfeval(l, g) ==
        eval(differentiate(first l, symbolIfCan(g)::SY), g, third l)

      diffEval l ==
        k:K
        g := retract(second l)@K
        ((u := retractIfCan(first l)@Union(K, "failed")) case "failed")
          or (u case K and symbolIfCan(k := u::K) case SY) => dfeval(l, g)
        op := operator k
        (ud := derivative op) case "failed" => 
             -- possible trouble 
             -- make sure it is a dummy var  
             dumm:%:=symsub(gendiff,1)::%
             ss:=subst(l.1,l.2=dumm)
             -- output(nl::OutputForm)$OutputPackage
             -- output("fixed"::OutputForm)$OutputPackage
             nl:=[ss,dumm,l.3]
             kernel(opdiff, nl)
        (n := position(second l,argument k)) < minIndex l => 
              dfeval(l,g)
        d := ud::List(List % -> %)
        eval((d.n)(argument k), g, third l)

      diffArg(l, op, i) ==
        n := i - 1 + minIndex l
        z := copy l
        z.n := g := symsub(gendiff, n)::%
        [kernel(op, z), g, l.n]

      opderiv(op, n) ==
        one? n =>
          g := symsub(gendiff, n)::%
          [kernel(opdiff,[kernel(op, g), g, first #1])]
        [kernel(opdiff, diffArg(#1, op, i)) for i in 1..n]

      kderiv k ==
        zero?(n := #(args := argument k)) => empty()
        op := operator k
        grad :=
          (u := derivative op) case "failed" => opderiv(op, n)
          u::List(List % -> %)
        if #grad ~= n then grad := opderiv(op, n)
        [g args for g in grad]

    -- SPECIALDIFF contains a map (List %, Symbol) -> %
    -- it is used when the usual chain rule does not apply,
    -- for instance with implicit algebraics.
      kerderiv(k, x) ==
        (v := symbolIfCan(k)) case SY =>
          v::SY = x => 1
          0
        (fn := property(operator k, SPECIALDIFF)) case None =>
           ((fn@None) pretend ((List %, SY) -> %)) (argument k, x)
        +/[g * differentiate(y,x) for g in kderiv k for y in argument k]

      smpderiv(p, x) ==
        map(retract differentiate(#1::PR, x), p)::% +
         +/[differentiate(p,k)::% * kerderiv(k, x) for k in variables p]

      coerce(p:PR):% ==
        map(#1::%, #1::%, p)$PolynomialCategoryLifting(
                                      IndexedExponents SY, SY, R, PR, %)

      worse?(k1, k2) ==
        (u := less?(name operator k1,name operator k2)) case "failed" =>
          k1 < k2
        u::Boolean

      bestKernel l ==
        empty? rest l => first l
        a := bestKernel rest l
        worse?(first l, a) => a
        first l

      smp2O p ==
        (r:=retractIfCan(p)@Union(R,"failed")) case R =>r::R::OutputForm
        a :=
          userOrdered?() => bestKernel variables p
          mainVariable(p)::K
        outputForm(map(#1::%, univariate(p,
         a))$SparseUnivariatePolynomialFunctions2(MP, %), a::OutputForm)

      smpsubst(p, lk, lv) ==
        map(match(lk, lv, #1,
            notfound(subs(subst(#1, lk, lv), #1), lk, #1))$ListToMap(K,%),
             #1::%,p)$PolynomialCategoryLifting(IndexedExponents K,K,R,MP,%)

      smpeval(p, lk, lv) ==
        map(match(lk, lv, #1,
            notfound(map(eval(#1, lk, lv), #1), lk, #1))$ListToMap(K,%),
             #1::%,p)$PolynomialCategoryLifting(IndexedExponents K,K,R,MP,%)

-- this is called on k when k is not a member of lk
      notfound(fn, lk, k) ==
        empty? setIntersection(tower(f := k::%), lk) => f
        fn k

      if R has ConvertibleTo InputForm then
        pushunq(l, arg) ==
           empty? l => [eval a for a in arg]
           [eval(a, l) for a in arg]

        kunq(k, l, givenlist?) ==
          givenlist? and empty? l => k::%
          is?(k, opquote) and
            (member?(s:=retract(first argument k)@SY, l) or empty? l) =>
              interpret(convert(concat(convert(s)@InputForm,
                [convert a for a in pushunq(l, rest argument k)
                   ]@List(InputForm)))@InputForm)$InputFormFunctions1(%)
          (operator k) pushunq(l, argument k)

        smpunq(p, l, givenlist?) ==
          givenlist? and empty? l => p::%
          map(kunq(#1, l, givenlist?), #1::%,
            p)$PolynomialCategoryLifting(IndexedExponents K,K,R,MP,%)

