This file is indexed.

/usr/lib/open-axiom/src/algebra/triset.spad is in open-axiom-source 1.4.1+svn~2626-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import Boolean
import NonNegativeInteger
import OutputForm
import List
)abbrev category TSETCAT TriangularSetCategory
++ Author: Marc Moreno Maza (marc@nag.co.uk)
++ Date Created: 04/26/1994
++ Date Last Updated: 12/15/1998
++ Basic Functions:
++ Related Constructors:
++ Also See: 
++ AMS Classifications:
++ Keywords: polynomial, multivariate, ordered variables set
++ Description:
++ The category of triangular sets of multivariate polynomials
++ with coefficients in an integral domain.
++ Let \axiom{R} be an integral domain and \axiom{V} a finite ordered set of 
++ variables, say \axiom{X1 < X2 < ... < Xn}.  
++ A set \axiom{S} of polynomials in \axiom{R[X1,X2,...,Xn]} is triangular
++ if no elements of \axiom{S} lies in \axiom{R}, and if two distinct 
++ elements of \axiom{S} have distinct main variables. 
++ Note that the empty set is a triangular set. A triangular set is not
++ necessarily a (lexicographical) Groebner basis and the notion of 
++ reduction related to triangular sets is based on the recursive view
++ of polynomials. We recall this notion here and refer to [1] for more details.
++ A polynomial \axiom{P} is reduced w.r.t a non-constant polynomial 
++ \axiom{Q} if the degree of \axiom{P} in the main variable of \axiom{Q} 
++ is less than the main degree of \axiom{Q}.
++ A polynomial \axiom{P} is reduced w.r.t a triangular set \axiom{T}
++ if it is reduced w.r.t. every polynomial of \axiom{T}. \newline
++ References :
++  [1] P. AUBRY, D. LAZARD and M. MORENO MAZA "On the Theories
++      of Triangular Sets" Journal of Symbol. Comp. (to appear)
++ Version: 4.

TriangularSetCategory(R:IntegralDomain,E:OrderedAbelianMonoidSup,_
 V:OrderedSet,P:RecursivePolynomialCategory(R,E,V)): 
         Category == 
   PolynomialSetCategory(R,E,V,P) with 
     finiteAggregate
     shallowlyMutable

     infRittWu? : ($,$) -> Boolean
         ++ \axiom{infRittWu?(ts1,ts2)} returns true iff \axiom{ts2} has higher rank
         ++ than \axiom{ts1} in Wu Wen Tsun sense.
     basicSet : (List P,((P,P)->Boolean)) -> Union(Record(bas:$,top:List P),"failed")
         ++ \axiom{basicSet(ps,redOp?)} returns \axiom{[bs,ts]} where
         ++ \axiom{concat(bs,ts)} is \axiom{ps} and \axiom{bs}
         ++ is a basic set in Wu Wen Tsun sense of \axiom{ps} w.r.t 
         ++ the reduction-test \axiom{redOp?}, if no non-zero constant 
         ++ polynomial lie in \axiom{ps}, otherwise \axiom{"failed"} is returned.
     basicSet : (List P,(P->Boolean),((P,P)->Boolean)) -> Union(Record(bas:$,top:List P),"failed")
         ++ \axiom{basicSet(ps,pred?,redOp?)} returns the same as \axiom{basicSet(qs,redOp?)}
         ++ where \axiom{qs} consists of the polynomials of \axiom{ps}
         ++ satisfying property \axiom{pred?}.
     initials : $ -> List P
         ++ \axiom{initials(ts)} returns the list of the non-constant initials
         ++ of the members of \axiom{ts}.
     degree : $ -> NonNegativeInteger
         ++ \axiom{degree(ts)} returns the product of main degrees of the 
         ++ members of \axiom{ts}.
     quasiComponent : $ -> Record(close:List P,open:List P)
         ++ \axiom{quasiComponent(ts)} returns \axiom{[lp,lq]} where \axiom{lp} is the list 
         ++ of the members of \axiom{ts} and \axiom{lq}is \axiom{initials(ts)}.
     normalized? : (P,$) -> Boolean
         ++ \axiom{normalized?(p,ts)} returns true iff \axiom{p} and all its iterated initials
         ++ have degree zero w.r.t. the main variables of the polynomials of \axiom{ts}
     normalized? : $  -> Boolean
         ++ \axiom{normalized?(ts)} returns true iff for every axiom{p} in axiom{ts} we have 
         ++ \axiom{normalized?(p,us)} where \axiom{us} is \axiom{collectUnder(ts,mvar(p))}.
     reduced? : (P,$,((P,P) -> Boolean)) -> Boolean
         ++ \axiom{reduced?(p,ts,redOp?)} returns true iff \axiom{p} is reduced w.r.t.
         ++ in the sense of the operation \axiom{redOp?}, that is if for every \axiom{t} in 
         ++ \axiom{ts} \axiom{redOp?(p,t)} holds.
     stronglyReduced? : (P,$) -> Boolean
         ++ \axiom{stronglyReduced?(p,ts)} returns true iff \axiom{p} 
         ++ is reduced w.r.t. \axiom{ts}.
     headReduced? : (P,$) -> Boolean
         ++ \axiom{headReduced?(p,ts)} returns true iff the head of \axiom{p} is 
         ++ reduced w.r.t. \axiom{ts}.
     initiallyReduced? : (P,$) -> Boolean
         ++ \axiom{initiallyReduced?(p,ts)} returns true iff \axiom{p} and all its iterated initials 
         ++ are reduced w.r.t. to the elements of \axiom{ts} with the same main variable.
     autoReduced? : ($,((P,List(P)) -> Boolean)) -> Boolean
         ++ \axiom{autoReduced?(ts,redOp?)} returns true iff every element of \axiom{ts} is 
         ++ reduced w.r.t to every other in the sense of \axiom{redOp?}
     stronglyReduced? : $ -> Boolean
         ++ \axiom{stronglyReduced?(ts)} returns true iff every element of \axiom{ts} is 
         ++ reduced w.r.t to any other element of \axiom{ts}.
     headReduced? : $ -> Boolean
         ++ headReduced?(ts) returns true iff the head of every element of \axiom{ts} is 
         ++ reduced w.r.t to any other element of \axiom{ts}.
     initiallyReduced? : $ -> Boolean
         ++ initiallyReduced?(ts) returns true iff for every element \axiom{p} of \axiom{ts}
         ++ \axiom{p} and all its iterated initials are reduced w.r.t. to the other elements 
         ++ of \axiom{ts} with the same main variable.
     reduce : (P,$,((P,P) -> P),((P,P) -> Boolean) ) -> P
         ++ \axiom{reduce(p,ts,redOp,redOp?)} returns a polynomial \axiom{r}  such that 
         ++ \axiom{redOp?(r,p)} holds for every \axiom{p} of \axiom{ts} 
         ++ and there exists some product \axiom{h} of the initials of the members 
         ++ of \axiom{ts} such that \axiom{h*p - r} lies in the ideal generated by \axiom{ts}. 
         ++ The operation \axiom{redOp} must satisfy the following conditions. 
         ++ For every \axiom{p} and \axiom{q} we have  \axiom{redOp?(redOp(p,q),q)} 
         ++ and there exists an integer \axiom{e} and a polynomial \axiom{f} such that 
         ++ \axiom{init(q)^e*p = f*q + redOp(p,q)}. 
     rewriteSetWithReduction : (List P,$,((P,P) -> P),((P,P) -> Boolean) ) -> List P
         ++ \axiom{rewriteSetWithReduction(lp,ts,redOp,redOp?)} returns a list \axiom{lq} of
         ++ polynomials such that \axiom{[reduce(p,ts,redOp,redOp?) for p in lp]} and \axiom{lp} 
         ++ have the same zeros inside the regular zero set of \axiom{ts}. Moreover, for every 
         ++ polynomial \axiom{q} in \axiom{lq} and every polynomial \axiom{t} in \axiom{ts}
         ++ \axiom{redOp?(q,t)} holds and there exists a polynomial \axiom{p}
         ++ in the ideal generated by \axiom{lp} and a product \axiom{h} of \axiom{initials(ts)}
         ++ such that \axiom{h*p - r} lies in the ideal generated by \axiom{ts}. 
         ++ The operation \axiom{redOp} must satisfy the following conditions.
         ++ For every \axiom{p} and \axiom{q} we have \axiom{redOp?(redOp(p,q),q)}
         ++ and there exists an integer \axiom{e} and a polynomial \axiom{f}
         ++ such that \axiom{init(q)^e*p = f*q + redOp(p,q)}.
     stronglyReduce : (P,$) -> P
         ++ \axiom{stronglyReduce(p,ts)} returns a polynomial \axiom{r}  such that
         ++ \axiom{stronglyReduced?(r,ts)} holds and there exists some product 
         ++ \axiom{h} of \axiom{initials(ts)}
         ++ such that \axiom{h*p - r} lies in the ideal generated by \axiom{ts}.
     headReduce : (P,$) -> P
         ++ \axiom{headReduce(p,ts)} returns a polynomial \axiom{r}  such that \axiom{headReduce?(r,ts)}
         ++ holds and there exists some product \axiom{h} of \axiom{initials(ts)}
         ++ such that \axiom{h*p - r} lies in the ideal generated by \axiom{ts}.
     initiallyReduce : (P,$) -> P
         ++ \axiom{initiallyReduce(p,ts)} returns a polynomial \axiom{r}  
         ++ such that  \axiom{initiallyReduced?(r,ts)}
         ++ holds and there exists some product \axiom{h} of \axiom{initials(ts)}
         ++ such that \axiom{h*p - r} lies in the ideal generated by \axiom{ts}.
     removeZero: (P, $) -> P
         ++ \axiom{removeZero(p,ts)} returns \axiom{0} if \axiom{p} reduces
         ++ to \axiom{0} by pseudo-division w.r.t \axiom{ts} otherwise
         ++ returns a polynomial \axiom{q} computed from \axiom{p}
         ++ by removing any coefficient in \axiom{p} reducing to \axiom{0}.
     collectQuasiMonic: $ -> $
         ++ \axiom{collectQuasiMonic(ts)} returns the subset of \axiom{ts}
         ++ consisting of the polynomials with initial in \axiom{R}.
     reduceByQuasiMonic: (P, $) -> P
         ++ \axiom{reduceByQuasiMonic(p,ts)} returns the same as
         ++ \axiom{remainder(p,collectQuasiMonic(ts)).polnum}.
     zeroSetSplit : List P -> List $
         ++ \axiom{zeroSetSplit(lp)} returns a list \axiom{lts} of triangular sets such that 
         ++ the zero set of \axiom{lp} is the union of the closures of the regular zero sets 
         ++ of the members of \axiom{lts}.
     zeroSetSplitIntoTriangularSystems : List P -> List Record(close:$,open:List P)
         ++ \axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular
         ++ systems \axiom{[[ts1,qs1],...,[tsn,qsn]]} such that the zero set of \axiom{lp}
         ++ is the union of the closures of the \axiom{W_i} where \axiom{W_i} consists
         ++ of the zeros of \axiom{ts} which do not cancel any polynomial in \axiom{qsi}.
     first : $ -> Union(P,"failed")
         ++ \axiom{first(ts)} returns the polynomial of \axiom{ts} with greatest main variable
         ++ if \axiom{ts} is not empty, otherwise returns \axiom{"failed"}.
     last : $ -> Union(P,"failed")
         ++ \axiom{last(ts)} returns the polynomial of \axiom{ts} with smallest main variable
         ++ if \axiom{ts} is not empty, otherwise returns \axiom{"failed"}.
     rest : $ -> Union($,"failed")
         ++ \axiom{rest(ts)} returns the polynomials of \axiom{ts} with smaller main variable
         ++ than \axiom{mvar(ts)} if \axiom{ts} is not empty, otherwise returns "failed"
     algebraicVariables : $ -> List(V)
         ++ \axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main
         ++ variables of the polynomials of \axiom{ts}.
     algebraic? : (V,$) -> Boolean
         ++ \axiom{algebraic?(v,ts)} returns true iff \axiom{v} is the main variable of some
         ++ polynomial in \axiom{ts}.
     select : ($,V) -> Union(P,"failed")
         ++ \axiom{select(ts,v)} returns the polynomial of \axiom{ts} with \axiom{v} as
         ++ main variable, if any.
     extendIfCan : ($,P) -> Union($,"failed")
         ++ \axiom{extendIfCan(ts,p)} returns a triangular set which encodes the simple
         ++ extension by \axiom{p} of the extension of the base field defined by \axiom{ts},
         ++ according to the properties of triangular sets of the current domain.
         ++ If the required properties do not hold then "failed" is returned.
         ++ This operation encodes in some sense the properties of the
         ++ triangular sets of the current category. Is is used to implement
         ++ the \axiom{construct} operation to guarantee that every triangular
         ++ set build from a list of polynomials has the required properties.
     extend : ($,P) -> $
         ++ \axiom{extend(ts,p)} returns a triangular set which encodes the simple
         ++ extension by \axiom{p} of the extension of the base field defined by \axiom{ts},
         ++ according to the properties of triangular sets of the current category
         ++ If the required properties do not hold an error is returned.
     if V has Finite
     then
       coHeight : $ -> NonNegativeInteger
           ++ \axiom{coHeight(ts)} returns \axiom{size()\$V} minus \axiom{\#ts}.
  add
     
