This file is indexed.

/usr/lib/open-axiom/src/algebra/permgrps.spad is in open-axiom-source 1.4.1+svn~2626-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
-- Copyright (C) 2007-2010, Gabriel Dos Reis.
-- All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

)abbrev domain PERMGRP PermutationGroup
++ Authors: G. Schneider, H. Gollan, J. Grabmeier
++ Date Created: 13 February 1987
++ Date Last Updated: 24 May 1991
++ Basic Operations:
++ Related Constructors: PermutationGroupExamples, Permutation
++ Also See: RepresentationTheoryPackage1
++ AMS Classifications:
++ Keywords: permutation, permutation group, group operation, word problem
++ References:
++   C. Sims: Determining the conjugacy classes of a permutation group,
++   in Computers in Algebra and Number Theory, SIAM-AMS Proc., Vol. 4,
++    Amer. Math. Soc., Providence, R. I., 1971, pp. 191-195
++ Description: 
++  PermutationGroup implements permutation groups acting
++  on a set S, i.e. all subgroups of the symmetric group of S,
++  represented as a list of permutations (generators). Note that
++  therefore the objects are not members of the \Language category
++  \spadtype{Group}.
++  Using the idea of base and strong generators by Sims,
++  basic routines and algorithms
++  are implemented so that the word problem for
++  permutation groups can be solved.
--++  Note: we plan to implement lattice operations on the subgroup
--++  lattice in a later release

PermutationGroup(S:SetCategory): public == private where

  L    ==> List
  PERM ==> Permutation
  FSET ==> Set
  I    ==> Integer
  NNI  ==> NonNegativeInteger
  V    ==> Vector
  B    ==> Boolean
  OUT   ==> OutputForm
  SYM  ==> Symbol
  REC  ==> Record ( orb : L NNI , svc : V I )
  REC2 ==> Record(order:NNI,sgset:L V NNI,_
             gpbase:L NNI,orbs:L REC,mp:L S,wd:L L NNI)
  REC3 ==> Record(elt:V NNI,lst:L NNI)
  REC4 ==> Record(bool:B,lst:L NNI)

  public ==> SetCategory with

    coerce           : %         -> L PERM S
      ++ coerce(gp) returns the generators of the group {\em gp}.
    generators           : %         -> L PERM S
      ++ generators(gp) returns the generators of the group {\em gp}.
    elt              : (%,NNI)   -> PERM S
      ++ elt(gp,i) returns the i-th generator of the group {\em gp}.
    random           : (%,I)     -> PERM S
      ++ random(gp,i) returns a random product of maximal i generators
      ++ of the group {\em gp}.
    random           : %         -> PERM S
      ++ random(gp) returns a random product of maximal 20 generators
      ++ of the group {\em gp}.
      ++ Note: {\em random(gp)=random(gp,20)}.
    order            : %         -> NNI
      ++ order(gp) returns the order of the group {\em gp}.
    degree           : %         -> NNI
      ++ degree(gp) returns the number of points moved by all permutations
      ++ of the group {\em gp}.
    base             : %         -> L S
      ++ base(gp) returns a base for the group {\em gp}.
    strongGenerators : %         -> L PERM S
      ++ strongGenerators(gp) returns strong generators for
      ++ the group {\em gp}.
    wordsForStrongGenerators      : %         -> L L NNI
      ++ wordsForStrongGenerators(gp) returns the words for the strong
      ++ generators of the group {\em gp} in the original generators of
      ++ {\em gp}, represented by their indices in the list, given by
      ++ {\em generators}.
    coerce           : L PERM S  -> %
      ++ coerce(ls) coerces a list of permutations {\em ls} to the group
      ++ generated by this list.
    permutationGroup          : L PERM S  -> %
      ++ permutationGroup(ls) coerces a list of permutations {\em ls} to
      ++ the group generated by this list.
    orbit            : (%,S)     -> FSET S
      ++ orbit(gp,el) returns the orbit of the element {\em el} under the
      ++ group {\em gp}, i.e. the set of all points gained by applying
      ++ each group element to {\em el}.
    orbits           : %         -> FSET FSET S
      ++ orbits(gp) returns the orbits of the group {\em gp}, i.e.
      ++ it partitions the (finite) of all moved points.
    orbit            : (%,FSET S)-> FSET FSET S
      ++ orbit(gp,els) returns the orbit of the unordered
      ++ set {\em els} under the group {\em gp}.
    orbit            : (%,L S)   -> FSET L S
      ++ orbit(gp,ls) returns the orbit of the ordered
      ++ list {\em ls} under the group {\em gp}.
      ++ Note: return type is L L S temporarily because FSET L S has an error.
      -- (GILT DAS NOCH?)
    member?          : (PERM S, %)-> B
      ++ member?(pp,gp) answers the question, whether the
      ++ permutation {\em pp} is in the group {\em gp} or not.
    wordInStrongGenerators : (PERM S, %)-> L NNI
      ++ wordInStrongGenerators(p,gp) returns the word for the
      ++ permutation p in the strong generators of the group {\em gp},
      ++ represented by the indices of the list, given by {\em strongGenerators}.
    wordInGenerators : (PERM S, %)-> L NNI
      ++ wordInGenerators(p,gp) returns the word for the permutation p
      ++ in the original generators of the group {\em gp},
      ++ represented by the indices of the list, given by {\em generators}.
    support      : %         -> FSET S
      ++ support(gp) returns the points moved by the group {\em gp}.
    <              : (%,%)     -> B
      ++ gp1 < gp2 returns true if and only if {\em gp1}
      ++ is a proper subgroup of {\em gp2}.
    <=             : (%,%)     -> B
      ++ gp1 <= gp2 returns true if and only if {\em gp1}
      ++ is a subgroup of {\em gp2}.
      ++ Note: because of a bug in the parser you have to call this
      ++ function explicitly by {\em gp1 <=$(PERMGRP S) gp2}.
      -- (GILT DAS NOCH?)
    initializeGroupForWordProblem : %   -> Void
      ++ initializeGroupForWordProblem(gp) initializes the group {\em gp}
      ++ for the word problem.
      ++ Notes: it calls the other function of this name with parameters
      ++ 0 and 1: {\em initializeGroupForWordProblem(gp,0,1)}.
      ++ Notes: (1) be careful: invoking this routine will destroy the
      ++ possibly information about your group (but will recompute it again)
      ++ (2) users need not call this function normally for the soultion of
      ++ the word problem.
    initializeGroupForWordProblem :(%,I,I) -> Void
      ++ initializeGroupForWordProblem(gp,m,n) initializes the group
      ++ {\em gp} for the word problem.
      ++ Notes: (1) with a small integer you get shorter words, but the
      ++ routine takes longer than the standard routine for longer words.
      ++ (2) be careful: invoking this routine will destroy the possibly stored
      ++ information about your group (but will recompute it again).
      ++ (3) users need not call this function normally for the soultion of
      ++ the word problem.

