This file is indexed.

/usr/lib/open-axiom/src/algebra/poly.spad is in open-axiom-source 1.4.1+svn~2626-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

)abbrev domain FM FreeModule
++ Author: Dave Barton, James Davenport, Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions: BiModule(R,R)
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A bi-module is a free module
++ over a ring with generators indexed by an ordered set.
++ Each element can be expressed as a finite linear combination of
++ generators. Only non-zero terms are stored.

FreeModule(R:Ring,S:OrderedType):
        Join(BiModule(R,R),IndexedDirectProductCategory(R,S)) with
    if R has CommutativeRing then Module(R)
 == IndexedDirectProductAbelianGroup(R,S) add
    --representations
       Term:=  Record(k:S,c:R)
       Rep:=  List Term
    --declarations
       x,y: %
       r: R
       n: Integer
       f: R -> R
       s: S
    --define
       if R has EntireRing then 
         r * x  ==
             zero? r => 0
             one? r => x
           --map(r*#1,x)
             [[u.k,r*u.c] for u in x ]
       else
         r * x  ==
             zero? r => 0
             one? r => x
           --map(r*#1,x)
             [[u.k,a] for u in x | (a:=r*u.c) ~= 0$R]
       if R has EntireRing then
         x * r  ==
             zero? r => 0
             one? r => x
           --map(r*#1,x)
             [[u.k,u.c*r] for u in x ]
       else
         x * r  ==
             zero? r => 0
             one? r => x
           --map(r*#1,x)
             [[u.k,a] for u in x | (a:=u.c*r) ~= 0$R]

       if S has CoercibleTo OutputForm then
         coerce(x) : OutputForm ==
           null x => (0$R) :: OutputForm
           le : List OutputForm := nil
           for rec in reverse x repeat
             rec.c = 1 => le := cons(rec.k :: OutputForm, le)
             le := cons(rec.c :: OutputForm *  rec.k :: OutputForm, le)
           reduce("+",le)

)abbrev domain PR PolynomialRing
++ Author: Dave Barton, James Davenport, Barry Trager
++ Date Created:
++ Date Last Updated: 14.08.2000. Improved exponentiation [MMM/TTT]
++ Basic Functions: Ring, degree, coefficient, monomial, reductum
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This domain represents generalized polynomials with coefficients
++ (from a not necessarily commutative ring), and terms
++ indexed by their exponents (from an arbitrary ordered abelian monoid).
++ This type is used, for example,
++ by the \spadtype{DistributedMultivariatePolynomial} domain where
++ the exponent domain is a direct product of non negative integers.

PolynomialRing(R:Ring,E:OrderedAbelianMonoid): T == C
 where
  T == FiniteAbelianMonoidRing(R,E) with
    --assertions
       if R has IntegralDomain and E has CancellationAbelianMonoid then
            fmecg: (%,E,R,%) -> %
            ++ fmecg(p1,e,r,p2) finds X : p1 - r * X**e * p2
       if R has canonicalUnitNormal then canonicalUnitNormal
          ++ canonicalUnitNormal guarantees that the function
          ++ unitCanonical returns the same representative for all
          ++ associates of any particular element.
       
  C == FreeModule(R,E) add
    --representations
       Term:=  Record(k:E,c:R)
       Rep:=  List Term


    --declarations
       x,y,p,p1,p2: %
       n: Integer
       nn: NonNegativeInteger
       np: PositiveInteger
       e: E
       r: R
    --local operations
       1  == [[0$E,1$R]]
       characteristic  == characteristic$R
       numberOfMonomials x  == (# x)$Rep
       degree p == if null p then 0 else p.first.k
       minimumDegree p == if null p then 0 else (last p).k
       leadingCoefficient p == if null p then 0$R else p.first.c
       leadingMonomial p == if null p then 0 else [p.first]
       reductum p == if null p then p else p.rest
       retractIfCan(p:%):Union(R,"failed") ==
         null p => 0$R
         not null p.rest => "failed"
         zero?(p.first.k) => p.first.c
         "failed" 
       coefficient(p,e)  ==
          for tm in p repeat
            tm.k=e => return tm.c
            tm.k < e => return 0$R
          0$R
       recip(p) ==
           null p => "failed"
           positive? p.first.k => "failed"
           (u:=recip(p.first.c)) case "failed" => "failed"
           (u::R)::%

       coerce(r) == if zero? r then 0$% else [[0$E,r]]
       coerce(n) == (n::R)::%

       ground?(p): Boolean == empty? p or (empty? rest p and zero? degree p)

       import %tail: Rep -> Rep from Foreign Builtin

       qsetrest!: (Rep, Rep) -> Rep
       qsetrest!(l: Rep, e: Rep): Rep ==
         %store(%tail l,e)$Foreign(Builtin)

       entireRing? := R has EntireRing

       --- term * polynomial 
       termTimes: (R, E, Term) -> Term
       termTimes(r: R, e: E, tx:Term): Term == [e+tx.k, r*tx.c]
       times(tco: R, tex: E, rx: %): % == 
        if entireRing? then 
		map(termTimes(tco, tex, #1), rx::Rep)
        else
		[[tex + tx.k, r] for tx in rx::Rep | not zero? (r := tco * tx.c)]