     GPS ==> GeneralPolynomialSet(R,E,V,P)
     B ==> Boolean
     RBT ==> Record(bas:$,top:List P)

     ts:$ = us:$ ==
       empty?(ts)$$ => empty?(us)$$
       empty?(us)$$ => false
       first(ts)::P =$P first(us)::P => rest(ts)::$ =$$ rest(us)::$
       false

     infRittWu?(ts,us) ==
       empty?(us)$$ => not empty?(ts)$$
       empty?(ts)$$ => false
       p : P := (last(ts))::P
       q : P := (last(us))::P
       infRittWu?(p,q)$P => true
       supRittWu?(p,q)$P => false
       v : V := mvar(p)
       infRittWu?(collectUpper(ts,v),collectUpper(us,v))$$

     reduced?(p,ts,redOp?) ==
       lp : List P := members(ts)
       while (not empty? lp) and (redOp?(p,first(lp))) repeat
         lp := rest lp
       empty? lp 

     basicSet(ps,redOp?) ==
       ps := remove(zero?,ps)
       any?(ground?,ps) => "failed"::Union(RBT,"failed")
       ps := sort(infRittWu?,ps)
       p,b : P
       bs := empty()$$
       ts : List P := []
       while not empty? ps repeat
         b := first(ps)
         bs := extend(bs,b)$$
         ps := rest ps
         while (not empty? ps) and (not reduced?((p := first(ps)),bs,redOp?)) repeat
           ts := cons(p,ts)
           ps := rest ps
       ([bs,ts]$RBT)::Union(RBT,"failed")

     basicSet(ps,pred?,redOp?) ==
       ps := remove(zero?,ps)
       any?(ground?,ps) => "failed"::Union(RBT,"failed")
       gps : List P := []
       bps : List P := []
       while not empty? ps repeat
         p := first ps
         ps := rest ps  
         if pred?(p)
           then
             gps := cons(p,gps)
           else
             bps := cons(p,bps)
       gps := sort(infRittWu?,gps)
       p,b : P
       bs := empty()$$
       ts : List P := []
       while not empty? gps repeat
         b := first(gps)
         bs := extend(bs,b)$$
         gps := rest gps
         while (not empty? gps) and (not reduced?((p := first(gps)),bs,redOp?)) repeat
           ts := cons(p,ts)
           gps := rest gps
       ts := sort(infRittWu?,concat(ts,bps))
       ([bs,ts]$RBT)::Union(RBT,"failed")

     initials ts ==
       lip : List P := []
       empty? ts => lip
       lp := members(ts)
       while not empty? lp repeat
          p := first(lp)
          if not ground?((ip := init(p)))
            then
              lip := cons(primPartElseUnitCanonical(ip),lip)
          lp := rest lp
       removeDuplicates lip

     degree ts ==
       empty? ts => 0$NonNegativeInteger
       lp := members ts
       d : NonNegativeInteger := mdeg(first lp)
       while not empty? (lp := rest lp) repeat
         d := d * mdeg(first lp)
       d

     quasiComponent ts == 
       [members(ts),initials(ts)]

     normalized?(p,ts) ==
       normalized?(p,members(ts))$P

     stronglyReduced? (p,ts) ==
       reduced?(p,members(ts))$P

     headReduced? (p,ts) ==
       stronglyReduced?(head(p),ts)

     initiallyReduced? (p,ts) ==
       lp : List (P) := members(ts)
       red : Boolean := true
       while (not empty? lp) and (not ground?(p)$P) and red repeat
         while (not empty? lp) and (mvar(first(lp)) > mvar(p)) repeat 
           lp := rest lp
         if (not empty? lp) 
           then
             if  (mvar(first(lp)) = mvar(p))
               then
                 if reduced?(p,first(lp))
                   then
                     lp := rest lp
                     p := init(p)
                   else
                     red := false
               else
                 p := init(p)
       red

     reduce(p: P,ts: S,redOp: (P,P)->P,redOp?: (P,P)->Boolean) ==
       (empty? ts) or (ground? p) => p
       ts0 := ts
       while (not empty? ts) and (not ground? p) repeat
          reductor := (first ts)::P
          ts := (rest ts)::$
          if not redOp?(p,reductor) 
            then 
              p := redOp(p,reductor)
              ts := ts0
       p

     rewriteSetWithReduction(lp,ts,redOp,redOp?) ==
       trivialIdeal? ts => lp
       lp := remove(zero?,lp)
       empty? lp => lp
       any?(ground?,lp) => [1$P]
       rs : List P := []
       while not empty? lp repeat
         p := first lp
         lp := rest lp
         p := primPartElseUnitCanonical reduce(p,ts,redOp,redOp?)
         if not zero? p
           then 
             if ground? p
               then
                 lp := []
                 rs := [1$P]
               else
                 rs := cons(p,rs)
       removeDuplicates rs

     stronglyReduce(p,ts) ==
       reduce (p,ts,lazyPrem,reduced?)