      smpret p ==
        "or"/[symbolIfCan(k) case "failed" for k in variables p] =>
          "failed"
        map(symbolIfCan(#1)::SY::PR, #1::PR,
          p)$PolynomialCategoryLifting(IndexedExponents K, K, R, MP, PR)

      isExpt(x:%, op:OP) ==
        (u := isExpt x) case "failed" => "failed"
        v := (u::Record(var:K, exponent:Z)).var
        is?(v,op) and #argument(v) = 1 => u
        "failed"

      isExpt(x:%, sy:SY) ==
        (u := isExpt x) case "failed" => "failed"
        v := (u::Record(var:K, exponent:Z)).var
        is?(v, sy) and #argument(v) = 1 => u
        "failed"

      if R has RetractableTo Z then
          smpIsMult p ==
            (u := mainVariable p) case K and one? degree(q:=univariate(p,u::K))
              and zero?(leadingCoefficient reductum q)
                and ((r:=retractIfCan(leadingCoefficient q)@Union(R,"failed"))
                   case R)
                     and (n := retractIfCan(r::R)@Union(Z, "failed")) case Z =>
                       [n::Z, u::K]
            "failed"

      evaluate(opdiff, diffEval)

      debugA(a1,a2,t) == 
         -- uncomment for debugging
         -- output(hconcat [a1::OutputForm,a2::OutputForm,t::OutputForm])$OutputPackage
         t

      equaldiff(k1,k2) ==
        a1:=argument k1
        a2:=argument k2
        -- check the operator
        res:=operator k1 = operator k2 
        not res => debugA(a1,a2,res) 
        -- check the evaluation point
        res:= (a1.3 = a2.3)
        not res => debugA(a1,a2,res)
        -- check all the arguments
        res:= (a1.1 = a2.1) and (a1.2 = a2.2)
        res => debugA(a1,a2,res)
        -- check the substituted arguments
        (subst(a1.1,[retract(a1.2)@K],[a2.2]) = a2.1) => debugA(a1,a2,true)
        debugA(a1,a2,false)
      setProperty(opdiff,SPECIALEQUAL,
                          equaldiff@((K,K) -> Boolean) pretend None)
      setProperty(opdiff, SPECIALDIFF,
                          diffdiff@((List %, SY) -> %) pretend None)
      setProperty(opdiff, SPECIALDISP,
                              ddiff@(List % -> OutputForm) pretend None)

      if not(R has IntegralDomain) then
        mainKernel x         == mainVariable numer x
        kernels x            == variables numer x
        retract(x:%):R       == retract numer x
        retract(x:%):PR      == smpret(numer x)::PR
        retractIfCan(x:%):Union(R,  "failed") == retract numer x
        retractIfCan(x:%):Union(PR, "failed") == smpret numer x
        eval(x:%, lk:List K, lv:List %)  == smpeval(numer x, lk, lv)
        subst(x:%, lk:List K, lv:List %) == smpsubst(numer x, lk, lv)
        differentiate(x:%, s:SY)         == smpderiv(numer x, s)
        coerce(x:%):OutputForm           == smp2O numer x

        if R has ConvertibleTo InputForm then
          eval(f:%, l:List SY) == smpunq(numer f, l, true)
          eval f               == smpunq(numer f, empty(), false)

        eval(x:%, s:List SY, n:List N, f:List(List % -> %)) ==
          smprep(s, n, f, numer x)

        isPlus x ==
          (u := isPlus numer x) case "failed" => "failed"
          [p::% for p in u::List(MP)]

        isTimes x ==
          (u := isTimes numer x) case "failed" => "failed"
          [p::% for p in u::List(MP)]

        isExpt x ==
          (u := isExpt numer x) case "failed" => "failed"
          r := u::Record(var:K, exponent:NonNegativeInteger)
          [r.var, r.exponent::Z]

        isPower x ==
          (u := isExpt numer x) case "failed" => "failed"
          r := u::Record(var:K, exponent:NonNegativeInteger)
          [r.var::%, r.exponent::Z]

        if R has ConvertibleTo Pattern Z then
          convert(x:%):Pattern(Z) == convert numer x

        if R has ConvertibleTo Pattern Float then
          convert(x:%):Pattern(Float) == convert numer x

        if R has RetractableTo Z then
          isMult x == smpIsMult numer x

    if R has CommutativeRing then
      r:R * x:% == r::MP::% * x

    if R has IntegralDomain then
      par   : % -> %

      mainKernel x                    == mainVariable(x)$QF
      kernels x                       == variables(x)$QF
      univariate(x:%, k:K)            == univariate(x, k)$QF
      isPlus x                        == isPlus(x)$QF
      isTimes x                       == isTimes(x)$QF
      isExpt x                        == isExpt(x)$QF
      isPower x                       == isPower(x)$QF
      denominator x                   == denom(x)::%
      coerce(q:Q):%                   == (numer q)::MP / (denom q)::MP
      coerce(q:Fraction PR):%         == (numer q)::% / (denom q)::%
      coerce(q:Fraction Polynomial Q) == (numer q)::% / (denom q)::%
      retract(x:%):PR                == retract(retract(x)@Fraction(PR))
      retract(x:%):Fraction(PR) == smpret(numer x)::PR / smpret(denom x)::PR
      retract(x:%):R == (retract(numer x)@R exquo retract(denom x)@R)::R

