This file is indexed.

/usr/lib/open-axiom/input/calculus2.input is in open-axiom-test 1.4.1+svn~2626-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
-- Input for page FormalDerivativePage
)clear all

differentiate(f, x)
f := operator f
x := operator x
y := operator y
a := f(x z, y z, z**2) + x y(z+1)
dadz := differentiate(a, z)
eval(eval(dadz, 'x, z +-> exp z), 'y, z +-> log(z+1))
eval(eval(a, 'x, z +-> exp z), 'y, z +-> log(z+1))
differentiate(%, z)

-- Input for page SeriesArithmeticPage
)clear all

x := series x
num := 3 + x
den := 1 + 7 * x
num / den
base := 1 / (1 - x)
expon := x * base
base ** expon

-- Input for page SeriesConversionPage
)clear all

f := sin(a*x)
series(f,x = 0)
g := y / (exp(y) - 1)
series(g)
h := sin(3*x)
series(h,x,x = %pi/12)
series(sqrt(tan(a*x)),x = 0)
series(sec(x) ** 2,x = %pi/2)
bern := t * exp(t*x) / (exp(t) - 1)
series(bern,t = 0)

-- Input for page SeriesDifferentialEquationPage
)clear all

)set streams calculate 7
y := operator 'y
eq := differentiate(y(x), x, 3) - sin(differentiate(y(x), x, 2)) * exp(y(x)) = cos(x)
seriesSolve(eq, y, x = 0, [1, 0, 0])
x := operator 'x
eq1 := differentiate(x(t), t) = 1 + x(t)**2
eq2 := differentiate(y(t), t) = x(t) * y(t)
seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0])

-- Input for page LaplacePage
)clear all

sin(a*t) * cosh(a*t) - cos(a*t) * sinh(a*t)
laplace(%, t, s)
laplace((exp(a*t) - exp(b*t))/t, t, s)
laplace(2/t * (1 - cos(a*t)), t, s)
laplace(exp(-a*t) * sin(b*t) / b**2, t, s)
laplace((cos(a*t) - cos(b*t))/t, t, s)
laplace(exp(a*t+b)*Ei(c*t), t, s)
laplace(a*Ci(b*t) + c*Si(d*t), t, s)
laplace(sin(a*t) - a*t*cos(a*t) + exp(t**2), t, s)

-- Input for page SeriesCoefficientPage
)clear all

x := series(x)
y := exp(x) * sin(x)
coefficient(y,6)
coefficient(y,15)
y

-- Input for page SymbolicIntegrationPage
)clear all

f := (x**2+2*x+1) / (x**6+6*x**5+15*x**4+20*x**3+15*x**2+6*x+2)
integrate(f, x)
g := log(1 + sqrt(a * x + b)) / x
integrate(g, x)
integrate(1/(x**2 - 2),x)
integrate(1/(x**2 + 2),x)
h := x**2 / (x**4 - a**2)
integrate(h, x)
complexIntegrate(h, x)
expandLog %
rootSimp %
ratForm %

-- Input for page DerivativePage
)clear all

f := exp exp x
differentiate(f, x)
differentiate(f, x, 4)
g := sin(x**2 + y)
differentiate(g, y)
differentiate(g, [y, y, x, x])

-- Input for page SeriesFormulaPage
)clear all

taylor(n +-> 1/factorial(n),x = 0)
taylor(n +-> (-1)**(n-1)/n,x = 1,1..)
taylor(n +-> (-1)**(n-1)/n,x = 1,1..7)
laurent(n +-> (-1)**(n-1)/(n + 2),x = 1,-1..)
puiseux(i +-> (-1)**((i-1)/2)/factorial(i),x = 0,1..,2)
puiseux(j +-> j**2,x = 8,-4/3..,1/2)
series(n +-> 1/factorial(n),x = 0)
series(n +-> (-1)**(n - 1)/(n + 2),x = 1,-1..)
series(i +-> (-1)**((i - 1)/2)/factorial(i),x = 0,1..,2)

-- Input for page SeriesCreationPage
)clear all

x := series x
1/(1 - x - x**2)
sin(x)
sin(1 + x)
sin(a * x)
series(1/log(y),y = 1)
f : UTS(FLOAT,z,0) := exp(z)
series(1/factorial(n),n,w = 0)

-- Input for page SeriesFunctionPage
)clear all

x := series x
rat := x**2 / (1 - 6*x + x**2)
sin(rat)
y : UTS(FRAC INT,y,0) := y
exp(y)
tan(y**2)
cos(y + y**5)
log(1 + sin(y))
z : UTS(EXPR INT,z,0) := z
exp(2 + tan(z))
w := taylor w
exp(2 + tan(w))

-- Input for page LimitPage
)clear all

f := sin(a*x) / tan(b*x)
limit(f,x=0)
g := csc(a*x) / csch(b*x)
limit(g,x=0)
h := (1 + k/x)**x
limit(h,x=%plusInfinity)

-- Input for page SeriesBernoulliPage
)clear all

reduce(+,[m**4 for m in 1..10])
sum4 := sum(m**4, m = 1..k)
eval(sum4, k = 10)
f := t*exp(x*t) / (exp(t) - 1)
)set streams calculate 5
ff := taylor(f,t = 0)
factorial(6) * coefficient(ff,6)
g := eval(f, x = x + 1) - f
normalize(g)
taylor(g,t = 0)
B5 := factorial(5) * coefficient(ff,5)
1/5 * (eval(B5, x = k + 1) - eval(B5, x = 1))
sum4