/usr/lib/open-axiom/input/easter.input is in open-axiom-test 1.4.1+svn~2626-2ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | --Copyright The Numerical Algorithms Group Limited 1994.
)cl all
-- ----------[ A x i o m ]----------
-- ---------- Initialization ----------
)set bre resume
)set messages autoload off
)set messages time off
)set quit unprotected
)set streams calculate 7
-- ---------- Numbers ----------
-- Let's begin by playing with numbers: infinite precision integers
factorial(50)
factor(%)
-- Infinite precision rational numbers
1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10
-- Arbitrary precision floating point numbers
digits(50)
-- This number is nearly an integer
exp(sqrt(163.)*%pi)
digits(20)
-- Special functions
besselJ(2, 1 + %i)
-- Complete decimal expansion of a rational number
decimal(1/7)
-- Continued fractions
continuedFraction(3.1415926535)
-- Simplify an expression with nested square roots
sqrt(2*sqrt(3) + 4)
simplify(%)
-- Try a more complicated example (from the Putnam exam)
sqrt(14 + 3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2)))))
simplify(%)
-- Cardinal numbers
2*Aleph(0) - 3
-- ---------- Statistics ----------
-- ---------- Algebra ----------
-- Numbers are nice, but symbols allow for variability---try some high school
-- algebra: rational simplification
(x**2 - 4)/(x**2 + 4*x + 4)
-- This example requires more sophistication
(%e**x - 1)/(%e**(x/2) + 1)
normalize(%)
-- Expand and factor polynomials
(x + 1)**20
D(%, x)
factor(%)
x**100 - 1
factor(%)
-- Factor polynomials over finite fields and field extensions
p:= x**4 - 3*x**2 + 1
factor(p)
phi:= rootOf(phi**2 - phi - 1)
factor(p, [phi])
factor(p :: Polynomial(PrimeField(5)))
expand(%)
-- Partial fraction decomposition
(x**2 + 2*x + 3)/(x**3 + 4*x**2 + 5*x + 2)
padicFraction(
partialFraction(numerator(%) :: UnivariatePolynomial(x, Fraction Integer),
factor(denominator(%) :: Polynomial Integer) ::
Factored UnivariatePolynomial(x, Fraction Integer)))
-- ---------- Inequalities ----------
-- ---------- Trigonometry ----------
-- Trigonometric manipulations---these are typically difficult for students
r:= cos(3*x)/cos(x)
real(complexNormalize(%))
real(normalize(simplify(complexNormalize(r))))
-- Use rewrite rules
sincosAngles:= rule _
(cos((n | integer?(n)) * x) == _
cos((n - 1)*x) * cos(x) - sin((n - 1)*x) * sin(x); _
sin((n | integer?(n)) * x) == _
sin((n - 1)*x) * cos(x) + cos((n - 1)*x) * sin(x) )
sincosAngles r
r:= 'r
-- ---------- Determining Zero Equivalence ----------
-- The following expressions are all equal to zero
sqrt(997) - (997**3)**(1/6)
sqrt(999983) - (999983**3)**(1/6)
(2**(1/3) + 4**(1/3))**3 - 6*(2**(1/3) + 4**(1/3)) - 6
simplify(%)
-- This expression is zero for x, y > 0 and n not equal to zero
x**(1/n)*y**(1/n) - (x*y)**(1/n)
normalize(%)
-- See Joel Moses, ``Algebraic Simplification: A Guide for the Perplexed'',
-- CACM, Volume 14, Number 8, August 1971
expr:= log(tan(1/2*x + %pi/4)) - asinh(tan(x))
complexNormalize(%)
-- Use a roundabout method---show that expr is a constant equal to zero
D(expr, x)
simplify(real(complexNormalize(expand(simplify(%)))))
normalize(eval(expr, x = 0))
log((2*sqrt(r) + 1)/sqrt(4*r + 4*sqrt(r) + 1))
simplify(%)
(4*r + 4*sqrt(r) + 1)**(sqrt(r)/(2*sqrt(r) + 1)) _
* (2*sqrt(r) + 1)**(1/(2*sqrt(r) + 1)) - 2*sqrt(r) - 1
normalize(%)
-- ---------- The Complex Domain ----------
-- Complex functions---separate into their real and imaginary parts
rectform(z) == real(z) + %i*imag(z)
rectform(log(3 + 4*%i))
simplify(rectform(tan(x + %i*y)))
-- Check for branch abuse. See David R. Stoutemyer, ``Crimes and Misdemeanors
-- in the Computer Algebra Trade'', Notices of the AMS, Volume 38, Number 7,
-- September 1991. This first expression can simplify to sqrt(x y)/sqrt(x),
-- but no further in general (consider what happens when x, y = -1).