      coerce(x:%):OutputForm ==
        one?(denom x) => smp2O numer x
        smp2O(numer x) / smp2O(denom x)

      retractIfCan(x:%):Union(R, "failed") ==
        (n := retractIfCan(numer x)@Union(R, "failed")) case "failed" or
          (d := retractIfCan(denom x)@Union(R, "failed")) case "failed"
            or (r := n::R exquo d::R) case "failed" => "failed"
        r::R

      eval(f:%, l:List SY) ==
        smpunq(numer f, l, true) / smpunq(denom f, l, true)

      if R has ConvertibleTo InputForm then
        eval f ==
          smpunq(numer f, empty(), false) / smpunq(denom f, empty(), false)

        eval(x:%, s:List SY, n:List N, f:List(List % -> %)) ==
          smprep(s, n, f, numer x) / smprep(s, n, f, denom x)

      differentiate(f:%, x:SY) ==
        (smpderiv(numer f, x) * denom(f)::% -
          numer(f)::% * smpderiv(denom f, x))
            / (denom(f)::% ** 2)

      eval(x:%, lk:List K, lv:List %) ==
        smpeval(numer x, lk, lv) / smpeval(denom x, lk, lv)

      subst(x:%, lk:List K, lv:List %) ==
        smpsubst(numer x, lk, lv) / smpsubst(denom x, lk, lv)

      par x ==
        (r := retractIfCan(x)@Union(R, "failed")) case R => x
        paren x

      convert(x:Factored %):% ==
        par(unit x) * */[par(f.factor) ** f.exponent for f in factors x]

      retractIfCan(x:%):Union(PR, "failed") ==
        (u := retractIfCan(x)@Union(Fraction PR,"failed")) case "failed"
          => "failed"
        retractIfCan(u::Fraction(PR))

      retractIfCan(x:%):Union(Fraction PR, "failed") ==
        (n := smpret numer x) case "failed" => "failed"
        (d := smpret denom x) case "failed" => "failed"
        n::PR / d::PR

      coerce(p:Polynomial Q):% ==
        map(#1::%, #1::%,
           p)$PolynomialCategoryLifting(IndexedExponents SY, SY,
                                                     Q, Polynomial Q, %)

      if R has RetractableTo Z then
        coerce(x:Fraction Z):% == numer(x)::MP / denom(x)::MP

        isMult x ==
           (u := smpIsMult numer x) case "failed"
              or (v := retractIfCan(denom x)@Union(R, "failed")) case "failed"
                 or (w := retractIfCan(v::R)@Union(Z, "failed")) case "failed"
                     => "failed"
           r := u::Record(coef:Z, var:K)
           (q := r.coef exquo w::Z) case "failed" => "failed"
           [q::Z, r.var]

      if R has ConvertibleTo Pattern Z then
        convert(x:%):Pattern(Z) == convert(numer x) / convert(denom x)

      if R has ConvertibleTo Pattern Float then
        convert(x:%):Pattern(Float) ==
          convert(numer x) / convert(denom x)

)abbrev package FS2 FunctionSpaceFunctions2
++ Lifting of maps to function spaces
++ Author: Manuel Bronstein
++ Date Created: 22 March 1988
++ Date Last Updated: 3 May 1994
++ Description:
++   This package allows a mapping R -> S to be lifted to a mapping
++   from a function space over R to a function space over S;
FunctionSpaceFunctions2(R, A, S, B): Exports == Implementation where
  R, S: Ring
  A   : FunctionSpace R
  B   : FunctionSpace S

  K  ==> Kernel A
  P  ==> SparseMultivariatePolynomial(R, K)

  Exports ==> with
    map: (R -> S, A) -> B
      ++ map(f, a) applies f to all the constants in R appearing in \spad{a}.

  Implementation ==> add
    smpmap: (R -> S, P) -> B

    smpmap(fn, p) ==
      map(map(map(fn, #1), #1)$ExpressionSpaceFunctions2(A,B),fn(#1)::B,
        p)$PolynomialCategoryLifting(IndexedExponents K, K, R, P, B)

    if R has IntegralDomain then
      if S has IntegralDomain then
        map(f, x) == smpmap(f, numer x) / smpmap(f, denom x)
      else
        map(f, x) == smpmap(f, numer x) * (recip(smpmap(f, denom x))::B)
    else
      map(f, x) == smpmap(f, numer x)