     headReduce(p,ts) ==
       reduce (p,ts,headReduce,headReduced?)

     initiallyReduce(p,ts) ==
       reduce (p,ts,initiallyReduce,initiallyReduced?)

     removeZero(p,ts) ==
       (ground? p) or (empty? ts) => p
       v := mvar(p)
       ts_v_- := collectUnder(ts,v)
       if algebraic?(v,ts) 
         then
           q := lazyPrem(p,select(ts,v)::P)
           zero? q => return q
           zero? removeZero(q,ts_v_-) => return 0
       empty? ts_v_- => p
       q: P := 0
       while positive? degree(p,v) repeat
          q := removeZero(init(p),ts_v_-) * mainMonomial(p) + q
          p := tail(p)
       q + removeZero(p,ts_v_-)

     reduceByQuasiMonic(p, ts) ==
       (ground? p) or (empty? ts) => p
       remainder(p,collectQuasiMonic(ts)).polnum

     autoReduced?(ts : $,redOp? : ((P,List(P)) -> Boolean)) ==        
       empty? ts => true
       lp : List (P) := members(ts)
       p : P := first(lp)
       lp := rest lp
       while (not empty? lp) and redOp?(p,lp) repeat
          p := first lp
          lp := rest lp
       empty? lp

     stronglyReduced? ts ==
       autoReduced? (ts, reduced?)

     normalized? ts ==
       autoReduced? (ts,normalized?)

     headReduced? ts ==
       autoReduced? (ts,headReduced?)

     initiallyReduced?  ts ==
       autoReduced? (ts,initiallyReduced?)
         
     mvar ts ==
       empty? ts => error"Error from TSETCAT in mvar : #1 is empty"
       mvar((first(ts))::P)$P

     first ts ==
       empty? ts => "failed"::Union(P,"failed")
       lp : List(P) := sort(supRittWu?,members(ts))$(List P)
       first(lp)::Union(P,"failed")

     last ts ==
       empty? ts => "failed"::Union(P,"failed")
       lp : List(P) := sort(infRittWu?,members(ts))$(List P)
       first(lp)::Union(P,"failed")

     rest ts ==
       empty? ts => "failed"::Union($,"failed")
       lp : List(P) := sort(supRittWu?,members(ts))$(List P)
       construct(rest(lp))::Union($,"failed")

     coerce (ts:$) : List(P) == 
       sort(supRittWu?,members(ts))$(List P)

     algebraicVariables ts ==
       [mvar(p) for p in members(ts)]

     algebraic? (v,ts) ==
       member?(v,algebraicVariables(ts))

     select(ts: %,v: V): Union(P,"failed") ==
       lp : List (P) := sort(supRittWu?,members(ts))$(List P)
       while (not empty? lp) and (not (v = mvar(first lp))) repeat
         lp := rest lp
       empty? lp => "failed"::Union(P,"failed")
       (first lp)::Union(P,"failed")

     collectQuasiMonic ts ==
       lp: List(P) := members(ts)
       newlp: List(P) := []
       while (not empty? lp) repeat
         if ground? init(first(lp)) then newlp := cons(first(lp),newlp)
         lp := rest lp
       construct(newlp)

     collectUnder (ts,v) ==
       lp : List (P) := sort(supRittWu?,members(ts))$(List P)
       while (not empty? lp) and (not (v > mvar(first lp))) repeat
         lp := rest lp       
       construct(lp)

     collectUpper  (ts,v) ==
       lp1 : List(P) := sort(supRittWu?,members(ts))$(List P)
       lp2 : List(P) := []
       while (not empty? lp1) and  (mvar(first lp1) > v) repeat
         lp2 := cons(first(lp1),lp2)
         lp1 := rest lp1
       construct(reverse lp2)

     construct(lp:List(P)) ==
       rif := retractIfCan(lp)@Union($,"failed")
       not (rif case $) => error"in construct : LP -> $ from TSETCAT : bad arg"
       rif::$

     retractIfCan(lp:List(P)) ==
       empty? lp => (empty()$$)::Union($,"failed")
       lp := sort(supRittWu?,lp)
       rif := retractIfCan(rest(lp))@Union($,"failed")
       not (rif case $) => error"in retractIfCan : LP -> ... from TSETCAT : bad arg"
       extendIfCan(rif::$,first(lp))@Union($,"failed")

     extend(ts:$,p:P):$ ==
       eif := extendIfCan(ts,p)@Union($,"failed")
       not (eif case $) => error"in extend : ($,P) -> $ from TSETCAT : bad ars"
       eif::$

     if V has Finite
     then
        
       coHeight ts ==
         n := size()$V
         m := #(members ts)
         subtractIfCan(n,m)$NonNegativeInteger::NonNegativeInteger

)abbrev domain GTSET GeneralTriangularSet
++ Author: Marc Moreno Maza (marc@nag.co.uk)
++ Date Created: 10/06/1995
++ Date Last Updated: 06/12/1996
++ Basic Functions:
++ Related Constructors:
++ Also See: 
++ AMS Classifications:
++ Keywords:
++ Description: 
++ A domain constructor of the category \axiomType{TriangularSetCategory}.
++ The only requirement for a list of polynomials to be a member of such
++ a domain is the following: no polynomial is constant and two distinct
++ polynomials have distinct main variables. Such a triangular set may
++ not be auto-reduced or consistent. Triangular sets are stored
++ as sorted lists w.r.t. the main variables of their members but they
++ are displayed in reverse order.\newline
++ References :
++  [1] P. AUBRY, D. LAZARD and M. MORENO MAZA "On the Theories
++      of Triangular Sets" Journal of Symbol. Comp. (to appear)
++ Version: 1

GeneralTriangularSet(R,E,V,P) : Exports == Implementation where

  R : IntegralDomain
  E : OrderedAbelianMonoidSup
  V : OrderedSet
  P : RecursivePolynomialCategory(R,E,V)
  N ==> NonNegativeInteger
  Z ==> Integer
  B ==> Boolean
  LP ==> List P
  PtoP ==> P -> P

  Exports ==  TriangularSetCategory(R,E,V,P)

  Implementation == add

     Rep == LP

     copy ts ==
       per(copy(rep(ts))$LP)
     empty() ==
       per([])
     empty?(ts:$) ==
       empty?(rep(ts))
     parts ts ==
       rep(ts)
     members ts ==
       rep(ts)
     map (f : PtoP, ts : $) : $ ==
       construct(map(f,rep(ts))$LP)$$
     map! (f : PtoP, ts : $) : $  ==
       construct(map!(f,rep(ts))$LP)$$
     member? (p,ts) ==
       member?(p,rep(ts))$LP

     roughUnitIdeal? ts ==
       false

     -- the following assume that rep(ts) is decreasingly sorted
     -- w.r.t. the main variavles of the polynomials in rep(ts)
     coerce(ts:$) : OutputForm ==
       lp : List(P) := reverse(rep(ts))
       brace([p::OutputForm for p in lp]$List(OutputForm))$OutputForm
     mvar ts ==
       empty? ts => error"failed in mvar : $ -> V from GTSET"
       mvar(first(rep(ts)))$P
     first ts ==
       empty? ts => "failed"::Union(P,"failed")
       first(rep(ts))::Union(P,"failed")
     last ts ==
       empty? ts => "failed"::Union(P,"failed")
       last(rep(ts))::Union(P,"failed")
     rest ts ==
       empty? ts => "failed"::Union($,"failed")
       per(rest(rep(ts)))::Union($,"failed")
     coerce(ts:$) : (List P) ==
       rep(ts)
     collectUpper (ts,v) ==
       empty? ts => ts
       lp := rep(ts)
       newlp : Rep := []
       while (not empty? lp) and (mvar(first(lp)) > v) repeat
         newlp := cons(first(lp),newlp)
         lp := rest lp
       per(reverse(newlp))
     collectUnder (ts,v) ==
       empty? ts => ts
       lp := rep(ts)
       while (not empty? lp) and (mvar(first(lp)) >= v) repeat
         lp := rest lp
       per(lp)

     -- for another domain of TSETCAT build on this domain GTSET
     -- the following operations must be redefined
     extendIfCan(ts:$,p:P) ==
       ground? p => "failed"::Union($,"failed")
       empty? ts => (per([unitCanonical(p)]$LP))::Union($,"failed")
       not (mvar(ts) < mvar(p)) => "failed"::Union($,"failed")
       (per(cons(p,rep(ts))))::Union($,"failed")