  private ==> add

    -- representation of the object:

    Rep  := Record ( gens : L PERM S , information : REC2 )

    -- import of domains and packages

    import Permutation S
    import OutputForm
    import Symbol
    import Void

  --first the local variables

    sgs               : L V NNI       := []
    baseOfGroup       : L NNI         := []
    sizeOfGroup       : NNI           := 1
    degree            : NNI           := 0
    gporb             : L REC         := []
    out               : L L V NNI     := []
    outword           : L L L NNI     := []
    wordlist          : L L NNI       := []
    basePoint         : NNI           := 0
    newBasePoint      : B             := true
    supp              : L S           := []
    ord               : NNI           := 1
    wordProblem       : B             := true

  --local functions first, signatures:

    shortenWord:(L NNI, %)->L NNI
    times:(V NNI, V NNI)->V NNI
    strip:(V NNI,REC,L V NNI,L L NNI)->REC3
    orbitInternal:(%,L S )->L L S
    inv: V NNI->V NNI
    ranelt:(L V NNI,L L NNI, I)->REC3
    testIdentity:V NNI->B
    pointList: %->L S
    orbitWithSvc:(L V NNI ,NNI )->REC
    cosetRep:(NNI ,REC ,L V NNI )->REC3
    bsgs1:(L V NNI,NNI,L L NNI,I,%,I)->NNI
    computeOrbits: I->L NNI
    reduceGenerators: I->Void
    bsgs:(%, I, I)->NNI
    initialize: %->FSET PERM S
    knownGroup?: %->Void
    subgroup:(%, %)->B
    memberInternal:(PERM S, %, B)->REC4

  --local functions first, implementations:

    shortenWord ( lw : L NNI , gp : % ) : L NNI ==
      -- tries to shorten a word in the generators by removing identities
      gpgens : L PERM S := coerce gp
      orderList : L NNI := [ order gen for gen in gpgens ]
      newlw : L NNI := copy lw
      for i in 1.. maxIndex orderList repeat
        if orderList.i = 1 then
          while member?(i,newlw) repeat
          -- removing the trivial element
            pos := position(i,newlw)
            newlw := delete(newlw,pos)
      flag : B := true
      while flag repeat
        actualLength : NNI := (maxIndex newlw) pretend NNI
        pointer := actualLength
        test := newlw.pointer
        anzahl : NNI := 1
        flag := false
        while pointer > 1 repeat
          pointer := ( pointer - 1 )::NNI
          if newlw.pointer ~= test then
            -- don't get a trivial element, try next
            test := newlw.pointer
            anzahl := 1
          else
            anzahl := anzahl + 1
            if anzahl = orderList.test then
              -- we have an identity, so remove it
              for i in (pointer+anzahl)..actualLength repeat
                newlw.(i-anzahl) := newlw.i
              newlw := first(newlw, (actualLength - anzahl) :: NNI)
              flag := true
              pointer := 1
      newlw

    times ( p : V NNI , q : V NNI ) : V NNI ==
      -- internal multiplication of permutations
      [ qelt(p,qelt(q,i)) for i in 1..degree ]

    strip(element:V NNI,orbit:REC,group:L V NNI,words:L L NNI) : REC3 ==
      -- strip an element into the stabilizer
      actelt         := element
      schreierVector := orbit.svc
      point          := orbit.orb.1
      outlist        := nil()$(L NNI)
      entryLessZero  : B := false
      while not entryLessZero repeat
        entry := schreierVector.(actelt.point)
        entryLessZero  := negative? entry
        if  not entryLessZero then
          actelt := times(group.entry, actelt)
          if wordProblem then outlist := append ( words.(entry::NNI) , outlist )
      [ actelt , reverse outlist ]

    orbitInternal ( gp : % , startList : L S ) : L L S ==
      orbitList : L L S := [ startList ]
      pos  : I := 1
      while not zero? pos  repeat
        gpset : L PERM S := gp.gens
        for gen in gpset repeat
          newList  := nil()$(L S)
          workList := orbitList.pos
          for j in #workList..1 by -1 repeat
            newList := cons (gen(workList.j) , newList )
          if not member?( newList , orbitList ) then
            orbitList := cons ( newList , orbitList )
            pos  := pos + 1
        pos := pos - 1
      reverse orbitList

    inv ( p : V NNI ) : V NNI ==
      -- internal inverse of a permutation
      q : V NNI := new(degree,0)$(V NNI)
      for i in 1..degree repeat q.(qelt(p,i)) := i
      q

    ranelt ( group : L V NNI , word : L L NNI , maxLoops : I ) : REC3 ==
      -- generate a "random" element
      numberOfGenerators    := # group
      randomInteger : I     := 1 + (random()$Integer rem numberOfGenerators)
      randomElement : V NNI := group.randomInteger
      words                 := nil()$(L NNI)
      if wordProblem then words := word.(randomInteger::NNI)
      if positive? maxLoops then
        numberOfLoops : I  := 1 + (random()$Integer rem maxLoops)
      else
        numberOfLoops : I := maxLoops
      while positive? numberOfLoops repeat
        randomInteger : I := 1 + (random()$Integer rem numberOfGenerators)
        randomElement := times ( group.randomInteger , randomElement )
        if wordProblem then words := append ( word.(randomInteger::NNI) , words)
        numberOfLoops := numberOfLoops - 1
      [ randomElement , words ]

    testIdentity ( p : V NNI ) : B ==
      -- internal test for identity
      for i in 1..degree repeat qelt(p,i) ~= i => return false
      true