       -- local addm!
       addm!: (Rep, R, E, Rep) -> Rep
	-- p1 + coef*x^E * p2
	-- `spare' (commented out) is for storage efficiency (not so good for
	-- performance though.
       addm!(p1:Rep, coef:R, exp: E, p2:Rep): Rep == 
                --local res, newend, last: Rep
                res, newcell, endcell: Rep
		spare: List Rep
                res     := empty()
		endcell := empty()
		--spare   := empty()
                while not empty? p1 and not empty? p2 repeat 
                        tx := first p1
                        ty := first p2
                        exy := exp + ty.k
			newcell := empty();
			if tx.k = exy then 
				newcoef := tx.c + coef * ty.c
				if not zero? newcoef then
					tx.c    := newcoef
					newcell := p1
				--else
				--	spare   := cons(p1, spare)
				p1 := rest p1
				p2 := rest p2
			else if tx.k > exy then 
				newcell := p1
                               	p1      := rest p1
                        else 
				newcoef := coef * ty.c
				if not entireRing? and zero? newcoef then
					newcell := empty()
				--else if empty? spare then
				--	ttt := [exy, newcoef]
				--	newcell := cons(ttt, empty())
				--else
				--	newcell := first spare
				--	spare   := rest spare
				--	ttt := first newcell
				--	ttt.k := exy
				--	ttt.c := newcoef
                                else
					ttt := [exy, newcoef]
					newcell := cons(ttt, empty())
				p2 := rest p2
			if not empty? newcell then
				if empty? res then
					res := newcell
					endcell := res
				else
					qsetrest!(endcell, newcell)
					endcell := newcell
                if not empty? p1 then  -- then end is const * p1
			newcell := p1
                else  -- then end is (coef, exp) * p2
                        newcell := times(coef, exp, p2)
                empty? res => newcell
                qsetrest!(endcell, newcell)
                res
       pomopo! (p1, r, e, p2) ==  addm!(p1, r, e, p2)
       p1 * p2 == 
                xx := p1::Rep
                empty? xx => p1
                yy := p2::Rep
                empty? yy => p2
                zero? first(xx).k => first(xx).c * p2
                zero? first(yy).k => p1 * first(yy).c
                --if #xx > #yy then 
		--	(xx, yy) := (yy, xx)
		--	(p1, p2) := (p2, p1)
                xx := reverse xx
                res : Rep := empty()
                for tx in xx repeat res:=addm!(res,tx.c,tx.k,yy)
                res

--     if R has EntireRing then
--         p1 * p2  ==
--            null p1 => 0
--            null p2 => 0
--            zero?(p1.first.k) => p1.first.c * p2
--            one? p2 => p1
--            +/[[[t1.k+t2.k,t1.c*t2.c]$Term for t2 in p2]
--                   for t1 in reverse(p1)]
--                   -- This 'reverse' is an efficiency improvement:
--                   -- reduces both time and space [Abbott/Bradford/Davenport]
--        else
--         p1 * p2  ==
--            null p1 => 0
--            null p2 => 0
--            zero?(p1.first.k) => p1.first.c * p2
--            one? p2 => p1
--            +/[[[t1.k+t2.k,r]$Term for t2 in p2 | (r:=t1.c*t2.c) ~= 0]
--                 for t1 in reverse(p1)]
--                  -- This 'reverse' is an efficiency improvement:
--                  -- reduces both time and space [Abbott/Bradford/Davenport]
       if R has CommutativeRing  then
         p ** np == p ** (np pretend NonNegativeInteger)

         p ** nn  ==
            null p => 0
            zero? nn => 1
            one? nn => p
            empty? p.rest =>
              zero?(cc:=p.first.c ** nn) => 0
              [[nn * p.first.k, cc]]
            binomThmExpt([p.first], p.rest, nn)

       if R has Field then
         unitNormal(p) ==
            null p or (lcf:R:=p.first.c) = 1 => [1,p,1]
            a := inv lcf
            [lcf::%, [[p.first.k,1],:(a * p.rest)], a::%]
         unitCanonical(p) ==
            null p or (lcf:R:=p.first.c) = 1 => p
            a := inv lcf
            [[p.first.k,1],:(a * p.rest)]
       else if R has IntegralDomain then
         unitNormal(p) ==
            null p or p.first.c = 1 => [1,p,1]
            (u,cf,a):=unitNormal(p.first.c)
            [u::%, [[p.first.k,cf],:(a * p.rest)], a::%]
         unitCanonical(p) ==
            null p or p.first.c = 1 => p
            (u,cf,a):=unitNormal(p.first.c)
            [[p.first.k,cf],:(a * p.rest)]
       if R has IntegralDomain then
         associates?(p1,p2) ==
            null p1 => null p2
            null p2 => false
            p1.first.k = p2.first.k and
              associates?(p1.first.c,p2.first.c) and
               ((p2.first.c exquo p1.first.c)::R * p1.rest = p2.rest)
         p exquo r  ==
           [(if (a:= tm.c exquo r) case "failed"
               then return "failed" else [tm.k,a])
                  for tm in p] :: Union(%,"failed")
         if E has CancellationAbelianMonoid then
           fmecg(p1:%,e:E,r:R,p2:%):% ==       -- p1 - r * X**e * p2
              rout:%:= []
              r:= - r
              for tm in p2 repeat
                 e2:= e + tm.k
                 c2:= r * tm.c
                 c2 = 0 => "next term"
                 while not null p1 and p1.first.k > e2 repeat
                   (rout:=[p1.first,:rout]; p1:=p1.rest)  --use PUSH and POP?
                 null p1 or p1.first.k < e2 => rout:=[[e2,c2],:rout]
                 if (u:=p1.first.c + c2) ~= 0 then rout:=[[e2, u],:rout]
                 p1:=p1.rest
              NRECONC(rout,p1)$Lisp
           if R has approximate then
             p1 exquo p2  ==
               null p2 => error "Division by 0"
               p2 = 1 => p1
               p1=p2 => 1
             --(p1.lastElt.c exquo p2.lastElt.c) case "failed" => "failed"
               rout:= []@List(Term)
               while not null p1 repeat
                  (a:= p1.first.c exquo p2.first.c)
                  a case "failed" => return "failed"
                  ee:= subtractIfCan(p1.first.k, p2.first.k)
                  ee case "failed" => return "failed"
                  p1:= fmecg(p1.rest, ee, a, p2.rest)
                  rout:= [[ee,a], :rout]
               null p1 => reverse(rout)::%    -- nreverse?
               "failed"
           else -- R not approximate
             p1 exquo p2  ==
               null p2 => error "Division by 0"
               p2 = 1 => p1
             --(p1.lastElt.c exquo p2.lastElt.c) case "failed" => "failed"
               rout:= []@List(Term)
               while not null p1 repeat
                  (a:= p1.first.c exquo p2.first.c)
                  a case "failed" => return "failed"
                  ee:= subtractIfCan(p1.first.k, p2.first.k)
                  ee case "failed" => return "failed"
                  p1:= fmecg(p1.rest, ee, a, p2.rest)
                  rout:= [[ee,a], :rout]
               null p1 => reverse(rout)::%    -- nreverse?
               "failed"
       if R has Field then
          x/r == inv(r)*x