)abbrev package PSETPK PolynomialSetUtilitiesPackage
++ Author: Marc Moreno Maza (marc@nag.co.uk)
++ Date Created: 12/01/1995
++ Date Last Updated: 12/15/1998
++ SPARC Version
++ Basic Operations: 
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: 
++ Examples:
++ References:
++ Description:
++ This package provides modest routines for polynomial system solving.
++ The aim of many of the operations of this package is to remove certain
++ factors in some polynomials in order to avoid unnecessary computations
++ in algorithms involving splitting techniques by partial factorization.
++ Version: 3

PolynomialSetUtilitiesPackage (R,E,V,P) : Exports == Implementation where

  R : IntegralDomain
  E : OrderedAbelianMonoidSup
  V : OrderedSet
  P : RecursivePolynomialCategory(R,E,V)
  N ==> NonNegativeInteger
  Z ==> Integer
  B ==> Boolean
  LP ==> List P
  FP ==> Factored P
  T ==> GeneralTriangularSet(R,E,V,P)
  RRZ ==> Record(factor: P,exponent: Integer)
  RBT ==> Record(bas:T,top:LP)
  RUL ==> Record(chs:Union(T,"failed"),rfs:LP)
  GPS ==> GeneralPolynomialSet(R,E,V,P)
  pf ==> MultivariateFactorize(V, E, R, P)

  Exports ==  with
     
     removeRedundantFactors: LP -> LP
        ++ \axiom{removeRedundantFactors(lp)} returns \axiom{lq} such that if
        ++ \axiom{lp = [p1,...,pn]} and \axiom{lq = [q1,...,qm]}
        ++ then the product \axiom{p1*p2*...*pn} vanishes iff the product \axiom{q1*q2*...*qm} vanishes, 
        ++ and the product of degrees of the \axiom{qi} is not greater than 
        ++ the one of the \axiom{pj}, and no polynomial in \axiom{lq}
        ++ divides another polynomial in \axiom{lq}. In particular,
        ++ polynomials lying in the base ring \axiom{R} are removed.
        ++ Moreover, \axiom{lq} is sorted w.r.t \axiom{infRittWu?}.
        ++ Furthermore, if R is gcd-domain, the polynomials in \axiom{lq} are 
        ++ pairwise without common non trivial factor.
     removeRedundantFactors: (P,P) -> LP
        ++ \axiom{removeRedundantFactors(p,q)} returns the same as 
        ++ \axiom{removeRedundantFactors([p,q])}
     removeSquaresIfCan : LP -> LP
        ++ \axiom{removeSquaresIfCan(lp)} returns
        ++ \axiom{removeDuplicates [squareFreePart(p)$P for p in lp]}
        ++ if \axiom{R} is gcd-domain else returns \axiom{lp}.
     unprotectedRemoveRedundantFactors: (P,P) -> LP
        ++ \axiom{unprotectedRemoveRedundantFactors(p,q)} returns the same as 
        ++ \axiom{removeRedundantFactors(p,q)} but does assume that neither 
        ++ \axiom{p} nor \axiom{q} lie in the base ring \axiom{R} and assumes that
        ++ \axiom{infRittWu?(p,q)} holds. Moreover, if \axiom{R} is gcd-domain,
        ++ then \axiom{p} and \axiom{q} are assumed to be square free.
     removeRedundantFactors: (LP,P) -> LP
        ++ \axiom{removeRedundantFactors(lp,q)} returns the same as 
        ++ \axiom{removeRedundantFactors(cons(q,lp))} assuming
        ++ that \axiom{removeRedundantFactors(lp)} returns \axiom{lp}
        ++ up to replacing some polynomial \axiom{pj} in \axiom{lp}
        ++ by some some polynomial \axiom{qj} associated to \axiom{pj}.
     removeRedundantFactors : (LP,LP) -> LP
        ++ \axiom{removeRedundantFactors(lp,lq)} returns the same as
        ++ \axiom{removeRedundantFactors(concat(lp,lq))} assuming
        ++ that \axiom{removeRedundantFactors(lp)} returns \axiom{lp}
        ++ up to replacing some polynomial \axiom{pj} in \axiom{lp}
        ++ by some polynomial \axiom{qj} associated to \axiom{pj}.
     removeRedundantFactors : (LP,LP,(LP -> LP)) -> LP
        ++ \axiom{removeRedundantFactors(lp,lq,remOp)} returns the same as
        ++ \axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,lq)),lq)}
        ++ assuming that \axiom{remOp(lq)} returns \axiom{lq} up to similarity.
     certainlySubVariety? : (LP,LP) -> B
        ++ \axiom{certainlySubVariety?(newlp,lp)} returns true iff for every \axiom{p}
        ++ in \axiom{lp} the remainder of \axiom{p} by \axiom{newlp} using the division algorithm
        ++ of Groebner techniques is zero.
     possiblyNewVariety? : (LP, List LP) -> B
        ++ \axiom{possiblyNewVariety?(newlp,llp)} returns true iff for every \axiom{lp} 
        ++ in \axiom{llp} certainlySubVariety?(newlp,lp) does not hold.
     probablyZeroDim?: LP -> B
        ++ \axiom{probablyZeroDim?(lp)} returns true iff the number of polynomials
        ++ in \axiom{lp} is not smaller than the number of variables occurring 
        ++ in these polynomials.
     selectPolynomials : ((P -> B),LP) -> Record(goodPols:LP,badPols:LP)
        ++ \axiom{selectPolynomials(pred?,ps)} returns \axiom{gps,bps} where 
        ++ \axiom{gps} is a list of the polynomial \axiom{p} in \axiom{ps}
        ++ such that \axiom{pred?(p)} holds and \axiom{bps} are the other ones.
     selectOrPolynomials : (List (P -> B),LP) -> Record(goodPols:LP,badPols:LP)
        ++ \axiom{selectOrPolynomials(lpred?,ps)} returns \axiom{gps,bps} where 
        ++ \axiom{gps} is a list of the polynomial \axiom{p} in \axiom{ps}
        ++ such that \axiom{pred?(p)} holds for some \axiom{pred?} in \axiom{lpred?}
        ++ and \axiom{bps} are the other ones.
     selectAndPolynomials : (List (P -> B),LP) -> Record(goodPols:LP,badPols:LP)
        ++ \axiom{selectAndPolynomials(lpred?,ps)} returns \axiom{gps,bps} where 
        ++ \axiom{gps} is a list of the polynomial \axiom{p} in \axiom{ps}
        ++ such that \axiom{pred?(p)} holds for every \axiom{pred?} in \axiom{lpred?}
        ++ and \axiom{bps} are the other ones.
     quasiMonicPolynomials : LP -> Record(goodPols:LP,badPols:LP)
        ++ \axiom{quasiMonicPolynomials(lp)} returns \axiom{qmps,nqmps} where 
        ++ \axiom{qmps} is a list of the quasi-monic polynomials in \axiom{lp}
        ++ and \axiom{nqmps} are the other ones.
     univariate? : P -> B
        ++ \axiom{univariate?(p)} returns true iff \axiom{p} involves one and 
        ++ only one variable.
     univariatePolynomials : LP -> Record(goodPols:LP,badPols:LP)
        ++ \axiom{univariatePolynomials(lp)} returns \axiom{ups,nups} where 
        ++ \axiom{ups} is a list of the univariate polynomials,
        ++ and \axiom{nups} are the other ones.
     linear? : P -> B
        ++ \axiom{linear?(p)} returns true iff \axiom{p} does not lie 
        ++ in the base ring \axiom{R} and has main degree \axiom{1}.
     linearPolynomials : LP -> Record(goodPols:LP,badPols:LP)
        ++ \axiom{linearPolynomials(lp)} returns \axiom{lps,nlps} where
        ++ \axiom{lps} is a list of the linear polynomials in lp,
        ++ and  \axiom{nlps} are the other ones.
     bivariate? : P -> B
        ++ \axiom{bivariate?(p)} returns true iff \axiom{p} involves two and 
        ++ only two variables.
     bivariatePolynomials : LP -> Record(goodPols:LP,badPols:LP)
        ++ \axiom{bivariatePolynomials(lp)} returns \axiom{bps,nbps} where 
        ++ \axiom{bps} is a list of the bivariate polynomials,
        ++ and \axiom{nbps} are the other ones.
     removeRoughlyRedundantFactorsInPols : (LP, LP) -> LP
        ++ \axiom{removeRoughlyRedundantFactorsInPols(lp,lf)} returns 
        ++ \axiom{newlp}where \axiom{newlp} is obtained from \axiom{lp} 
        ++ by removing in every polynomial \axiom{p} of \axiom{lp} 
        ++ any occurence of a polynomial \axiom{f} in \axiom{lf}.
        ++ This may involve a lot of exact-quotients computations.
     removeRoughlyRedundantFactorsInPols : (LP, LP,B) -> LP
        ++ \axiom{removeRoughlyRedundantFactorsInPols(lp,lf,opt)} returns 
        ++ the same as \axiom{removeRoughlyRedundantFactorsInPols(lp,lf)}
        ++ if \axiom{opt} is \axiom{false} and if the previous operation
        ++ does not return any non null and constant polynomial, 
        ++ else return \axiom{[1]}.
     removeRoughlyRedundantFactorsInPol : (P,LP) -> P
        ++ \axiom{removeRoughlyRedundantFactorsInPol(p,lf)} returns the same as
        ++ removeRoughlyRedundantFactorsInPols([p],lf,true)
     interReduce: LP -> LP
        ++ \axiom{interReduce(lp)} returns \axiom{lq} such that \axiom{lp} 
        ++ and \axiom{lq} generate the same ideal and no polynomial
        ++ in \axiom{lq} is reducuble by the others in the sense 
        ++ of Groebner bases. Since no assumptions are required
        ++ the result may depend on the ordering the reductions are
        ++ performed.
     roughBasicSet: LP -> Union(Record(bas:T,top:LP),"failed")
        ++ \axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu
        ++ ordering) triangular set contained in \axiom{lp}.
     crushedSet: LP -> LP
        ++ \axiom{crushedSet(lp)} returns \axiom{lq} such that \axiom{lp} and
        ++ and \axiom{lq} generate the same ideal and no rough basic
        ++ sets reduce (in the sense of Groebner bases) the other
        ++ polynomials in \axiom{lq}.
     rewriteSetByReducingWithParticularGenerators : (LP,(P->B),((P,P)->B),((P,P)->P)) -> LP
        ++ \axiom{rewriteSetByReducingWithParticularGenerators(lp,pred?,redOp?,redOp)}
        ++ returns \axiom{lq} where \axiom{lq} is computed by the following
        ++ algorithm. Chose a basic set w.r.t. the reduction-test \axiom{redOp?}
        ++ among the polynomials satisfying property \axiom{pred?},
        ++ if it is empty then leave, else reduce the other polynomials by
        ++ this basic set w.r.t. the reduction-operation \axiom{redOp}.
        ++ Repeat while another basic set with smaller rank can be computed.
        ++ See code. If \axiom{pred?} is \axiom{quasiMonic?} the ideal is unchanged.
     rewriteIdealWithQuasiMonicGenerators : (LP,((P,P)->B),((P,P)->P)) -> LP
        ++ \axiom{rewriteIdealWithQuasiMonicGenerators(lp,redOp?,redOp)} returns
        ++ \axiom{lq} where \axiom{lq} and \axiom{lp} generate 
        ++ the same ideal in \axiom{R^(-1) P} and \axiom{lq}
        ++ has rank not higher than the one of \axiom{lp}.
        ++ Moreover, \axiom{lq} is computed by reducing \axiom{lp}
        ++ w.r.t. some basic set of the ideal generated by
        ++ the quasi-monic polynomials in \axiom{lp}.
     if R has GcdDomain
     then 
       squareFreeFactors : P -> LP
          ++ \axiom{squareFreeFactors(p)} returns the square-free factors of \axiom{p}
          ++ over \axiom{R}
       univariatePolynomialsGcds : LP -> LP
          ++ \axiom{univariatePolynomialsGcds(lp)} returns \axiom{lg} where
          ++ \axiom{lg} is a list of the gcds of every pair in \axiom{lp}
          ++ of univariate polynomials in the same main variable.
       univariatePolynomialsGcds : (LP,B) -> LP
          ++ \axiom{univariatePolynomialsGcds(lp,opt)} returns the same as
          ++ \axiom{univariatePolynomialsGcds(lp)} if \axiom{opt} is 
          ++ \axiom{false} and if the previous operation does not return 
          ++ any non null and constant polynomial, else return \axiom{[1]}.
       removeRoughlyRedundantFactorsInContents : (LP, LP) -> LP
          ++ \axiom{removeRoughlyRedundantFactorsInContents(lp,lf)} returns 
          ++ \axiom{newlp}where \axiom{newlp} is obtained from \axiom{lp} 
          ++ by removing in the content of every polynomial of \axiom{lp} 
          ++ any occurence of a polynomial \axiom{f} in \axiom{lf}. Moreover,
          ++ squares over \axiom{R} are first removed in the content 
          ++ of every polynomial of \axiom{lp}.
       removeRedundantFactorsInContents : (LP, LP) -> LP
          ++ \axiom{removeRedundantFactorsInContents(lp,lf)} returns \axiom{newlp}
          ++ where \axiom{newlp} is obtained from \axiom{lp} by removing
          ++ in the content of every polynomial of \axiom{lp} any non trivial 
          ++ factor of any polynomial \axiom{f} in \axiom{lf}. Moreover,
          ++ squares over \axiom{R} are first removed in the content 
          ++ of every polynomial of \axiom{lp}.
       removeRedundantFactorsInPols : (LP, LP) -> LP
          ++ \axiom{removeRedundantFactorsInPols(lp,lf)} returns \axiom{newlp}
          ++ where \axiom{newlp} is obtained from \axiom{lp} by removing
          ++ in every polynomial \axiom{p} of \axiom{lp} any non trivial 
          ++ factor of any polynomial \axiom{f} in \axiom{lf}. Moreover,
          ++ squares over \axiom{R} are first removed in every 
          ++ polynomial \axiom{lp}.
     if (R has EuclideanDomain) and (R has CharacteristicZero)
     then
       irreducibleFactors : LP -> LP
          ++ \axiom{irreducibleFactors(lp)} returns \axiom{lf} such that if
          ++ \axiom{lp = [p1,...,pn]} and \axiom{lf = [f1,...,fm]} then 
          ++ \axiom{p1*p2*...*pn=0} means \axiom{f1*f2*...*fm=0}, and the \axiom{fi}
          ++ are irreducible over \axiom{R} and are pairwise distinct.
       lazyIrreducibleFactors : LP -> LP
          ++ \axiom{lazyIrreducibleFactors(lp)} returns \axiom{lf} such that if
          ++ \axiom{lp = [p1,...,pn]} and \axiom{lf = [f1,...,fm]} then 
          ++ \axiom{p1*p2*...*pn=0} means \axiom{f1*f2*...*fm=0}, and the \axiom{fi}
          ++ are irreducible over \axiom{R} and are pairwise distinct.
          ++ The algorithm tries to avoid factorization into irreducible
          ++ factors as far as possible and makes previously use of gcd
          ++ techniques over \axiom{R}.
       removeIrreducibleRedundantFactors : (LP, LP) -> LP
          ++ \axiom{removeIrreducibleRedundantFactors(lp,lq)} returns the same
          ++ as \axiom{irreducibleFactors(concat(lp,lq))} assuming
          ++ that \axiom{irreducibleFactors(lp)} returns \axiom{lp}
          ++ up to replacing some polynomial \axiom{pj} in \axiom{lp}
          ++ by some polynomial \axiom{qj} associated to \axiom{pj}.
       