    pointList(group : %) : L S ==
      s : FSET S :=  brace()   -- empty set !!
      for perm in group.gens repeat
        s := union(s, support perm)
      parts s

    orbitWithSvc ( group : L V NNI , point : NNI ) : REC ==
      -- compute orbit with Schreier vector, "-2" means not in the orbit,
      -- "-1" means starting point, the PI correspond to generators
      newGroup := nil()$(L V NNI)
      for el in group repeat
        newGroup := cons ( inv el , newGroup )
      newGroup               := reverse newGroup
      orbit          : L NNI := [ point ]
      schreierVector : V I   := new ( degree , -2 )
      schreierVector.point   := -1
      position : I := 1
      while not zero? position repeat
        for i in 1..#newGroup repeat
          newPoint := orbit.position
          newPoint := newGroup.i.newPoint
          if not member? ( newPoint , orbit ) then
            orbit                   := cons ( newPoint , orbit )
            position                := position + 1
            schreierVector.newPoint := i
        position := position - 1
      [ reverse orbit , schreierVector ]

    cosetRep ( point : NNI , o : REC , group : L V NNI ) : REC3 ==
      ppt          := point
      xelt : V NNI := [ n for n in 1..degree ]
      word         := nil()$(L NNI)
      oorb         := o.orb
      osvc         := o.svc
      while positive? degree repeat
        p := osvc.ppt
        negative? p => return [ xelt , word ]
        x    := group.p
        xelt := times ( x , xelt )
        if wordProblem then word := append ( wordlist.p , word )
        ppt  := x.ppt
      [xelt,word]

    bsgs1 (group:L V NNI,number1:NNI,words:L L NNI,maxLoops:I,gp:%,diff:I)_
        : NNI ==
      -- try to get a good approximation for the strong generators and base
      ort: REC
      k1: NNI
      i : NNI
      for i: free in number1..degree repeat
        ort := orbitWithSvc ( group , i )
        k   := ort.orb
        k1  := # k
        if not one? k1 then leave
      gpsgs := nil()$(L V NNI)
      words2 := nil()$(L L NNI)
      gplength : NNI := #group
      jj: NNI
      for jj: free in 1..gplength repeat if (group.jj).i ~= i then leave
      for k in 1..gplength repeat
        el2 := group.k
        if el2.i ~= i then
          gpsgs := cons ( el2 , gpsgs )
          if wordProblem then words2 := cons ( words.k , words2 )
        else
          gpsgs := cons ( times ( group.jj , el2 ) , gpsgs )
          if wordProblem _
            then words2 := cons ( append ( words.jj , words.k ) , words2 )
      group2 := nil()$(L V NNI)
      words3 := nil()$(L L NNI)
      j : I  := 15
      while positive? j repeat
        -- find generators for the stabilizer
        ran := ranelt ( group , words , maxLoops )
        str := strip ( ran.elt , ort , group , words )
        el2 := str.elt
        if not testIdentity el2 then
          if not member?(el2,group2) then
            group2 := cons ( el2 , group2 )
            if wordProblem then
              help : L NNI := append ( reverse str.lst , ran.lst )
              help         := shortenWord ( help , gp )
              words3       := cons ( help , words3 )
            j := j - 2
        j := j - 1
      -- this is for word length control
      if wordProblem then maxLoops    := maxLoops - diff
      if ( null group2 ) or negative? maxLoops then
        sizeOfGroup := k1
        baseOfGroup := [ i ]
        out         := [ gpsgs ]
        outword     := [ words2 ]
        return sizeOfGroup
      k2          := bsgs1 ( group2 , i + 1 , words3 , maxLoops , gp , diff )
      sizeOfGroup := k1 * k2
      out         := append ( out , [ gpsgs ] )
      outword     := append ( outword , [ words2 ] )
      baseOfGroup := cons ( i , baseOfGroup )
      sizeOfGroup

    computeOrbits ( kkk : I ) : L NNI ==
      -- compute the orbits for the stabilizers
      sgs         := nil()
      orbitLength := nil()$(L NNI)
      gporb       := nil()
      for i in 1..#baseOfGroup repeat
        sgs         := append ( sgs , out.i )
        pt          := #baseOfGroup - i + 1
        obs         := orbitWithSvc ( sgs , baseOfGroup.pt )
        orbitLength := cons ( #obs.orb , orbitLength )
        gporb       := cons ( obs , gporb )
      gporb := reverse gporb
      reverse orbitLength

    reduceGenerators ( kkk : I ) : Void ==
      -- try to reduce number of strong generators
      orbitLength := computeOrbits ( kkk )
      sgs         := nil()
      wordlist    := nil()
      for i in 1..(kkk-1) repeat
        sgs := append ( sgs , out.i )
        if wordProblem then wordlist := append ( wordlist , outword.i )
      removedGenerator := false
      baseLength : NNI := #baseOfGroup
      for nnn in kkk..(baseLength-1) repeat
        sgs := append ( sgs , out.nnn )
        if wordProblem then wordlist := append ( wordlist , outword.nnn )
        pt  := baseLength - nnn + 1
        obs := orbitWithSvc ( sgs , baseOfGroup.pt )
        i : NNI  := 1
        while not ( i > # out.nnn ) repeat
          pos  := position ( out.nnn.i , sgs )
          sgs2 := delete(sgs, pos)
          obs2 := orbitWithSvc ( sgs2 , baseOfGroup.pt )
          if # obs2.orb = orbitLength.nnn then
            test := true
            for j in (nnn+1)..(baseLength-1) repeat
              pt2  := baseLength - j + 1
              sgs2 := append ( sgs2 , out.j )
              obs2 := orbitWithSvc ( sgs2 , baseOfGroup.pt2 )
              if # obs2.orb ~= orbitLength.j then
                test := false
                leave
            if test then
              removedGenerator := true
              sgs              := delete (sgs, pos)
              if wordProblem then wordlist    := delete(wordlist, pos)
              out.nnn          := delete (out.nnn, i)
              if wordProblem then _
                outword.nnn := delete(outword.nnn, i )
            else
              i := i + 1
          else
            i := i + 1
      if removedGenerator then orbitLength := computeOrbits ( kkk )