)abbrev package UPSQFREE UnivariatePolynomialSquareFree
++ Author: Dave Barton, Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions: squareFree, squareFreePart
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package provides for square-free decomposition of
++ univariate polynomials over arbitrary rings, i.e.
++ a partial factorization such that each factor is a product
++ of irreducibles with multiplicity one and the factors are
++ pairwise relatively prime. If the ring
++ has characteristic zero, the result is guaranteed to satisfy
++ this condition. If the ring is an infinite ring of
++ finite characteristic, then it may not be possible to decide when
++ polynomials contain factors which are pth powers. In this
++ case, the flag associated with that polynomial is set to "nil"
++ (meaning that that polynomials are not guaranteed to be square-free).

UnivariatePolynomialSquareFree(RC:IntegralDomain,P):C == T
  where
    fUnion ==> Union("nil", "sqfr", "irred", "prime")
    FF     ==> Record(flg:fUnion, fctr:P, xpnt:Integer)
    P:Join(UnivariatePolynomialCategory(RC),IntegralDomain) with
      gcd: (%,%) -> %
        ++ gcd(p,q) computes the greatest-common-divisor of p and q.

    C == with
      squareFree: P -> Factored(P)
        ++ squareFree(p) computes the square-free factorization of the
        ++ univariate polynomial p. Each factor has no repeated roots, and the
        ++ factors are pairwise relatively prime.
      squareFreePart: P -> P
        ++ squareFreePart(p) returns a polynomial which has the same
        ++ irreducible factors as the univariate polynomial p, but each
        ++ factor has multiplicity one.
      BumInSepFFE: FF -> FF
        ++ BumInSepFFE(f) is a local function, exported only because
        ++ it has multiple conditional definitions.

    T == add

      if RC has CharacteristicZero then
        squareFreePart(p:P) == (p exquo gcd(p, differentiate p))::P
      else
        squareFreePart(p:P) ==
          unit(s := squareFree(p)$%) * */[f.factor for f in factors s]

      if RC has FiniteFieldCategory then
        BumInSepFFE(ffe:FF) ==
           ["sqfr", map(charthRoot,ffe.fctr), characteristic$P*ffe.xpnt]
      else if RC has CharacteristicNonZero then
         BumInSepFFE(ffe:FF) ==
            np := multiplyExponents(ffe.fctr,characteristic$P:NonNegativeInteger)
            (nthrp := charthRoot(np)) case nothing =>
               ["nil", np, ffe.xpnt]
            ["sqfr", nthrp, characteristic$P*ffe.xpnt]

      else
        BumInSepFFE(ffe:FF) ==
          ["nil",
           multiplyExponents(ffe.fctr,characteristic$P:NonNegativeInteger),
            ffe.xpnt]


      if RC has CharacteristicZero then
        squareFree(p:P) ==             --Yun's algorithm - see SYMSAC '76, p.27
           --Note ci primitive is, so GCD's don't need to %do contents.
           --Change gcd to return cofctrs also?
           ci:=p; di:=differentiate(p); pi:=gcd(ci,di)
           degree(pi)=0 =>
             (u,c,a):=unitNormal(p)
             makeFR(u,[["sqfr",c,1]])
           i:NonNegativeInteger:=0; lffe:List FF:=[]
           lcp := leadingCoefficient p
           while not zero? degree(ci) repeat
              ci:=(ci exquo pi)::P
              di:=(di exquo pi)::P - differentiate(ci)
              pi:=gcd(ci,di)
              i:=i+1
              positive? degree(pi) =>
                 lcp:=(lcp exquo (leadingCoefficient(pi)**i))::RC
                 lffe:=[["sqfr",pi,i],:lffe]
           makeFR(lcp::P,lffe)

      else
        squareFree(p:P) ==           --Musser's algorithm - see SYMSAC '76, p.27
             --p MUST BE PRIMITIVE, Any characteristic.
             --Note ci primitive, so GCD's don't need to %do contents.
             --Change gcd to return cofctrs also?
           ci := gcd(p,differentiate(p))
           degree(ci)=0 =>
             (u,c,a):=unitNormal(p)
             makeFR(u,[["sqfr",c,1]])
           di := (p exquo ci)::P
           i:NonNegativeInteger:=0; lffe:List FF:=[]
           dunit : P := 1
           while not zero? degree(di) repeat
              diprev := di
              di := gcd(ci,di)
              ci:=(ci exquo di)::P
              i:=i+1
              degree(diprev) = degree(di) =>
                 lc := (leadingCoefficient(diprev) exquo leadingCoefficient(di))::RC
                 dunit := lc**i * dunit
              pi:=(diprev exquo di)::P
              lffe:=[["sqfr",pi,i],:lffe]
           dunit := dunit * di ** (i+1)
           degree(ci)=0 => makeFR(dunit*ci,lffe)
           redSqfr:=squareFree(divideExponents(ci,characteristic$P)::P)
           lsnil:= [BumInSepFFE(ffe) for ffe in factorList redSqfr]
           lffe:=append(lsnil,lffe)
           makeFR(dunit*(unit redSqfr),lffe)

)abbrev package PSQFR PolynomialSquareFree
++ Author:
++ Date Created:
++ Date Last Updated: November 1993, (P.Gianni)
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package computes square-free decomposition of multivariate
++ polynomials over a coefficient ring which is an arbitrary gcd domain.
++ The requirement on the coefficient domain guarantees that the \spadfun{content} can be
++ removed so that factors will be primitive as well as square-free.
++ Over an infinite ring of finite characteristic,it may not be possible to
++ guarantee that the factors are square-free.