sqrt(x*y*abs(z)**2) / (sqrt(x)*abs(z))
-- If z = -1, sqrt(1/z) is not equal to 1/sqrt(z)
sqrt(1/z) - 1/sqrt(z)
-- If z = 3 pi i, log(exp(z)) is not equal to z
log(%e**z)
normalize(%)
-- The principal value of this expression is (10 - 4 pi) i
log(%e**(10*%i))
normalize(%)
-- If z = pi, arctan(tan(z)) is not equal to z
atan(tan(z))
-- If z = 2 pi i, sqrt(exp(z)) is not equal to exp(z/2)
sqrt(%e**z) - %e**(z/2)
-- ---------- Equations ----------
-- Manipulate an equation using a natural syntax
(x = 0)/2 + 1
-- Solve various nonlinear equations---this cubic polynomial has all real roots
radicalSolve(3*x**3 - 18*x**2 + 33*x - 19 = 0, x)
map(e +-> lhs(e) = rectform(rhs(e)), %)
-- Some simple seeming problems can have messy answers
eqn:= x**4 + x**3 + x**2 + x + 1 = 0
radicalSolve(eqn, x)
-- Check one of the answers
eval(eqn, %.1)
%e**(2*x) + 2*%e**x + 1 = z
solve(%, x)
-- This equation is already factored and so *should* be easy to solve
(x + 1) * (sin(x)**2 + 1)**2 * cos(3*x)**3 = 0
solve(%, x)
-- The following equations have an infinite number of solutions (let n be an
-- arbitrary integer): z = 0 [+ n 2 pi i]
solve(%e**z = 1, z)
-- x = pi/4 [+ n pi]
solve(sin(x) = cos(x), x)
solve(tan(x) = 1, x)
-- x = 0, 0 [+ n pi, + n 2 pi]
solve(sin(x) = tan(x), x)
-- This equation has no solutions
solve(sqrt(x**2 + 1) = x - 2, x)
-- Solve a system of linear equations
eq1:= x + y + z = 6
eq2:= 2*x + y + 2*z = 10
eq3:= x + 3*y + z = 10
-- Note that the solution is parametric
solve([eq1, eq2, eq3], [x, y, z])
-- Solve a system of nonlinear equations
eq1:= x**2*y + 3*y*z - 4 = 0
eq2:= -3*x**2*z + 2*y**2 + 1 = 0
eq3:= 2*y*z**2 - z**2 - 1 = 0
-- Solving this by hand would be a nightmare
solve([eq1, eq2, eq3], [x, y, z])
-- ---------- Matrix Algebra ----------
m:= matrix([[a, b], [1, a*b]])
-- Invert the matrix
minv:= inverse(m)
m * minv
-- Define a Vandermonde matrix (useful for doing polynomial interpolations)
matrix([[1, 1, 1, 1 ], _
[w, x, y, z ], _
[w**2, x**2, y**2, z**2], _
[w**3, x**3, y**3, z**3]])
determinant(%)
-- The following formula implies a general result
factor(%)
-- Compute the eigenvalues of a matrix from its characteristic polynomial
m:= matrix([[ 5, -3, -7], _
[-2, 1, 2], _
[ 2, -3, -4]])
characteristicPolynomial(m, lambda)
solve(% = 0, lambda)
m:= 'm
-- ---------- Tensors ----------
-- ---------- Sums and Products ----------
-- Sums: finite and infinite
summation(k**3, k = 1..n)
sum(k**3, k = 1..n)
limit(sum(1/k**2 + 1/k**3, k = 1..n), n = %plusInfinity)
-- Products
product(k, k = 1..n)
-- ---------- Calculus ----------
-- Limits---start with a famous example
limit((1 + 1/n)**n, n = %plusInfinity)
limit((1 - cos(x))/x**2, x = 0)
-- Apply the chain rule---this is important for PDEs and many other
-- applications
y:= operator('y)
x:= operator('x)
D(y(x(t)), t, 2)
)clear properties x y
-- ---------- Indefinite Integrals ----------
1/(x**3 + 2)
-- This would be very difficult to do by hand
integrate(%, x)
D(%, x)
-- This example involves several symbolic parameters
integrate(1/(a + b*cos(x)), x)
map(simplify, map(f +-> D(f, x), %))
-- Calculus on a non-smooth (but well defined) function
D(abs(x), x)
integrate(abs(x), x)
-- Calculus on a piecewise defined function