    bsgs ( group : % ,maxLoops : I , diff : I ) : NNI ==
      -- the MOST IMPORTANT part of the package
      supp   := pointList group
      degree := # supp
      if degree = 0 then
        sizeOfGroup := 1
        sgs         := [ [ 0 ] ]
        baseOfGroup := nil()
        gporb       := nil()
        return sizeOfGroup
      newGroup := nil()$(L V NNI)
      gp       : L PERM S := group.gens
      words := nil()$(L L NNI)
      for ggg in 1..#gp repeat
        q := new(degree,0)$(V NNI)
        for i in 1..degree repeat
          newEl := elt(gp.ggg,supp.i)
          pos2  := position ( newEl , supp )
          q.i   := pos2 pretend NNI
        newGroup := cons ( q , newGroup )
        if wordProblem then words    := cons(list ggg, words)
      if maxLoops < 1 then
        -- try to get the (approximate) base length
        if zero? (# ((group.information).gpbase)) then
          wordProblem := false
          k           := bsgs1 ( newGroup , 1 , words , 20 , group , 0 )
          wordProblem := true
          maxLoops    := (# baseOfGroup) - 1
        else
          maxLoops    := (# ((group.information).gpbase)) - 1
      k       := bsgs1 ( newGroup , 1 , words , maxLoops , group , diff )
      kkk : I := 1
      newGroup := reverse newGroup
      noAnswer : B := true
      z: V NNI
      while noAnswer repeat
        reduceGenerators kkk
-- *** Here is former "bsgs2" *** --
        -- test whether we have a base and a strong generating set
        sgs := nil()
        wordlist := nil()
        for i in 1..(kkk-1) repeat
          sgs := append ( sgs , out.i )
          if wordProblem then wordlist := append ( wordlist , outword.i )
        noresult : B := true
        word3: L NNI
        word: L NNI
        for i in kkk..#baseOfGroup while noresult repeat
          sgs    := append ( sgs , out.i )
          if wordProblem then wordlist := append ( wordlist , outword.i )
          gporbi := gporb.i
          for pt in gporbi.orb while noresult repeat
            ppp   := cosetRep ( pt , gporbi , sgs )
            y1    := inv ppp.elt
            word3 := ppp.lst
            for jjj in 1..#sgs while noresult repeat
              word         := nil()$(L NNI)
              z            := times ( sgs.jjj , y1 )
              if wordProblem then word := append ( wordlist.jjj , word )
              ppp          := cosetRep ( (sgs.jjj).pt , gporbi , sgs )
              z            := times ( ppp.elt , z )
              if wordProblem then word := append ( ppp.lst , word )
              newBasePoint := false
              for j in (i-1)..1 by -1 while noresult repeat
                s := gporb.j.svc
                p := gporb.j.orb.1
                while positive? degree and noresult repeat
                  entry := s.(z.p)
                  if negative? entry then
                    if entry = -1 then leave
                    basePoint := j::NNI
                    noresult := false
                  else
                    ee := sgs.entry
                    z  := times ( ee , z )
                    if wordProblem then word := append ( wordlist.entry , word )
              if noresult then
                basePoint    := 1
                newBasePoint := true
                noresult := testIdentity z
        noAnswer := not (testIdentity z)
        if noAnswer then
          -- we have missed something
          word2 := nil()$(L NNI)
          if wordProblem then
            for wd in word3 repeat
              ttt := newGroup.wd
              while not (testIdentity ttt) repeat
                word2 := cons ( wd , word2 )
                ttt   := times ( ttt , newGroup.wd )
            word := append ( word , word2 )
            word := shortenWord ( word , group )
          if newBasePoint then
            for i in 1..degree repeat
              if z.i ~= i then
                baseOfGroup := append ( baseOfGroup , [ i ] )
                leave
            out := cons (list  z, out )
            if wordProblem then outword := cons (list word , outword )
          else
            out.basePoint := cons ( z , out.basePoint )
            if wordProblem then outword.basePoint := cons(word ,outword.basePoint )
          kkk := basePoint
      sizeOfGroup  := 1
      for j in 1..#baseOfGroup repeat
        sizeOfGroup := sizeOfGroup * # gporb.j.orb
      sizeOfGroup


    initialize ( group : % ) : FSET PERM S ==
      group2 := brace()$(FSET PERM S)
      gp : L PERM S := group.gens
      for gen in gp repeat
        if positive? degree gen then insert!(gen, group2)
      group2

    knownGroup? (gp : %) : Void ==
      -- do we know the group already?
      result := gp.information
      if result.order = 0 then
        wordProblem       := false
        ord               := bsgs ( gp , 20 , 0 )
        result            := [ ord , sgs , baseOfGroup , gporb , supp , [] ]
        gp.information    := result
      else
        ord         := result.order
        sgs         := result.sgset
        baseOfGroup := result.gpbase
        gporb       := result.orbs
        supp        := result.mp
        wordlist    := result.wd

    subgroup ( gp1 : % , gp2 : % ) : B ==
      gpset1 := initialize gp1
      gpset2 := initialize gp2
      empty? difference (gpset1, gpset2) => true
      for el in parts gpset1 repeat
        not member? (el,  gp2) => return false
      true

    memberInternal ( p : PERM S , gp : % , flag : B ) : REC4 ==
      -- internal membership testing
      supp     := pointList gp
      outlist := nil()$(L NNI)
      mP : L S := parts support p
      for x in mP repeat
        not member? (x, supp) => return [ false , nil()$(L NNI) ]
      if flag then
        member? ( p , gp.gens ) => return [ true , nil()$(L NNI) ]
        knownGroup? gp
      else
        result := gp.information
        if #(result.wd) = 0 then
          initializeGroupForWordProblem gp
        else
          ord         := result.order
          sgs         := result.sgset
          baseOfGroup := result.gpbase
          gporb       := result.orbs
          supp        := result.mp
          wordlist    := result.wd
      degree := # supp
      pp := new(degree,0)$(V NNI)
      for i in 1..degree repeat
        el   := p(supp.i)
        pos  := position ( el , supp )
        pp.i := pos::NNI
      words := nil()$(L L NNI)
      if wordProblem then
        for i in 1..#sgs repeat
          lw : L NNI := [ (#sgs - i + 1)::NNI ]
          words := cons ( lw , words )
      for i in #baseOfGroup..1 by -1 repeat
        str := strip ( pp , gporb.i , sgs , words )
        pp := str.elt
        if wordProblem then outlist := append ( outlist , str.lst )
      [ testIdentity pp , reverse outlist ]