PolynomialSquareFree(VarSet:OrderedSet,E,RC:GcdDomain,P):C == T where
  E:OrderedAbelianMonoidSup
  P:PolynomialCategory(RC,E,VarSet)

  C == with
    squareFree : P -> Factored P
      ++ squareFree(p) returns the square-free factorization of the
      ++ polynomial p.  Each factor has no repeated roots, and the
      ++ factors are pairwise relatively prime.

  T == add
    SUP    ==> SparseUnivariatePolynomial(P)
    NNI    ==> NonNegativeInteger
    fUnion ==> Union("nil", "sqfr", "irred", "prime")
    FF     ==> Record(flg:fUnion, fctr:P, xpnt:Integer)

    finSqFr : (P,List VarSet) -> Factored P
    pthPower : P -> Factored P
    pPolRoot : P -> P
    putPth   : P -> P

    chrc:=characteristic$RC

    if RC has CharacteristicNonZero then
    -- find the p-th root of a polynomial
      pPolRoot(f:P) : P ==
        lvar:=variables f
        empty? lvar => f
        mv:=first lvar
        uf:=univariate(f,mv)
        uf:=divideExponents(uf,chrc)::SUP
        uf:=map(pPolRoot,uf)
        multivariate(uf,mv)

    -- substitute variables with their p-th power
      putPth(f:P) : P ==
        lvar:=variables f
        empty? lvar => f
        mv:=first lvar
        uf:=univariate(f,mv)
        uf:=multiplyExponents(uf,chrc)::SUP
        uf:=map(putPth,uf)
        multivariate(uf,mv)

    -- the polynomial is a perfect power
      pthPower(f:P) : Factored P ==
        proot : P := 0
        isSq  : Boolean := false
        if (g:=charthRoot f) case nothing then proot:=pPolRoot(f)
        else
          proot := g :: P
          isSq  := true
        psqfr:=finSqFr(proot,variables f)
        isSq  =>
          makeFR((unit psqfr)**chrc,[[u.flg,u.fctr,
           (u.xpnt)*chrc] for u in factorList psqfr])
        makeFR((unit psqfr),[["nil",putPth u.fctr,u.xpnt]
                             for u in factorList psqfr])

    -- compute the square free decomposition, finite characteristic case
      finSqFr(f:P,lvar:List VarSet) : Factored P ==
         empty? lvar => pthPower(f)
         mv:=first lvar
         lvar:=lvar.rest
         differentiate(f,mv)=0 => finSqFr(f,lvar)
         uf:=univariate(f,mv)
         cont := content uf
         cont1:P:=1
         uf := (uf exquo cont)::SUP
         squf := squareFree(uf)$UnivariatePolynomialSquareFree(P,SUP)
         pfaclist:List FF :=[]
         for u in factorList squf repeat
           uexp:NNI:=(u.xpnt):NNI
           u.flg = "sqfr" =>  -- the square free factor is OK
             pfaclist:= cons([u.flg,multivariate(u.fctr,mv),uexp],
                              pfaclist)
           --listfin1:= finSqFr(multivariate(u.fctr,mv),lvar)
           listfin1:= squareFree multivariate(u.fctr,mv)
           flistfin1:=[[uu.flg,uu.fctr,uu.xpnt*uexp]
                        for uu in factorList listfin1]
           cont1:=cont1*((unit listfin1)**uexp)
           pfaclist:=append(flistfin1,pfaclist)
         cont:=cont*cont1
         not one? cont =>
           sqp := squareFree cont
           pfaclist:= append (factorList sqp,pfaclist)
           makeFR(unit(sqp)*coefficient(unit squf,0),pfaclist)
         makeFR(coefficient(unit squf,0),pfaclist)

    squareFree(p:P) ==
       mv:=mainVariable p
       mv case "failed" => makeFR(p,[])$Factored(P)
       not zero?(characteristic$RC) => finSqFr(p,variables p)
       up:=univariate(p,mv)
       cont := content up
       up := (up exquo cont)::SUP
       squp := squareFree(up)$UnivariatePolynomialSquareFree(P,SUP)
       pfaclist:List FF :=
         [[u.flg,multivariate(u.fctr,mv),u.xpnt]
                                            for u in factorList squp]
       not one? cont =>
         sqp := squareFree cont
         makeFR(unit(sqp)*coefficient(unit squp,0),
              append(factorList sqp, pfaclist))
       makeFR(coefficient(unit squp,0),pfaclist)

)abbrev package UPMP UnivariatePolynomialMultiplicationPackage
++ Author: Marc Moreno Maza
++ Date Created: 14.08.2000
++ Description:
++ This package implements Karatsuba's trick for multiplying
++ (large) univariate polynomials. It could be improved with
++ a version doing the work on place and also with a special
++ case for squares. We've done this in Basicmath, but we
++ believe that this out of the scope of AXIOM.