  Implementation ==  add

     autoRemainder: T -> List(P)

     removeAssociates (lp:LP):LP ==
       removeDuplicates [primPartElseUnitCanonical(p) for p in lp]

     selectPolynomials  (pred?,ps) ==
       gps : LP := []
       bps : LP := []
       while not empty? ps repeat
         p := first ps
         ps := rest ps  
         if pred?(p)
           then
             gps := cons(p,gps)
           else
             bps := cons(p,bps)
       gps := sort(infRittWu?,gps)
       bps := sort(infRittWu?,bps)
       [gps,bps]

     selectOrPolynomials (lpred?,ps) ==   
       gps : LP := []
       bps : LP := []
       while not empty? ps repeat
         p := first ps
         ps := rest ps
         clpred? :=  lpred?
         while (not empty? clpred?) and (not (first clpred?)(p)) repeat
           clpred? :=  rest clpred?
         if not empty?(clpred?)
           then
             gps := cons(p,gps)
           else
             bps := cons(p,bps)
       gps := sort(infRittWu?,gps)
       bps := sort(infRittWu?,bps)
       [gps,bps]

     selectAndPolynomials (lpred?,ps) ==   
       gps : LP := []
       bps : LP := []
       while not empty? ps repeat
         p := first ps
         ps := rest ps
         clpred? :=  lpred?
         while (not empty? clpred?) and ((first clpred?)(p)) repeat
           clpred? :=  rest clpred?
         if empty?(clpred?)
           then
             gps := cons(p,gps)
           else
             bps := cons(p,bps)
       gps := sort(infRittWu?,gps)
       bps := sort(infRittWu?,bps)
       [gps,bps]

     linear? p ==
       ground? p => false
       one?(mdeg(p))

     linearPolynomials  ps ==
       selectPolynomials(linear?,ps)

     univariate? p ==
       ground? p => false
       not(ground?(init(p))) => false
       tp := tail(p)
       ground?(tp) => true
       not (mvar(p) = mvar(tp)) => false
       univariate?(tp)

     univariatePolynomials ps ==
       selectPolynomials(univariate?,ps)

     bivariate? p ==
       ground? p => false
       ground? tail(p) => univariate?(init(p))
       vp := mvar(p)
       vtp := mvar(tail(p))
       ((ground? init(p)) and (vp = vtp)) => bivariate? tail(p)
       ((ground? init(p)) and (vp > vtp)) => univariate? tail(p)
       not univariate?(init(p)) => false
       vip := mvar(init(p))
       vip > vtp => false
       vip = vtp => univariate? tail(p)
       vtp < vp => false
       zero? degree(tail(p),vip) => univariate? tail(p)
       bivariate? tail(p)