  --now the exported functions

    coerce ( gp : % ) : L PERM S == gp.gens
    generators ( gp : % ) : L PERM S == gp.gens

    strongGenerators ( group ) ==
      knownGroup? group
      degree := # supp
      strongGens := nil()$(L PERM S)
      for i in sgs repeat
        pairs := nil()$(L L S)
        for j in 1..degree repeat
          pairs := cons ( [ supp.j , supp.(i.j) ] , pairs )
        strongGens := cons ( coerceListOfPairs pairs , strongGens )
      reverse strongGens

    elt ( gp , i ) == (gp.gens).i

    support ( gp ) == brace pointList gp

    random ( group , maximalNumberOfFactors ) ==
      maximalNumberOfFactors < 1 => 1$(PERM S)
      gp : L PERM S := group.gens
      numberOfGenerators := # gp
      randomInteger : I  := 1 + (random()$Integer rem numberOfGenerators)
      randomElement      := gp.randomInteger
      numberOfLoops : I  := 1 + (random()$Integer rem maximalNumberOfFactors)
      while positive? numberOfLoops repeat
        randomInteger : I  := 1 + (random()$Integer rem numberOfGenerators)
        randomElement := gp.randomInteger * randomElement
        numberOfLoops := numberOfLoops - 1
      randomElement

    random ( group ) == random ( group , 20 )

    order ( group ) ==
      knownGroup? group
      ord

    degree ( group ) == # pointList group

    base ( group ) ==
      knownGroup? group
      groupBase := nil()$(L S)
      for i in baseOfGroup repeat
        groupBase := cons ( supp.i , groupBase )
      reverse groupBase

    wordsForStrongGenerators ( group ) ==
      knownGroup? group
      wordlist

    coerce ( gp : L PERM S ) : % ==
      result : REC2 := [ 0 , [] , [] , [] , [] , [] ]
      group         := [ gp , result ]

    permutationGroup ( gp : L PERM S ) : % ==
      result : REC2 := [ 0 , [] , [] , [] , [] , [] ]
      group         := [ gp , result ]

    coerce(group: %) : OUT ==
      outList := nil()$(L OUT)
      gp : L PERM S := group.gens
      for i in (maxIndex gp)..1 by -1 repeat
        outList := cons(coerce gp.i, outList)
      postfix(outputForm(">":SYM),postfix(commaSeparate outList,outputForm("<":SYM)))

    orbit ( gp : % , el : S ) : FSET S ==
      elList : L S := [ el ]
      outList      := orbitInternal ( gp , elList )
      outSet       := brace()$(FSET S)
      for i in 1..#outList repeat
        insert! ( outList.i.1 , outSet )
      outSet

    orbits ( gp ) ==
      spp    := support gp
      orbits := nil()$(L FSET S)
      while positive? cardinality spp repeat
        el       := extract! spp
        orbitSet := orbit ( gp , el )
        orbits   := cons ( orbitSet , orbits )
        spp      := difference ( spp , orbitSet )
      brace orbits

    member? (p,  gp) ==
      wordProblem := false
      mi := memberInternal ( p , gp , true )
      mi.bool

    wordInStrongGenerators (p, gp ) ==
      mi := memberInternal ( inv p , gp , false )
      not mi.bool => error "p is not an element of gp"
      mi.lst

    wordInGenerators (p,  gp) ==
      lll : L NNI := wordInStrongGenerators (p, gp)
      outlist := nil()$(L NNI)
      for wd in lll repeat
        outlist := append ( outlist , wordlist.wd )
      shortenWord ( outlist , gp )

    gp1 < gp2 ==
      not empty? difference ( support gp1 , support gp2 ) => false
      not subgroup ( gp1 , gp2 ) => false
      order gp1 = order gp2 => false
      true

    gp1 <= gp2 ==
      not empty?  difference ( support gp1 , support gp2 ) => false
      subgroup ( gp1 , gp2 )

    gp1 = gp2 ==
      support gp1 ~= support gp2 => false
      if #(gp1.gens) <= #(gp2.gens) then
        not subgroup ( gp1 , gp2 ) => return false
      else
        not subgroup ( gp2 , gp1 ) => return false
      order gp1 = order gp2 => true
      false

    orbit ( gp : % , startSet : FSET S ) : FSET FSET S ==
      startList : L S := parts startSet
      outList         := orbitInternal ( gp , startList )
      outSet          := brace()$(FSET FSET S)
      for i in 1..#outList repeat
        newSet : FSET S := brace outList.i
        insert! ( newSet , outSet )
      outSet

    orbit ( gp : % , startList : L S ) : FSET L S ==
      brace orbitInternal(gp, startList)

    initializeGroupForWordProblem ( gp , maxLoops , diff ) ==
      wordProblem    := true
      ord            := bsgs ( gp , maxLoops , diff )
      gp.information := [ ord , sgs , baseOfGroup , gporb , supp , wordlist ]

    initializeGroupForWordProblem ( gp ) == initializeGroupForWordProblem ( gp , 0 , 1 )

)abbrev package PGE PermutationGroupExamples
++ Authors: M. Weller, G. Schneider, J. Grabmeier
++ Date Created: 20 February 1990
++ Date Last Updated: 09 June 1990
++ Basic Operations:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++  J. Conway, R. Curtis, S. Norton, R. Parker, R. Wilson:
++   Atlas of Finite Groups, Oxford, Clarendon Press, 1987
++ Description: 
++   PermutationGroupExamples provides permutation groups for
++   some classes of groups: symmetric, alternating, dihedral, cyclic,
++   direct products of cyclic, which are in fact the finite abelian groups
++   of symmetric groups called Young subgroups.
++   Furthermore, Rubik's group as permutation group of 48 integers and a list
++   of sporadic simple groups derived from the atlas of finite groups.