UnivariatePolynomialMultiplicationPackage(R: Ring, U: UnivariatePolynomialCategory(R)): C == T
  where
    HL ==> Record(quotient:U,remainder:U)
    C == with
      noKaratsuba: (U, U) -> U
        ++ \spad{noKaratsuba(a,b)} returns \spad{a*b} without
        ++ using Karatsuba's trick at all.
      karatsubaOnce: (U, U) -> U
        ++ \spad{karatsuba(a,b)} returns \spad{a*b} by applying
        ++ Karatsuba's trick once. The other multiplications
        ++ are performed by calling \spad{*} from \spad{U}.
      karatsuba: (U, U, NonNegativeInteger, NonNegativeInteger) -> U;
        ++ \spad{karatsuba(a,b,l,k)} returns \spad{a*b} by applying
        ++ Karatsuba's trick provided that both \spad{a} and \spad{b}
        ++ have at least \spad{l} terms and \spad{k > 0} holds
        ++ and by calling \spad{noKaratsuba} otherwise. The other
        ++ multiplications are performed by recursive calls with
        ++ the same third argument and \spad{k-1} as fourth argument.

    T == add
      noKaratsuba(a,b) ==
        zero? a => a
        zero? b => b
        zero?(degree(a)) => leadingCoefficient(a) * b
        zero?(degree(b)) => a * leadingCoefficient(b)
        lu: List(U) := reverse monomials(a)
        res: U := 0;
        for u in lu repeat
          res := pomopo!(res, leadingCoefficient(u), degree(u), b)
        res
      karatsubaOnce(a:U,b:U): U ==
        da := minimumDegree(a)
        db := minimumDegree(b)
        if not zero? da then a := shiftRight(a,da)
        if not zero? db then b := shiftRight(b,db)
        d := da + db
        n: NonNegativeInteger := min(degree(a),degree(b)) quo 2
        rec: HL := karatsubaDivide(a, n)
        ha := rec.quotient
        la := rec.remainder
        rec := karatsubaDivide(b, n)
        hb := rec.quotient
        lb := rec.remainder
        w: U := (ha - la) * (lb - hb)
        u: U := la * lb
        v: U := ha * hb
        w := w + (u + v)
        w := shiftLeft(w,n) + u
        zero? d => shiftLeft(v,2*n) + w
        shiftLeft(v,2*n + d) + shiftLeft(w,d)
      karatsuba(a:U,b:U,l:NonNegativeInteger,k:NonNegativeInteger): U ==
        zero? k => noKaratsuba(a,b)
        degree(a) < l => noKaratsuba(a,b)
        degree(b) < l => noKaratsuba(a,b)
        numberOfMonomials(a) < l => noKaratsuba(a,b)
        numberOfMonomials(b) < l => noKaratsuba(a,b)
        da := minimumDegree(a)
        db := minimumDegree(b)
        if not zero? da then a := shiftRight(a,da)
        if not zero? db then b := shiftRight(b,db)
        d := da + db
        n: NonNegativeInteger := min(degree(a),degree(b)) quo 2
        k := subtractIfCan(k,1)::NonNegativeInteger
        rec: HL := karatsubaDivide(a, n)
        ha := rec.quotient
        la := rec.remainder
        rec := karatsubaDivide(b, n)
        hb := rec.quotient
        lb := rec.remainder
        w: U := karatsuba(ha - la, lb - hb, l, k)
        u: U := karatsuba(la, lb, l, k)
        v: U := karatsuba(ha, hb, l, k)
        w := w + (u + v)
        w := shiftLeft(w,n) + u
        zero? d => shiftLeft(v,2*n) + w
        shiftLeft(v,2*n + d) + shiftLeft(w,d)

import NonNegativeInteger
import OutputForm
)abbrev domain SUP SparseUnivariatePolynomial
++ Author: Dave Barton, Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions: Ring, monomial, coefficient, reductum, differentiate,
++ elt, map, resultant, discriminant
++ Related Constructors: UnivariatePolynomial, Polynomial
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This domain represents univariate polynomials over arbitrary
++ (not necessarily commutative) coefficient rings. The variable is
++ unspecified  so that the variable displays as \spad{?} on output.
++ If it is necessary to specify the variable name, use type \spadtype{UnivariatePolynomial}.
++ The representation is sparse
++ in the sense that only non-zero terms are represented.
++ Note: if the coefficient ring is a field, this domain forms a euclidean domain.

SparseUnivariatePolynomial(R:Ring): UnivariatePolynomialCategory(R) with
     outputForm : (%,OutputForm) -> OutputForm
        ++ outputForm(p,var) converts the SparseUnivariatePolynomial p to
        ++ an output form (see \spadtype{OutputForm}) printed as a polynomial in the
        ++ output form variable.
     fmecg: (%,NonNegativeInteger,R,%) -> %
        ++ fmecg(p1,e,r,p2) finds X : p1 - r * X**e * p2
    == PolynomialRing(R,NonNegativeInteger)
  add
   --representations
   Term := Record(k:NonNegativeInteger,c:R)
   Rep  := List Term
   p:%
   n:NonNegativeInteger
   np: PositiveInteger
   FP ==> SparseUnivariatePolynomial %
   pp,qq: FP
   lpp:List FP

   -- for karatsuba 
   kBound: NonNegativeInteger := 63
   upmp := UnivariatePolynomialMultiplicationPackage(R,%)


   if R has FieldOfPrimeCharacteristic  then 
         p ** np == p ** (np pretend NonNegativeInteger)
         p ** n  ==
            null p => 0
            zero? n => 1
            one? n => p
            empty? p.rest =>
              zero?(cc:=p.first.c ** n) => 0
              [[n * p.first.k, cc]]
            -- not worth doing special trick if characteristic is too small 
            if characteristic$R < 3 then return expt(p,n pretend PositiveInteger)$RepeatedSquaring(%)
            y:%:=1
            -- break up exponent in qn * characteristic + rn
            -- exponentiating by the characteristic is fast
            rec := divide(n, characteristic$R)
	    qn:= rec.quotient
            rn:= rec.remainder
            repeat 
                if rn = 1 then y := y * p 
                if rn > 1 then y:= y * binomThmExpt([p.first], p.rest, rn)
                zero? qn => return y
                -- raise to the characteristic power
                p:= [[t.k * characteristic$R , primeFrobenius(t.c)$R ]$Term for t in p]
		rec := divide(qn, characteristic$R)
		qn:= rec.quotient 
                rn:= rec.remainder
            y 