     bivariatePolynomials ps ==
       selectPolynomials(bivariate?,ps)

     quasiMonicPolynomials ps ==
       selectPolynomials(quasiMonic?,ps)

     removeRoughlyRedundantFactorsInPols (lp,lf,opt) ==
       empty? lp => lp
       newlp : LP := []
       stop : B := false
       lp := remove(zero?,lp)
       lf := sort(infRittWu?,lf)
       test : Union(P,"failed")
       while (not empty? lp) and (not stop) repeat
         p := first lp
         lp := rest lp
         copylf := lf
         while (not empty? copylf) and (not ground? p) and (not (mvar(p) < mvar(first copylf))) repeat
           f := first copylf
           copylf := rest copylf
           while (((test := p exquo$P f)) case P) repeat
             p := test::P
         stop := opt and ground?(p)
         newlp := cons(unitCanonical(p),newlp)
       stop => [1$P]
       newlp 

     removeRoughlyRedundantFactorsInPol(p,lf) ==
       zero? p => p
       lp : LP := [p]
       first removeRoughlyRedundantFactorsInPols (lp,lf,true()$B)

     removeRoughlyRedundantFactorsInPols (lp,lf) ==
       removeRoughlyRedundantFactorsInPols (lp,lf,false()$B)

     possiblyNewVariety?(newlp,llp) ==       
       while (not empty? llp) and _
        (not certainlySubVariety?(newlp,first(llp))) repeat
         llp := rest llp
       empty? llp

     certainlySubVariety?(lp,lq) ==
       gs := construct(lp)$GPS
       while (not empty? lq) and _
        (zero? (remainder(first(lq),gs)$GPS).polnum) repeat
         lq := rest lq    
       empty? lq

     probablyZeroDim?(lp: List P) : Boolean ==
       m := #lp
       lv : List V := variables(first lp)
       while not empty? (lp := rest lp) repeat
         lv := concat(variables(first lp),lv)
       n := #(removeDuplicates lv)
       not (n > m)

     interReduce(lp: LP): LP ==
       ps := lp
       rs: List(P) := []
       repeat
         empty? ps => return rs
         ps := sort(supRittWu?, ps)
         p := first ps
         ps := rest ps
         r := remainder(p,[ps]$GPS).polnum
         zero? r => "leave"
         ground? r => return []
         associates?(r,p) => rs := cons(r,rs)
         ps := concat(ps,cons(r,rs))
         rs := []

     roughRed?(p:P,q:P):B == 
       ground? p => false
       ground? q => true
       mvar(p) > mvar(q)

     roughBasicSet(lp) == basicSet(lp,roughRed?)$T

     autoRemainder(ts:T): List(P) ==
       empty? ts => members(ts)
       lp := sort(infRittWu?, reverse members(ts))
       newlp : List(P) := [primPartElseUnitCanonical first(lp)]
       lp := rest(lp)
       while not empty? lp repeat
         p := (remainder(first(lp),construct(newlp)$GPS)$GPS).polnum
         if not zero? p
           then
             if ground? p
               then
                 newlp := [1$P]
                 lp := []
               else
                 newlp := cons(p,newlp)
                 lp := rest(lp)
           else
             lp := rest(lp)
       newlp

     crushedSet(lp) ==
       rec := roughBasicSet(lp)
       contradiction := (rec case "failed")@B
       finished : B := false       
       rs: LP
       while (not finished) and (not contradiction) repeat 
         bs := (rec::RBT).bas        
         rs := (rec::RBT).top
         rs :=  rewriteIdealWithRemainder(rs,bs)$T
         contradiction := ((not empty? rs) and (one? first(rs)))
         if not contradiction
           then
             rs := concat(rs,autoRemainder(bs))
             rec := roughBasicSet(rs)
             contradiction := (rec case "failed")@B
             not contradiction => finished := not infRittWu?((rec::RBT).bas,bs)
       contradiction => [1$P]
       rs

     rewriteSetByReducingWithParticularGenerators (ps,pred?,redOp?,redOp) ==
       rs : LP := remove(zero?,ps)
       any?(ground?,rs) => [1$P]
       contradiction : B := false
       bs1 : T := empty()$T
       rec : Union(RBT,"failed")
       ar : Union(T,List(P))
       stop : B := false
       while (not contradiction) and (not stop) repeat
         rec := basicSet(rs,pred?,redOp?)$T
         bs2 : T := (rec::RBT).bas
         rs := (rec::RBT).top
         -- ar := autoReduce(bs2,lazyPrem,reduced?)@Union(T,List(P))
         ar := bs2::Union(T,List(P))
         if (ar case T)@B
           then
             bs2 := ar::T
             if infRittWu?(bs2,bs1)
               then
                 rs := rewriteSetWithReduction(rs,bs2,redOp,redOp?)$T
                 bs1 := bs2
               else
                 stop := true
             rs := concat(members(bs2),rs)
           else
             rs := concat(ar::LP,rs)
         if any?(ground?,rs)
           then
             contradiction := true
             rs := [1$P]
       rs        

     removeRedundantFactors (lp:LP,lq :LP, remOp : (LP -> LP)) ==
       -- ASSUME remOp(lp) returns lp up to similarity 
       lq := removeRoughlyRedundantFactorsInPols(lq,lp,false)
       lq := remOp lq
       sort(infRittWu?,concat(lp,lq))

     removeRedundantFactors (lp:LP,lq :LP) ==
       lq := removeRoughlyRedundantFactorsInPols(lq,lp,false)
       lq := removeRedundantFactors lq
       sort(infRittWu?,concat(lp,lq))

     if (R has EuclideanDomain) and (R has CharacteristicZero)
     then
       irreducibleFactors lp ==
         newlp : LP := []
         lrrz : List RRZ
         rrz : RRZ
         fp : FP
         while not empty? lp repeat
           p := first lp
           lp := rest lp
           fp := factor(p)$pf
           lrrz := factors(fp)$FP
           lf := remove(ground?,[rrz.factor for rrz in lrrz])
           newlp := concat(lf,newlp)
         removeDuplicates newlp

       lazyIrreducibleFactors lp ==
         lp := removeRedundantFactors(lp)
         newlp : LP := []
         lrrz : List RRZ
         rrz : RRZ
         fp : FP
         while not empty? lp repeat
           p := first lp
           lp := rest lp
           fp := factor(p)$pf
           lrrz := factors(fp)$FP
           lf := remove(ground?,[rrz.factor for rrz in lrrz])
           newlp := concat(lf,newlp)
         newlp

       removeIrreducibleRedundantFactors (lp:LP,lq :LP) ==
         -- ASSUME lp only contains irreducible factors over R
         lq := removeRoughlyRedundantFactorsInPols(lq,lp,false)
         lq := irreducibleFactors lq
         sort(infRittWu?,concat(lp,lq))

     if R has GcdDomain
     then

       squareFreeFactors(p:P) ==
         sfp: Factored P := squareFree(p)$P
         lsf: List P := [foo.factor for foo in factors(sfp)]
         lsf

       univariatePolynomialsGcds (ps,opt) ==
         lg : LP := []
         pInV : LP 
         stop : B := false
         ps := sort(infRittWu?,ps)
         p,g : P
         v : V
         while (not empty? ps) and (not stop) repeat
           while (not empty? ps) and (not univariate?((p := first(ps)))) repeat
             ps := rest ps
           if not empty? ps
             then
               v := mvar(p)$P
               pInV := [p]
               while (not empty? ps) and (mvar((p := first(ps))) = v) repeat
                 if (univariate?(p))
                   then
                     pInV := cons(p,pInV)
                 ps := rest ps
               g := gcd(pInV)$P
               stop := opt and (ground? g)
               lg := cons(g,lg)
         stop => [1$P]
         lg

       univariatePolynomialsGcds ps ==
         univariatePolynomialsGcds (ps,false)
         
       removeSquaresIfCan lp ==
         empty? lp => lp
         removeDuplicates [squareFreePart(p)$P for p in lp]

       rewriteIdealWithQuasiMonicGenerators (ps,redOp?,redOp) ==
         ups := removeSquaresIfCan(univariatePolynomialsGcds(ps,true))
         ps := removeDuplicates concat(ups,ps)
         rewriteSetByReducingWithParticularGenerators(ps,quasiMonic?,redOp?,redOp)