PermutationGroupExamples():public == private where

    L          ==> List
    I          ==> Integer
    PI         ==> PositiveInteger
    NNI        ==> NonNegativeInteger
    PERM       ==> Permutation
    PERMGRP   ==> PermutationGroup

    public ==> with

      symmetricGroup:       PI        -> PERMGRP I
        ++ symmetricGroup(n) constructs the symmetric group {\em Sn}
        ++ acting on the integers 1,...,n, generators are the
        ++ {\em n}-cycle {\em (1,...,n)} and the 2-cycle {\em (1,2)}.
      symmetricGroup:       L I       -> PERMGRP I
        ++ symmetricGroup(li) constructs the symmetric group acting on
        ++ the integers in the list {\em li}, generators are the
        ++ cycle given by {\em li} and the 2-cycle {\em (li.1,li.2)}.
        ++ Note: duplicates in the list will be removed.
      alternatingGroup:     PI        -> PERMGRP I
        ++ alternatingGroup(n) constructs the alternating group {\em An}
        ++ acting on the integers 1,...,n,  generators are in general the
        ++ {\em n-2}-cycle {\em (3,...,n)} and the 3-cycle {\em (1,2,3)}
        ++ if n is odd and the product of the 2-cycle {\em (1,2)} with
        ++ {\em n-2}-cycle {\em (3,...,n)} and the 3-cycle {\em (1,2,3)}
        ++ if n is even.
      alternatingGroup:     L I       -> PERMGRP I
        ++ alternatingGroup(li) constructs the alternating group acting
        ++ on the integers in the list {\em li}, generators are in general the
        ++ {\em n-2}-cycle {\em (li.3,...,li.n)} and the 3-cycle
        ++ {\em (li.1,li.2,li.3)}, if n is odd and
        ++ product of the 2-cycle {\em (li.1,li.2)} with
        ++ {\em n-2}-cycle {\em (li.3,...,li.n)} and the 3-cycle
        ++ {\em (li.1,li.2,li.3)}, if n is even.
        ++ Note: duplicates in the list will be removed.
      abelianGroup:         L PI      -> PERMGRP I
        ++ abelianGroup([n1,...,nk]) constructs the abelian group that
        ++ is the direct product of cyclic groups with order {\em ni}.
      cyclicGroup:          PI        -> PERMGRP I
        ++ cyclicGroup(n) constructs the cyclic group of order n acting
        ++ on the integers 1,...,n.
      cyclicGroup:          L I       -> PERMGRP I
        ++ cyclicGroup([i1,...,ik]) constructs the cyclic group of
        ++ order k acting on the integers {\em i1},...,{\em ik}.
        ++ Note: duplicates in the list will be removed.
      dihedralGroup:        PI        -> PERMGRP I
        ++ dihedralGroup(n) constructs the dihedral group of order 2n
        ++ acting on integers 1,...,N.
      dihedralGroup:        L I       -> PERMGRP I
        ++ dihedralGroup([i1,...,ik]) constructs the dihedral group of
        ++ order 2k acting on the integers out of {\em i1},...,{\em ik}.
        ++ Note: duplicates in the list will be removed.
      mathieu11:            L I       -> PERMGRP I
        ++ mathieu11(li) constructs the mathieu group acting on the 11
        ++ integers given in the list {\em li}.
        ++ Note: duplicates in the list will be removed.
        ++ error, if {\em li} has less or more than 11 different entries.
      mathieu11:            ()        -> PERMGRP I
        ++ mathieu11 constructs the mathieu group acting on the
        ++ integers 1,...,11.
      mathieu12:            L I       -> PERMGRP I
        ++ mathieu12(li) constructs the mathieu group acting on the 12
        ++ integers given in the list {\em li}.
        ++ Note: duplicates in the list will be removed
        ++ Error: if {\em li} has less or more than 12 different entries.
      mathieu12:            ()        -> PERMGRP I
        ++ mathieu12 constructs the mathieu group acting on the
        ++ integers 1,...,12.
      mathieu22:            L I       -> PERMGRP I
        ++ mathieu22(li) constructs the mathieu group acting on the 22
        ++ integers given in the list {\em li}.
        ++ Note: duplicates in the list will be removed.
        ++ Error: if {\em li} has less or more than 22 different entries.
      mathieu22:            ()        -> PERMGRP I
        ++ mathieu22 constructs the mathieu group acting on the
        ++ integers 1,...,22.
      mathieu23:            L I       -> PERMGRP I
        ++ mathieu23(li) constructs the mathieu group acting on the 23
        ++ integers given in the list {\em li}.
        ++ Note: duplicates in the list will be removed.
        ++ Error: if {\em li} has less or more than 23 different entries.
      mathieu23:            ()        -> PERMGRP I
        ++ mathieu23 constructs the mathieu group acting on the
        ++ integers 1,...,23.
      mathieu24:            L I       -> PERMGRP I
        ++ mathieu24(li) constructs the mathieu group acting on the 24
        ++ integers given in the list {\em li}.
        ++ Note: duplicates in the list will be removed.
        ++ Error: if {\em li} has less or more than 24 different entries.
      mathieu24:            ()        -> PERMGRP I
        ++ mathieu24 constructs the mathieu group acting on the
        ++ integers 1,...,24.
      janko2:               L I       -> PERMGRP I
        ++ janko2(li) constructs the janko group acting on the 100
        ++ integers given in the list {\em li}.
        ++ Note: duplicates in the list will be removed.
        ++ Error: if {\em li} has less or more than 100 different entries
      janko2:               ()        -> PERMGRP I
        ++ janko2 constructs the janko group acting on the
        ++ integers 1,...,100.
      rubiksGroup:          ()        -> PERMGRP I
        ++ rubiksGroup constructs the permutation group representing
        ++ Rubic's Cube acting on integers {\em 10*i+j} for
        ++ {\em 1 <= i <= 6}, {\em 1 <= j <= 8}.
        ++ The faces of Rubik's Cube are labelled in the obvious way
        ++ Front, Right, Up, Down, Left, Back and numbered from 1 to 6
        ++ in this given ordering, the pieces on each face
        ++ (except the unmoveable center piece) are clockwise numbered
        ++ from 1 to 8 starting with the piece in the upper left
        ++ corner. The moves of the cube are represented as permutations
        ++ on these pieces, represented as a two digit
        ++ integer {\em ij} where i is the numer of theface (1 to 6)
        ++ and j is the number of the piece on this face.
        ++ The remaining ambiguities are resolved by looking
        ++ at the 6 generators, which represent a 90 degree turns of the
        ++ faces, or from the following pictorial description.
        ++ Permutation group representing Rubic's Cube acting on integers
        ++ 10*i+j for 1 <= i <= 6, 1 <= j <=8.
        ++
        ++ \begin{verbatim}
        ++ Rubik's Cube:   +-----+ +-- B   where: marks Side # :
        ++                / U   /|/
        ++               /     / |         F(ront)    <->    1
        ++       L -->  +-----+ R|         R(ight)    <->    2
        ++              |     |  +         U(p)       <->    3
        ++              |  F  | /          D(own)     <->    4
        ++              |     |/           L(eft)     <->    5
        ++              +-----+            B(ack)     <->    6
        ++                 ^
        ++                 |
        ++                 D
        ++
        ++ The Cube's surface:
        ++                                The pieces on each side
        ++             +---+              (except the unmoveable center
        ++             |567|              piece) are clockwise numbered
        ++             |4U8|              from 1 to 8 starting with the
        ++             |321|              piece in the upper left
        ++         +---+---+---+          corner (see figure on the
        ++         |781|123|345|          left).  The moves of the cube
        ++         |6L2|8F4|2R6|          are represented as
        ++         |543|765|187|          permutations on these pieces.
        ++         +---+---+---+          Each of the pieces is
        ++             |123|              represented as a two digit
        ++             |8D4|              integer ij where i is the
        ++             |765|              # of the side ( 1 to 6 for
        ++             +---+              F to B (see table above ))
        ++             |567|              and j is the # of the piece.
        ++             |4B8|
        ++             |321|
        ++             +---+
        ++ \end{verbatim}
      youngGroup:           L I      -> PERMGRP I
        ++ youngGroup([n1,...,nk]) constructs the direct product of the
        ++ symmetric groups {\em Sn1},...,{\em Snk}.
      youngGroup:    Partition        -> PERMGRP I
        ++ youngGroup(lambda) constructs the direct product of the symmetric
        ++ groups given by the parts of the partition {\em lambda}.