   zero?(p): Boolean == empty?(p)
   one?(p):Boolean == not empty? p and (empty? rest p and zero? first(p).k and one? first(p).c)
   ground?(p): Boolean == empty? p or (empty? rest p and zero? first(p).k)
   multiplyExponents(p,n) == [ [u.k*n,u.c] for u in p]
   divideExponents(p,n) ==
     null p => p
     m:= (p.first.k :: Integer exquo n::Integer)
     m case "failed" => "failed"
     u:= divideExponents(p.rest,n)
     u case "failed" => "failed"
     [[m::Integer::NonNegativeInteger,p.first.c],:u]
   karatsubaDivide(p, n)  ==
     zero? n => [p, 0]
     lowp: Rep := p
     highp: Rep := []
     repeat
       if empty? lowp then break
       t := first lowp
       if t.k < n then break
       lowp := rest lowp
       highp := cons([subtractIfCan(t.k,n)::NonNegativeInteger,t.c]$Term,highp)
     [ reverse highp,  lowp]
   shiftRight(p, n)  ==
      [[subtractIfCan(t.k,n)::NonNegativeInteger,t.c]$Term for t in p]
   shiftLeft(p, n)  ==
      [[t.k + n,t.c]$Term for t in p]
   pomopo!(p1,r,e,p2) ==
          rout:%:= []
          for tm in p2 repeat
             e2:= e + tm.k
             c2:= r * tm.c
             c2 = 0 => "next term"
             while not null p1 and p1.first.k > e2 repeat
               (rout:=[p1.first,:rout]; p1:=p1.rest)  --use PUSH and POP?
             null p1 or p1.first.k < e2 => rout:=[[e2,c2],:rout]
             if (u:=p1.first.c + c2) ~= 0 then rout:=[[e2, u],:rout]
             p1:=p1.rest
          NRECONC(rout,p1)$Lisp

-- implementation using karatsuba algorithm conditionally
--
--   p1 * p2 ==
--     xx := p1::Rep
--     empty? xx => p1
--     yy := p2::Rep
--     empty? yy => p2
--     zero? first(xx).k => first(xx).c * p2
--     zero? first(yy).k => p1 * first(yy).c
--     (first(xx).k > kBound) and (first(yy).k > kBound) and (#xx > kBound) and (#yy > kBound) =>
--       karatsubaOnce(p1,p2)$upmp
--     xx := reverse xx
--     res : Rep := empty()
--     for tx in xx repeat res:= rep pomopo!( res,tx.c,tx.k,p2)
--     res


   univariate(p:%) == p pretend SparseUnivariatePolynomial(R)
   multivariate(sup:SparseUnivariatePolynomial(R),v:SingletonAsOrderedSet) ==
      sup pretend %
   univariate(p:%,v:SingletonAsOrderedSet) ==
     zero? p => 0
     monomial(leadingCoefficient(p)::%,degree p) +
         univariate(reductum p,v)
   multivariate(supp:SparseUnivariatePolynomial(%),v:SingletonAsOrderedSet) ==
     zero? supp => 0
     lc:=leadingCoefficient supp
     positive? degree lc => error "bad form polynomial"
     monomial(leadingCoefficient lc,degree supp) +
         multivariate(reductum supp,v)
   if R has FiniteFieldCategory and R has PolynomialFactorizationExplicit then
     RXY ==> SparseUnivariatePolynomial SparseUnivariatePolynomial R
     squareFreePolynomial pp ==
        squareFree(pp)$UnivariatePolynomialSquareFree(%,FP)
     factorPolynomial pp ==
          (generalTwoFactor(pp pretend RXY)$TwoFactorize(R))
                      pretend Factored SparseUnivariatePolynomial %
     factorSquareFreePolynomial pp ==
          (generalTwoFactor(pp pretend RXY)$TwoFactorize(R))
                      pretend Factored SparseUnivariatePolynomial %
     gcdPolynomial(pp,qq) == gcd(pp,qq)$FP
     factor p == factor(p)$DistinctDegreeFactorize(R,%)
     solveLinearPolynomialEquation(lpp,pp) ==
       solveLinearPolynomialEquation(lpp, pp)$FiniteFieldSolveLinearPolynomialEquation(R,%,FP)
   else if R has PolynomialFactorizationExplicit then
     import PolynomialFactorizationByRecursionUnivariate(R,%)
     solveLinearPolynomialEquation(lpp,pp)==
       solveLinearPolynomialEquationByRecursion(lpp,pp)
     factorPolynomial(pp) ==
       factorByRecursion(pp)
     factorSquareFreePolynomial(pp) ==
       factorSquareFreeByRecursion(pp)