a(x) == if x < 0 then -x else x
D(a(x), x)
integrate(a(x), x)
)clear properties a
-- The following two integrals should be equivalent. The correct solution is
-- [(1 + x)^(3/2) + (1 - x)^(3/2)] / 3
integrate(x/(sqrt(1 + x) + sqrt(1 - x)), x)
integrate((sqrt(1 + x) - sqrt(1 - x))/2, x)
-- ---------- Definite Integrals ----------
-- The following two functions have a pole at zero
integrate(1/x, x = -1..1)
integrate(1/x**2, x = -1..1)
-- Different branches of the square root need to be chosen in the intervals
-- [0, 1] and [1, 2]. The correct results are 4/3, [4 - sqrt(8)]/3,
-- [8 - sqrt(8)]/3, respectively.
integrate(sqrt(x + 1/x - 2), x = 0..1)
integrate(sqrt(x + 1/x - 2), x = 0..1, "noPole")
integrate(sqrt(x + 1/x - 2), x = 1..2)
integrate(sqrt(x + 1/x - 2), x = 1..2, "noPole")
integrate(sqrt(x + 1/x - 2), x = 0..2)
integrate(sqrt(x + 1/x - 2), x = 0..2, "noPole")
-- Contour integrals
integrate(cos(x)/(x**2 + a**2), x = %minusInfinity..%plusInfinity)
integrate(cos(x)/(x**2 + a**2), x = %minusInfinity..%plusInfinity, "noPole")
-- Integrand with a branch point
integrate(t**(a - 1)/(1 + t), t = 0..%plusInfinity)
integrate(t**(a - 1)/(1 + t), t = 0..%plusInfinity, "noPole")
-- Multiple integrals: volume of a tetrahedron
integrate(integrate(integrate(1, z = 0..c*(1 - x/a - y/b)), _
y = 0..b*(1 - x/a)), _
x = 0..a)
-- ---------- Series ----------
-- Taylor series---this first example comes from special relativity
1/sqrt(1 - (v/c)**2)
series(%, v = 0)
1/%**2
tsin:= series(sin(x), x = 0)
tcos:= series(cos(x), x = 0)
-- Note that additional terms will be computed as needed
tsin/tcos
series(tan(x), x = 0)
-- Look at the Taylor series around x = 1
)set streams calculate 1
log(x)**a*exp(-b*x)
series(%, x = 1)
)set streams calculate 7
-- Compare the Taylor series of two different formulations of a function
taylor(log(sinh(z)) + log(cosh(z + w)), z = 0)
% - taylor(log(sinh(z) * cosh(z + w)), z = 0)
-- Power series (compute the general formula)
log(sin(x)/x)
series(%, x = 0)
exp(-x)*sin(x)
series(%, x = 0)
-- Derive an explicit Taylor series solution of y as a function of x from the
-- following implicit relation
y:= operator('y)
x = sin(y(x)) + cos(y(x))
seriesSolve(%, y, x = 1, 0)
)clear properties y
-- Pade (rational function) approximation
pade(1, 1, taylor(exp(-x), x = 0))
-- ---------- Transforms ----------
-- Laplace and inverse Laplace transforms
laplace(cos((w - 1)*t), t, s)
inverseLaplace(%, s, t)
-- ---------- Difference and Differential Equations ----------
-- Second order linear recurrence equation
r:= operator('r)
r(n + 2) - 2 * r(n + 1) + r(n) = 2
[%, r(0) = 1, r(1) = m]
)clear properties r
-- Second order ODE with initial conditions---solve first using Laplace
-- transforms
f:= operator('f)
ode:= D(f(t), t, 2) + 4*f(t) = sin(2*t)
map(e +-> laplace(e, t, s), %)
-- Now, solve the ODE directly
solve(ode, f, t = 0, [0, 0])
-- First order linear ODE
y:= operator('y)
x**2 * D(y(x), x) + 3*x*y(x) = sin(x)/x
solve(%, y, x)
-- Nonlinear ODE
D(y(x), x, 2) + y(x)*D(y(x), x)**3 = 0
solve(%, y, x)
-- A simple parametric ODE
D(y(x, a), x) = a*y(x, a)
solve(%, y, x)
-- ODE with boundary conditions. This problem has nontrivial solutions
-- y(x) = A sin([pi/2 + n pi] x) for n an arbitrary integer.