    private ==> add

      -- import the permutation and permutation group domains:

      import PERM I
      import PERMGRP I

      -- import the needed map function:

      import ListFunctions2(L L I,PERM I)
      -- the internal functions:

      llli2gp(l:L L L I):PERMGRP I ==
        --++ Converts an list of permutations each represented by a list
        --++ of cycles ( each of them represented as a list of Integers )
        --++ to the permutation group generated by these permutations.
        (map(cycles,l))::PERMGRP I

      li1n(n:I):L I ==
        --++ constructs the list of integers from 1 to n
        [i for i in 1..n]

      -- definition of the exported functions:
      youngGroup(l:L I):PERMGRP I ==
        gens:= nil()$(L L L I)
        element:I:= 1
        for n in l | n > 1 repeat
          gens:=cons(list [i for i in element..(element+n-1)], gens)
          if n >= 3 then gens := cons([[element,element+1]],gens)
          element:=element+n
        llli2gp
          #gens = 0 => [[[1]]]
          gens

      youngGroup(lambda : Partition):PERMGRP I ==
        youngGroup(lambda::L(PI) pretend L I)

      rubiksGroup():PERMGRP I ==
        -- each generator represents a 90 degree turn of the appropriate
        -- side.
        f:L L I:=
         [[11,13,15,17],[12,14,16,18],[51,31,21,41],[53,33,23,43],[52,32,22,42]]
        r:L L I:=
         [[21,23,25,27],[22,24,26,28],[13,37,67,43],[15,31,61,45],[14,38,68,44]]
        u:L L I:=
         [[31,33,35,37],[32,34,36,38],[13,51,63,25],[11,57,61,23],[12,58,62,24]]
        d:L L I:=
         [[41,43,45,47],[42,44,46,48],[17,21,67,55],[15,27,65,53],[16,28,66,54]]
        l:L L I:=
         [[51,53,55,57],[52,54,56,58],[11,41,65,35],[17,47,63,33],[18,48,64,34]]
        b:L L I:=
         [[61,63,65,67],[62,64,66,68],[45,25,35,55],[47,27,37,57],[46,26,36,56]]
        llli2gp [f,r,u,d,l,b]

      mathieu11(l:L I):PERMGRP I ==
      -- permutations derived from the ATLAS
        l:=removeDuplicates l
        #l ~= 11 => error "Exactly 11 integers for mathieu11 needed !"
        a:L L I:=[[l.1,l.10],[l.2,l.8],[l.3,l.11],[l.5,l.7]]
        llli2gp [a,[[l.1,l.4,l.7,l.6],[l.2,l.11,l.10,l.9]]]

      mathieu11():PERMGRP I == mathieu11 li1n 11

      mathieu12(l:L I):PERMGRP I ==
      -- permutations derived from the ATLAS
        l:=removeDuplicates l
        #l ~= 12 => error "Exactly 12 integers for mathieu12 needed !"
        a:L L I:=
          [[l.1,l.2,l.3,l.4,l.5,l.6,l.7,l.8,l.9,l.10,l.11]]
        llli2gp [a,[[l.1,l.6,l.5,l.8,l.3,l.7,l.4,l.2,l.9,l.10],[l.11,l.12]]]

      mathieu12():PERMGRP I == mathieu12 li1n 12

      mathieu22(l:L I):PERMGRP I ==
      -- permutations derived from the ATLAS
        l:=removeDuplicates l
        #l ~= 22 => error "Exactly 22 integers for mathieu22 needed !"
        a:L L I:=[[l.1,l.2,l.4,l.8,l.16,l.9,l.18,l.13,l.3,l.6,l.12],   _
          [l.5,l.10,l.20,l.17,l.11,l.22,l.21,l.19,l.15,l.7,l.14]]
        b:L L I:= [[l.1,l.2,l.6,l.18],[l.3,l.15],[l.5,l.8,l.21,l.13],   _
          [l.7,l.9,l.20,l.12],[l.10,l.16],[l.11,l.19,l.14,l.22]]
        llli2gp [a,b]