   if R has IntegralDomain then
    if R has approximate then
     p1:% exquo p2:%  ==
        null p2 => error "Division by 0"
        p2 = 1 => p1
        p1=p2 => 1
      --(p1.lastElt.c exquo p2.lastElt.c) case "failed" => "failed"
        rout:= []@List(Term)
        while not null p1 repeat
           (a:= p1.first.c exquo p2.first.c)
           a case "failed" => return "failed"
           ee:= subtractIfCan(p1.first.k, p2.first.k)
           ee case "failed" => return "failed"
           p1:= fmecg(p1.rest, ee, a, p2.rest)
           rout:= [[ee,a], :rout]
        null p1 => reverse(rout)::%    -- nreverse?
        "failed"
    else -- R not approximate
     p1:% exquo p2:%  ==
        null p2 => error "Division by 0"
        p2 = 1 => p1
      --(p1.lastElt.c exquo p2.lastElt.c) case "failed" => "failed"
        rout:= []@List(Term)
        while not null p1 repeat
           (a:= p1.first.c exquo p2.first.c)
           a case "failed" => return "failed"
           ee:= subtractIfCan(p1.first.k, p2.first.k)
           ee case "failed" => return "failed"
           p1:= fmecg(p1.rest, ee, a, p2.rest)
           rout:= [[ee,a], :rout]
        null p1 => reverse(rout)::%    -- nreverse?
        "failed"
   fmecg(p1,e,r,p2) ==       -- p1 - r * X**e * p2
          rout:%:= []
          r:= - r
          for tm in p2 repeat
             e2:= e + tm.k
             c2:= r * tm.c
             c2 = 0 => "next term"
             while not null p1 and p1.first.k > e2 repeat
               (rout:=[p1.first,:rout]; p1:=p1.rest)  --use PUSH and POP?
             null p1 or p1.first.k < e2 => rout:=[[e2,c2],:rout]
             if (u:=p1.first.c + c2) ~= 0 then rout:=[[e2, u],:rout]
             p1:=p1.rest
          NRECONC(rout,p1)$Lisp
   pseudoRemainder(p1,p2) ==
     null p2 => error "PseudoDivision by Zero"
     null p1 => 0
     co:=p2.first.c;
     e:=p2.first.k;
     p2:=p2.rest;
     e1:=max(p1.first.k:Integer-e+1,0):NonNegativeInteger
     while not null p1 repeat
       if (u:=subtractIfCan(p1.first.k,e)) case "failed" then leave
       p1:=fmecg(co * p1.rest, u, p1.first.c, p2)
       e1:= (e1 - 1):NonNegativeInteger
     e1 = 0 => p1
     co ** e1 * p1
   toutput(t1:Term,v:OutputForm):OutputForm ==
     t1.k = 0 => t1.c :: OutputForm
     if t1.k = 1
       then mon:= v
       else mon := v ** t1.k::OutputForm
     t1.c = 1 => mon
     t1.c = -1 and
          ((t1.c :: OutputForm) = (-1$Integer)::OutputForm)@Boolean => - mon
     t1.c::OutputForm * mon
   outputForm(p:%,v:OutputForm) ==
     l: List(OutputForm)
     l:=[toutput(t,v) for t in p]
     null l => (0$Integer)::OutputForm -- else FreeModule 0 problems
     reduce("+",l)

   coerce(p:%):OutputForm == outputForm(p, "?"::OutputForm)
   elt(p:%,val:R) ==
      null p => 0$R
      co:=p.first.c
      n:=p.first.k
      for tm in p.rest repeat
       co:= co * val ** (n - (n:=tm.k)):NonNegativeInteger + tm.c
      n = 0 => co
      co * val ** n
   elt(p:%,val:%) ==
      null p => 0$%
      coef:% := p.first.c :: %
      n:=p.first.k
      for tm in p.rest repeat
       coef:= coef * val ** (n-(n:=tm.k)):NonNegativeInteger+(tm.c::%)
      n = 0 => coef
      coef * val ** n

   monicDivide(p1:%,p2:%) ==
      null p2 => error "monicDivide: division by 0"
      not one? leadingCoefficient p2 => error "Divisor Not Monic"
      p2 = 1 => [p1,0]
      null p1 => [0,0]
      degree p1 < (n:=degree p2) => [0,p1]
      rout:Rep := []
      p2 := p2.rest
      while not null p1 repeat
         (u:=subtractIfCan(p1.first.k, n)) case "failed" => leave
         rout:=[[u, p1.first.c], :rout]
         p1:=fmecg(p1.rest, rout.first.k, rout.first.c, p2)
      [reverse!(rout),p1]

   if R has IntegralDomain then
       discriminant(p) == discriminant(p)$PseudoRemainderSequence(R,%)
--     discriminant(p) ==
--       null p or zero?(p.first.k) => error "cannot take discriminant of constants"
--       dp:=differentiate p
--       corr:=  p.first.c ** ((degree p - 1 - degree dp)::NonNegativeInteger)
--       (-1)**((p.first.k*(p.first.k-1)) quo 2):NonNegativeInteger
--         * (corr * resultant(p,dp) exquo p.first.c)::R

       subResultantGcd(p1,p2) == subResultantGcd(p1,p2)$PseudoRemainderSequence(R,%)
--     subResultantGcd(p1,p2) ==    --args # 0, non-coef, prim, ans not prim
--       --see algorithm 1 (p. 4) of Brown's latest (unpublished) paper
--       if p1.first.k < p2.first.k then (p1,p2):=(p2,p1)
--       p:=pseudoRemainder(p1,p2)
--       co:=1$R;
--       e:= (p1.first.k - p2.first.k):NonNegativeInteger
--       while not null p and p.first.k ~= 0 repeat
--         p1:=p2; p2:=p; p:=pseudoRemainder(p1,p2)
--         null p or p.first.k = 0 => "enuf"
--         co:=(p1.first.c ** e exquo co ** max(0, (e-1))::NonNegativeInteger)::R
--         e:= (p1.first.k - p2.first.k):NonNegativeInteger;  c1:=co**e
--         p:=[[tm.k,((tm.c exquo p1.first.c)::R exquo c1)::R] for tm in p]
--       if null p then p2 else 1$%