solve(D(y(x), x, 2) + k**2*y(x) = 0, y, x)
-- bc(%, x = 0, y = 0, x = 1, D(y(x), x) = 0)
-- System of two linear, constant coefficient ODEs
x:= operator('x)
system:= [D(x(t), t) = x(t) - y(t), D(y(t), t) = x(t) + y(t)]
-- Check the answer
-- Triangular system of two ODEs
system:= [D(x(t), t) = x(t) * (1 + cos(t)/(2 + sin(t))), _
D(y(t), t) = x(t) - y(t)]
-- Try solving this system one equation at a time
solve(system.1, x, t)
isTimes(subst(%.basis.1, cos(t) = sqrt(1 - sin(t)**2)))
reduce(*, cons(subst(
factors(factor(subst(%.1**2, sin(t) = u) :: Polynomial Integer)).1.factor,
u = sin(t)),
rest(%)))
x(t) = C1 * %
solve(map(e +-> subst(e, %), system.2), y, t)
y(t) = simplify(%.particular) + C2 * %.basis.1
)clear properties x y
-- ---------- Operators ----------
-- Linear differential operator
DD:= operator("D") :: Operator(Expression Integer)
evaluate(DD, e +-> D(e, x))$Operator(Expression Integer)
L:= (DD - 1) * (DD + 2)
g:= operator('g)
L(f(x))
subst(L(subst(g(y), y = x)), x = y)
subst(L(subst(A * sin(z**2), z = x)), x = z)
-- Truncated Taylor series operator
T:= (f, xx, a) +-> subst((DD**0)(f(x)), x = a)/factorial(0) * (xx - a)**0 + _
subst((DD**1)(f(x)), x = a)/factorial(1) * (xx - a)**1 + _
subst((DD**2)(f(x)), x = a)/factorial(2) * (xx - a)**2
T(f, x, a)
T(g, y, b)
Sin:= operator("sin") :: Operator(Expression Integer)
evaluate(Sin, x +-> sin(x))$Operator(Expression Integer)
T(Sin, z, c)
-- ---------- Programming ----------
-- Write a simple program to compute Legendre polynomials
p(n, x) == 1/(2**n*factorial(n)) * D((x**2 - 1)**n, x, n)
for i in 0..4 repeat { output(""); output(concat(["p(", string(i), ", x) = "])); output(p(i, x))}
eval(p(4, x), x = 1)
-- Now, perform the same computation using a recursive definition
pp(0, x) == 1
pp(1, x) == x
pp(n, x) == ((2*n - 1)*x*pp(n - 1, x) - (n - 1)*pp(n - 2, x))/n
for i in 0..4 repeat { output(""); output(concat(["pp(", string(i), ", x) = "])); output(pp(i, x))}
)clear properties p pp
-- ---------- Translation ----------
-- Horner's rule---this is important for numerical algorithms
a:= operator('a)
sum(a(i)*x**i, i = 1..5)
p:= factor(%)
-- Convert the result into FORTRAN syntax
)set fortran ints2floats off
outputAsFortran('p = p)
-- ---------- Boolean Logic ----------
-- Simplify logical expressions
true and false
x or (not x)
x or y or (x and y)
)set bre nobr
|