      mathieu22():PERMGRP I == mathieu22 li1n 22

      mathieu23(l:L I):PERMGRP I ==
      -- permutations derived from the ATLAS
        l:=removeDuplicates l
        #l ~= 23 => error "Exactly 23 integers for mathieu23 needed !"
        a:L L I:= [[l.1,l.2,l.3,l.4,l.5,l.6,l.7,l.8,l.9,l.10,l.11,l.12,l.13,l.14,_
                   l.15,l.16,l.17,l.18,l.19,l.20,l.21,l.22,l.23]]
        b:L L I:= [[l.2,l.16,l.9,l.6,l.8],[l.3,l.12,l.13,l.18,l.4],              _
                   [l.7,l.17,l.10,l.11,l.22],[l.14,l.19,l.21,l.20,l.15]]
        llli2gp [a,b]

      mathieu23():PERMGRP I == mathieu23 li1n 23

      mathieu24(l:L I):PERMGRP I ==
      -- permutations derived from the ATLAS
        l:=removeDuplicates l
        #l ~= 24 => error "Exactly 24 integers for mathieu24 needed !"
        a:L L I:= [[l.1,l.16,l.10,l.22,l.24],[l.2,l.12,l.18,l.21,l.7],          _
                   [l.4,l.5,l.8,l.6,l.17],[l.9,l.11,l.13,l.19,l.15]]
        b:L L I:= [[l.1,l.22,l.13,l.14,l.6,l.20,l.3,l.21,l.8,l.11],[l.2,l.10],  _
                   [l.4,l.15,l.18,l.17,l.16,l.5,l.9,l.19,l.12,l.7],[l.23,l.24]]
        llli2gp [a,b]

      mathieu24():PERMGRP I == mathieu24 li1n 24

      janko2(l:L I):PERMGRP I ==
      -- permutations derived from the ATLAS
        l:=removeDuplicates l
        #l ~= 100 => error "Exactly 100 integers for janko2 needed !"
        a:L L I:=[                                                            _
                 [l.2,l.3,l.4,l.5,l.6,l.7,l.8],                               _
                 [l.9,l.10,l.11,l.12,l.13,l.14,l.15],                         _
                 [l.16,l.17,l.18,l.19,l.20,l.21,l.22],                        _
                 [l.23,l.24,l.25,l.26,l.27,l.28,l.29],                        _
                 [l.30,l.31,l.32,l.33,l.34,l.35,l.36],                        _
                 [l.37,l.38,l.39,l.40,l.41,l.42,l.43],                        _
                 [l.44,l.45,l.46,l.47,l.48,l.49,l.50],                        _
                 [l.51,l.52,l.53,l.54,l.55,l.56,l.57],                        _
                 [l.58,l.59,l.60,l.61,l.62,l.63,l.64],                        _
                 [l.65,l.66,l.67,l.68,l.69,l.70,l.71],                        _
                 [l.72,l.73,l.74,l.75,l.76,l.77,l.78],                        _
                 [l.79,l.80,l.81,l.82,l.83,l.84,l.85],                        _
                 [l.86,l.87,l.88,l.89,l.90,l.91,l.92],                        _
                 [l.93,l.94,l.95,l.96,l.97,l.98,l.99] ]
        b:L L I:=[
                [l.1,l.74,l.83,l.21,l.36,l.77,l.44,l.80,l.64,l.2,l.34,l.75,l.48,l.17,l.100],_
                [l.3,l.15,l.31,l.52,l.19,l.11,l.73,l.79,l.26,l.56,l.41,l.99,l.39,l.84,l.90],_
                [l.4,l.57,l.86,l.63,l.85,l.95,l.82,l.97,l.98,l.81,l.8,l.69,l.38,l.43,l.58],_
                [l.5,l.66,l.49,l.59,l.61],_
                [l.6,l.68,l.89,l.94,l.92,l.20,l.13,l.54,l.24,l.51,l.87,l.27,l.76,l.23,l.67],_
                [l.7,l.72,l.22,l.35,l.30,l.70,l.47,l.62,l.45,l.46,l.40,l.28,l.65,l.93,l.42],_
                [l.9,l.71,l.37,l.91,l.18,l.55,l.96,l.60,l.16,l.53,l.50,l.25,l.32,l.14,l.33],_
                [l.10,l.78,l.88,l.29,l.12] ]
        llli2gp [a,b]

      janko2():PERMGRP I == janko2 li1n 100

      abelianGroup(l:L PI):PERMGRP I ==
        gens:= nil()$(L L L I)
        element:I:= 1
        for n in l | n > 1 repeat
          gens:=cons( list [i for i in element..(element+n-1) ], gens )
          element:=element+n
        llli2gp
          #gens = 0 => [[[1]]]
          gens

      alternatingGroup(l:L I):PERMGRP I ==
        l:=removeDuplicates l
        #l = 0 =>
          error "Cannot construct alternating group on empty set"
        #l < 3 => llli2gp [[[l.1]]]
        #l = 3 => llli2gp [[[l.1,l.2,l.3]]]
        tmp:= [l.i for i in 3..(#l)]
        gens:L L L I:=[[tmp],[[l.1,l.2,l.3]]]
        odd?(#l) => llli2gp gens
        gens.1 := cons([l.1,l.2],gens.1)
        llli2gp gens

      alternatingGroup(n:PI):PERMGRP I == alternatingGroup li1n n

      symmetricGroup(l:L I):PERMGRP I ==
        l:=removeDuplicates l
        #l = 0 => error "Cannot construct symmetric group on empty set !"
        #l < 3 => llli2gp [[l]]
        llli2gp [[l],[[l.1,l.2]]]

      symmetricGroup(n:PI):PERMGRP I == symmetricGroup li1n n

      cyclicGroup(l:L I):PERMGRP I ==
        l:=removeDuplicates l
        #l = 0 => error "Cannot construct cyclic group on empty set"
        llli2gp [[l]]

      cyclicGroup(n:PI):PERMGRP I == cyclicGroup li1n n

      dihedralGroup(l:L I):PERMGRP I ==
        l:=removeDuplicates l
        #l < 3 => error "in dihedralGroup: Minimum of 3 elements needed !"
        tmp := [[l.i, l.(#l-i+1) ] for i in 1..(#l quo 2)]
        llli2gp [ [ l ], tmp ]

      dihedralGroup(n:PI):PERMGRP I ==
        n = 1 => symmetricGroup (2::PI)
        n = 2 => llli2gp [[[1,2]],[[3,4]]]
        dihedralGroup li1n n