       removeRoughlyRedundantFactorsInContents (ps,lf) ==
         empty? ps => ps
         newps : LP := []
         p,newp,cp,newcp,f,g : P
         test : Union(P,"failed")
         copylf : LP
         while not empty? ps repeat
           p := first ps 
           ps := rest ps
           cp := mainContent(p)$P
           newcp := squareFreePart(cp)$P
           newp := (p exquo$P cp)::P
           if not ground? newcp
             then
               copylf := [f for f in lf | mvar(f) <= mvar(newcp)]
               while (not empty? copylf) and (not ground? newcp) repeat
                 f := first copylf
                 copylf := rest copylf
                 test := (newcp exquo$P f)
                 if (test case P)@B
                   then
                     newcp := test::P
           if ground? newcp
             then
               newp := unitCanonical(newp)
             else
               newp := unitCanonical(newp * newcp)
           newps := cons(newp,newps)
         newps

       removeRedundantFactorsInContents (ps,lf) ==
         empty? ps => ps
         newps : LP := []
         p,newp,cp,newcp,f,g : P
         while not empty? ps repeat
           p := first ps 
           ps := rest ps
           cp := mainContent(p)$P
           newcp := squareFreePart(cp)$P
           newp := (p exquo$P cp)::P
           if not ground? newcp
             then
               copylf := lf
               while (not empty? copylf) and (not ground? newcp) repeat
                 f := first copylf
                 copylf := rest copylf
                 g := gcd(newcp,f)$P
                 if not ground? g
                   then
                     newcp := (newcp exquo$P g)::P
           if ground? newcp
             then
               newp := unitCanonical(newp)
             else
               newp := unitCanonical(newp * newcp)
           newps := cons(newp,newps)
         newps

       removeRedundantFactorsInPols (ps,lf) ==
         empty? ps => ps
         newps : LP := []
         p,newp,cp,newcp,f,g : P
         while not empty? ps repeat
           p := first ps 
           ps := rest ps
           cp := mainContent(p)$P
           newcp := squareFreePart(cp)$P
           newp := (p exquo$P cp)::P
           newp := squareFreePart(newp)$P
           copylf := lf
           while not empty? copylf repeat
             f := first copylf
             copylf := rest copylf
             if not ground? newcp
               then
                 g := gcd(newcp,f)$P
                 if not ground? g
                   then
                     newcp := (newcp exquo$P g)::P
             if not ground? newp
               then
                 g := gcd(newp,f)$P
                 if not ground? g
                   then
                     newp := (newp exquo$P g)::P
           if ground? newcp
             then
               newp := unitCanonical(newp)
             else
               newp := unitCanonical(newp * newcp)
           newps := cons(newp,newps)
         newps

       removeRedundantFactors (a:P,b:P) : LP ==
         a := primPartElseUnitCanonical(squareFreePart(a))
         b := primPartElseUnitCanonical(squareFreePart(b))
         if not infRittWu?(a,b)
           then
            (a,b) := (b,a)
         if ground? a
           then
             if ground? b
               then
                 return([])
               else
                 return([b])
           else
             if ground? b
               then
                 return([a])
               else
                 return(unprotectedRemoveRedundantFactors(a,b))

       unprotectedRemoveRedundantFactors (a,b) ==
         c := b exquo$P a
         if (c case P)@B
           then
             d : P := c::P
             if ground? d
               then
                 return([a])
               else
                 return([a,d])
           else
             g : P := gcd(a,b)$P
             if ground? g
               then
                 return([a,b])
               else
                 return([g,(a exquo$P g)::P,(b exquo$P g)::P])

     else

       removeSquaresIfCan lp ==
         lp

       rewriteIdealWithQuasiMonicGenerators (ps,redOp?,redOp) ==
         rewriteSetByReducingWithParticularGenerators(ps,quasiMonic?,redOp?,redOp)

       removeRedundantFactors (a:P,b:P) ==
         a := primPartElseUnitCanonical(a)
         b := primPartElseUnitCanonical(b)
         if not infRittWu?(a,b)
           then
            (a,b) := (b,a)
         if ground? a
           then
             if ground? b
               then
                 return([])
               else
                 return([b])
           else
             if ground? b
               then
                 return([a])
               else
                 return(unprotectedRemoveRedundantFactors(a,b))
        
       unprotectedRemoveRedundantFactors (a,b) ==
         c := b exquo$P a
         if (c case P)@B
           then
             d : P := c::P
             if ground? d
               then
                 return([a])
               else
                 if infRittWu?(d,a) then (a,d) := (d,a)
                 return(unprotectedRemoveRedundantFactors(a,d))
            else
              return([a,b])

     removeRedundantFactors (lp:LP) ==
       lp := remove(ground?, lp)
       lp := removeDuplicates [primPartElseUnitCanonical(p) for p in lp]
       lp := removeSquaresIfCan lp
       lp := removeDuplicates [unitCanonical(p) for p in lp]
       empty? lp => lp
       #lp = 1$N => lp
       lp := sort(infRittWu?,lp)
       p : P := first lp
       lp := rest lp
       base : LP := unprotectedRemoveRedundantFactors(p,first lp)
       top : LP := rest lp
       while not empty? top repeat
         p := first top
         base := removeRedundantFactors(base,p)
         top := rest top
       base

     removeRedundantFactors (lp:LP,a:P) ==
       lp := remove(ground?, lp)
       lp := sort(infRittWu?, lp)
       ground? a => lp
       empty? lp => [a]
       toSee : LP := lp
       toSave : LP := []
       while not empty? toSee repeat
         b := first toSee
         toSee := rest toSee
         (c,d) :=
           not infRittWu?(b,a) => (a,b)
           (b,a)
         rrf := unprotectedRemoveRedundantFactors(c,d)
         empty? rrf => error"in removeRedundantFactors : (LP,P) -> LP from PSETPK"
         c := first rrf
         rrf := rest rrf
         if empty? rrf
           then
             if associates?(c,b)
               then
                 toSave := concat(toSave,toSee)
                 a := b
                 toSee := []
               else
                 a := c
                 toSee := concat(toSave,toSee)
                 toSave := []
           else
             d := first rrf
             rrf := rest rrf
             if empty? rrf
               then
                 if associates?(c,b)
                   then
                     toSave := concat(toSave,[b])
                     a := d
                   else
                     if associates?(d,b)
                       then
                         toSave := concat(toSave,[b])
                         a := c
                       else
                         toSave := removeRedundantFactors(toSave,c)
                         a := d
               else
                 e := first rrf
                 not empty? rest(rrf) => error"in removeRedundantFactors:(LP,P)->LP from PSETPK"
                 -- ASSUME that neither c, nor d, nor e may be associated to b
                 toSave := removeRedundantFactors(toSave,c)
                 toSave := removeRedundantFactors(toSave,d)
                 a := e
         if empty? toSee
           then
             toSave := sort(infRittWu?,cons(a,toSave))
       toSave   

)abbrev domain WUTSET WuWenTsunTriangularSet
++ Author: Marc Moreno Maza (marc@nag.co.uk)
++ Date Created: 11/18/1995
++ Date Last Updated: 12/15/1998
++ Basic Functions:
++ Related Constructors:
++ Also See: 
++ AMS Classifications:
++ Keywords:
++ Description: A domain constructor of the category \axiomType{GeneralTriangularSet}.
++ The only requirement for a list of polynomials to be a member of such
++ a domain is the following: no polynomial is constant and two distinct
++ polynomials have distinct main variables. Such a triangular set may
++ not be auto-reduced or consistent. The \axiomOpFrom{construct}{WuWenTsunTriangularSet} operation
++ does not check the previous requirement. Triangular sets are stored
++ as sorted lists w.r.t. the main variables of their members.
++ Furthermore, this domain exports operations dealing with the
++ characteristic set method of Wu Wen Tsun and some optimizations
++ mainly proposed by Dong Ming Wang.\newline
++ References :
++  [1] W. T. WU "A Zero Structure Theorem for polynomial equations solving"
++       MM Research Preprints, 1987.
++  [2] D. M. WANG "An implementation of the characteristic set method in Maple"
++       Proc. DISCO'92. Bath, England.
++ Version: 3

WuWenTsunTriangularSet(R,E,V,P) : Exports == Implementation where

  R : IntegralDomain
  E : OrderedAbelianMonoidSup
  V : OrderedSet
  P : RecursivePolynomialCategory(R,E,V)
  N ==> NonNegativeInteger
  Z ==> Integer
  B ==> Boolean
  LP ==> List P
  A ==> FiniteEdge P
  H ==> FiniteSimpleHypergraph P
  GPS ==> GeneralPolynomialSet(R,E,V,P)
  RBT ==> Record(bas:$,top:LP)
  RUL ==> Record(chs:Union($,"failed"),rfs:LP)
  pa ==> PolynomialSetUtilitiesPackage(R,E,V,P)
  NLpT ==> SplittingNode(LP,$)
  ALpT ==> SplittingTree(LP,$)
  O ==> OutputForm
  OP ==> OutputPackage