       resultant(p1,p2) == resultant(p1,p2)$PseudoRemainderSequence(R,%)
--     resultant(p1,p2) ==      --SubResultant PRS Algorithm
--        null p1 or null p2 => 0$R
--        0 = degree(p1) => ((first p1).c)**degree(p2)
--        0 = degree(p2) => ((first p2).c)**degree(p1)
--        if p1.first.k < p2.first.k then
--          (if odd?(p1.first.k) then p1:=-p1;  (p1,p2):=(p2,p1))
--        p:=pseudoRemainder(p1,p2)
--        co:=1$R;  e:=(p1.first.k-p2.first.k):NonNegativeInteger
--        while not null p repeat
--           if not odd?(e) then p:=-p
--           p1:=p2;  p2:=p;  p:=pseudoRemainder(p1,p2)
--           co:=(p1.first.c ** e exquo co ** max(e:Integer-1,0):NonNegativeInteger)::R
--           e:= (p1.first.k - p2.first.k):NonNegativeInteger;  c1:=co**e
--           p:=(p exquo ((leadingCoefficient p1) * c1))::%
--        degree p2 > 0 => 0$R
--        (p2.first.c**e exquo co**((e-1)::NonNegativeInteger))::R
   if R has GcdDomain then
     content(p) == if null p then 0$R else "gcd"/[tm.c for tm in p]
        --make CONTENT more efficient?

     primitivePart(p) ==
        null p => p
        ct :=content(p)
        unitCanonical((p exquo ct)::%)
               -- exquo  present since % is now an IntegralDomain

     gcd(p1,p2) ==
          gcdPolynomial(p1 pretend SparseUnivariatePolynomial R,
                        p2 pretend SparseUnivariatePolynomial R) pretend %

   if R has Field then
     divide( p1, p2)  ==
       zero? p2 => error "Division by 0"
       one? p2 => [p1,0]
       ct:=inv(p2.first.c)
       n:=p2.first.k
       p2:=p2.rest
       rout:=empty()$List(Term)
       while p1 ~= 0 repeat
          (u:=subtractIfCan(p1.first.k, n)) case "failed" => leave
          rout:=[[u, ct * p1.first.c], :rout]
          p1:=fmecg(p1.rest, rout.first.k, rout.first.c, p2)
       [reverse!(rout),p1]

     p / co == inv(co) * p

)abbrev package SUP2 SparseUnivariatePolynomialFunctions2
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package lifts a mapping from coefficient rings R to S to
++ a mapping from sparse univariate polynomial over R to
++ a sparse univariate polynomial over S.
++ Note that the mapping is assumed
++ to send zero to zero, since it will only be applied to the non-zero
++ coefficients of the polynomial.

SparseUnivariatePolynomialFunctions2(R:Ring, S:Ring): with
  map:(R->S,SparseUnivariatePolynomial R) -> SparseUnivariatePolynomial S
    ++ map(func, poly) creates a new polynomial by applying func to
    ++ every non-zero coefficient of the polynomial poly.
 == add
  map(f, p) == map(f, p)$UnivariatePolynomialCategoryFunctions2(R,
           SparseUnivariatePolynomial R, S, SparseUnivariatePolynomial S)

)abbrev domain UP UnivariatePolynomial
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions: Ring, monomial, coefficient, reductum, differentiate,
++ elt, map, resultant, discriminant
++ Related Constructors: SparseUnivariatePolynomial, MultivariatePolynomial
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This domain represents univariate polynomials in some symbol
++ over arbitrary (not necessarily commutative) coefficient rings.
++ The representation is sparse
++ in the sense that only non-zero terms are represented.
++ Note: if the coefficient ring is a field, then this domain forms a euclidean domain.

UnivariatePolynomial(x:Symbol, R:Ring):
  Join(UnivariatePolynomialCategory(R),CoercibleFrom Variable x) with
    fmecg: (%,NonNegativeInteger,R,%) -> %
        ++ fmecg(p1,e,r,p2) finds X : p1 - r * X**e * p2
   == SparseUnivariatePolynomial(R)   add
    Rep:=SparseUnivariatePolynomial(R)
    coerce(p:%):OutputForm  == outputForm(p, outputForm x)
    coerce(v:Variable(x)):% == monomial(1, 1)

)abbrev package UP2 UnivariatePolynomialFunctions2
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package lifts a mapping from coefficient rings R to S to
++ a mapping from \spadtype{UnivariatePolynomial}(x,R) to
++ \spadtype{UnivariatePolynomial}(y,S). Note that the mapping is assumed
++ to send zero to zero, since it will only be applied to the non-zero
++ coefficients of the polynomial.

UnivariatePolynomialFunctions2(x:Symbol, R:Ring, y:Symbol, S:Ring): with
  map: (R -> S, UnivariatePolynomial(x,R)) -> UnivariatePolynomial(y,S)
    ++ map(func, poly) creates a new polynomial by applying func to
    ++ every non-zero coefficient of the polynomial poly.
 == add
  map(f, p) == map(f, p)$UnivariatePolynomialCategoryFunctions2(R,
              UnivariatePolynomial(x, R), S, UnivariatePolynomial(y, S))

)abbrev package POLY2UP PolynomialToUnivariatePolynomial
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package is primarily to help the interpreter do coercions.
++ It allows you to view a polynomial as a
++ univariate polynomial in one of its variables with
++ coefficients which are again a polynomial in all the
++ other variables.

PolynomialToUnivariatePolynomial(x:Symbol, R:Ring): with
  univariate: (Polynomial R, Variable x) ->
                                   UnivariatePolynomial(x, Polynomial R)
     ++ univariate(p, x) converts the polynomial p to a one of type
     ++ \spad{UnivariatePolynomial(x,Polynomial(R))}, ie. as a member of \spad{R[...][x]}.
 == add
  univariate(p, y) ==
    q:SparseUnivariatePolynomial(Polynomial R) := univariate(p, x)
    map(#1, q)$UnivariatePolynomialCategoryFunctions2(Polynomial R,
                  SparseUnivariatePolynomial Polynomial R, Polynomial R,
                      UnivariatePolynomial(x, Polynomial R))