  Exports ==  TriangularSetCategory(R,E,V,P) with

     medialSet : (LP,((P,P)->B),((P,P)->P)) -> Union($,"failed")
        ++ \axiom{medialSet(ps,redOp?,redOp)} returns \axiom{bs} a basic set
        ++ (in Wu Wen Tsun sense w.r.t the reduction-test \axiom{redOp?})
        ++ of some set generating the same ideal as \axiom{ps} (with 
        ++ rank not higher than  any basic set of \axiom{ps}), if no non-zero 
        ++ constant polynomials appear during the computatioms, else 
        ++ \axiom{"failed"} is returned. In the former case, \axiom{bs} has to be 
        ++ understood as a candidate for being a characteristic set of \axiom{ps}.
        ++ In the original algorithm, \axiom{bs} is simply a basic set of \axiom{ps}.
     medialSet: LP -> Union($,"failed")
        ++ \axiom{medial(ps)} returns the same as 
        ++ \axiom{medialSet(ps,initiallyReduced?,initiallyReduce)}.
     characteristicSet : (LP,((P,P)->B),((P,P)->P)) -> Union($,"failed")
        ++ \axiom{characteristicSet(ps,redOp?,redOp)} returns a non-contradictory
        ++ characteristic set of \axiom{ps} in Wu Wen Tsun sense w.r.t the 
        ++ reduction-test \axiom{redOp?} (using \axiom{redOp} to reduce 
        ++ polynomials w.r.t a \axiom{redOp?} basic set), if no
        ++ non-zero constant polynomial appear during those reductions,
        ++ else \axiom{"failed"} is returned.
        ++ The operations \axiom{redOp} and \axiom{redOp?} must satisfy 
        ++ the following conditions: \axiom{redOp?(redOp(p,q),q)} holds
        ++ for every polynomials \axiom{p,q} and there exists an integer
        ++ \axiom{e} and a polynomial \axiom{f} such that we have
        ++ \axiom{init(q)^e*p = f*q + redOp(p,q)}.
     characteristicSet: LP -> Union($,"failed")
        ++ \axiom{characteristicSet(ps)} returns the same as 
        ++ \axiom{characteristicSet(ps,initiallyReduced?,initiallyReduce)}.
     characteristicSerie  : (LP,((P,P)->B),((P,P)->P)) -> List $
        ++ \axiom{characteristicSerie(ps,redOp?,redOp)} returns a list \axiom{lts}
        ++ of triangular sets such that the zero set of \axiom{ps} is the
        ++ union of the regular zero sets of the members of \axiom{lts}.
        ++ This is made by the Ritt and Wu Wen Tsun process applying
        ++ the operation \axiom{characteristicSet(ps,redOp?,redOp)}
        ++ to compute characteristic sets in Wu Wen Tsun sense.
     characteristicSerie: LP ->  List $
        ++ \axiom{characteristicSerie(ps)} returns the same as 
        ++ \axiom{characteristicSerie(ps,initiallyReduced?,initiallyReduce)}.

  Implementation == GeneralTriangularSet(R,E,V,P) add

     removeSquares: $ -> Union($,"failed")

     Rep == LP

     removeAssociates (lp:LP):LP ==
       removeDuplicates [primPartElseUnitCanonical(p) for p in lp]

     medialSetWithTrace (ps:LP,redOp?:((P,P)->B),redOp:((P,P)->P)):Union(RBT,"failed") == 
       qs := rewriteIdealWithQuasiMonicGenerators(ps,redOp?,redOp)$pa
       contradiction : B := any?(ground?,ps)
       contradiction => "failed"::Union(RBT,"failed")
       rs : LP := qs
       bs : $
       while (not empty? rs) and (not contradiction) repeat
         rec := basicSet(rs,redOp?)
         contradiction := (rec case "failed")@B
         if not contradiction
           then
             bs := (rec::RBT).bas
             rs := (rec::RBT).top
             rs :=  rewriteIdealWithRemainder(rs,bs)
             contradiction := ((not empty? rs) and (one? first(rs)))
             if (not empty? rs) and (not contradiction)
               then
                 rs := rewriteSetWithReduction(rs,bs,redOp,redOp?)
                 contradiction := ((not empty? rs) and (one? first(rs)))
         if (not empty? rs) and (not contradiction)
           then
             rs := removeDuplicates concat(rs,members(bs)) 
             rs := rewriteIdealWithQuasiMonicGenerators(rs,redOp?,redOp)$pa
             contradiction := ((not empty? rs) and (one? first(rs)))
       contradiction => "failed"::Union(RBT,"failed")
       ([bs,qs]$RBT)::Union(RBT,"failed")

     medialSet(ps:LP,redOp?:((P,P)->B),redOp:((P,P)->P)) == 
       foo: Union(RBT,"failed") := medialSetWithTrace(ps,redOp?,redOp)
       (foo case "failed") => "failed" :: Union($,"failed")
       ((foo::RBT).bas) :: Union($,"failed")

     medialSet(ps:LP) == medialSet(ps,initiallyReduced?,initiallyReduce)

     characteristicSetUsingTrace(ps:LP,redOp?:((P,P)->B),redOp:((P,P)->P)):Union($,"failed") ==
       ps := removeAssociates ps
       ps := remove(zero?,ps)
       contradiction : B := any?(ground?,ps)
       contradiction => "failed"::Union($,"failed")
       rs : LP := ps
       qs : LP := ps
       ms : $
       while (not empty? rs) and (not contradiction) repeat
         rec := medialSetWithTrace (qs,redOp?,redOp)
         contradiction := (rec case "failed")@B
         if not contradiction
           then
             ms := (rec::RBT).bas
             qs := (rec::RBT).top
             qs := rewriteIdealWithRemainder(qs,ms)
             contradiction := ((not empty? qs) and (one? first(qs))) 
             if not contradiction
               then
                 rs :=  rewriteSetWithReduction(qs,ms,lazyPrem,reduced?)
                 contradiction := ((not empty? rs) and (one? first(rs)))
             if  (not contradiction) and (not empty? rs)
               then
                 qs := removeDuplicates(concat(rs,concat(members(ms),qs)))
       contradiction => "failed"::Union($,"failed")
       ms::Union($,"failed")

     characteristicSet(ps:LP,redOp?:((P,P)->B),redOp:((P,P)->P)) == 
       characteristicSetUsingTrace(ps,redOp?,redOp)

     characteristicSet(ps:LP) == characteristicSet(ps,initiallyReduced?,initiallyReduce)

     characteristicSerie(ps:LP,redOp?:((P,P)->B),redOp:((P,P)->P)) == 
       a := [[ps,empty()$$]$NLpT]$ALpT
       while ((esl := extractSplittingLeaf(a)) case ALpT) repeat
          ps := value(value(esl::ALpT)$ALpT)$NLpT
          charSet? := characteristicSetUsingTrace(ps,redOp?,redOp)
          if not (charSet? case $)
             then
                setvalue!(esl::ALpT,[nil()$LP,empty()$$,true]$NLpT)
                updateStatus!(a)
             else
                cs := (charSet?)::$
                lics := initials(cs)
                lics := removeRedundantFactors(lics)$pa
                lics := sort(infRittWu?,lics)
                if empty? lics 
                   then
                      setvalue!(esl::ALpT,[ps,cs,true]$NLpT)
                      updateStatus!(a)
                   else
                      ln : List NLpT := [[nil()$LP,cs,true]$NLpT]
                      while not empty? lics repeat
                         newps := cons(first(lics),concat(cs::LP,ps))
                         lics := rest lics
                         newps := removeDuplicates newps
                         newps := sort(infRittWu?,newps)
                         ln := cons([newps,empty()$$,false]$NLpT,ln)
                      splitNodeOf!(esl::ALpT,a,ln)
       remove(empty()$$,conditions(a))

     characteristicSerie(ps:LP) ==  characteristicSerie (ps,initiallyReduced?,initiallyReduce)

     if R has GcdDomain
     then

       removeSquares (ts:$):Union($,"failed") ==
         empty?(ts)$$ => ts::Union($,"failed")
         p := (first ts)::P
         rsts : Union($,"failed")
         rsts := removeSquares((rest ts)::$)
         not(rsts case $) => "failed"::Union($,"failed")
         newts := rsts::$
         empty? newts =>
           p := squareFreePart(p)
           (per([primitivePart(p)]$LP))::Union($,"failed")
         zero? initiallyReduce(init(p),newts) => "failed"::Union($,"failed")
         p := primitivePart(removeZero(p,newts))
         ground? p => "failed"::Union($,"failed")
         not (mvar(newts) < mvar(p)) => "failed"::Union($,"failed")
         p := squareFreePart(p)
         (per(cons(unitCanonical(p),rep(newts))))::Union($,"failed")

       zeroSetSplit lp ==
         lts : List $ := characteristicSerie(lp,initiallyReduced?,initiallyReduce)
         lts := removeDuplicates(lts)$(List $)
         newlts : List $ := []
         while not empty? lts repeat
           ts := first lts
           lts := rest lts
           iic := removeSquares(ts)
           if iic case $
             then
               newlts := cons(iic::$,newlts)
         newlts := removeDuplicates(newlts)$(List $)
         sort(infRittWu?, newlts)

     else

       zeroSetSplit lp ==
         lts : List $ := characteristicSerie(lp,initiallyReduced?,initiallyReduce)
         sort(infRittWu?, removeDuplicates lts)