This file is indexed.

/usr/lib/open-axiom/input/numbers.input is in open-axiom-test 1.4.1+svn~2626-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
-- Input for page IntegerPage
)clear all

x := factorial(200)
y := 2**90 - 1
x + y
x - y
x * y
factor(x)
factor(y)

-- Input for page FloatIntroductionPage
)clear all

sqrt(2.0)
numeric %pi
exp(1.0)
exp(sqrt(163.0) * %pi)
sin(%pi/6.)

-- Input for page FractionPage
)clear all

1/4 - 1/5
f := (x**2 + 1)/(x - 1)
g := (x**2 - 3*x + 2)/(x + 2)
f * g

-- Input for page FloatPrecisionAnswerPage
)clear all

numeric(%pi, 500)
digits 500
numeric %pi

-- Input for page FiniteFieldPage
)clear all

F7 := PF 7
F49 := FF(7,2)
definingPolynomial()$F49
e := random()$F49
norm e
trace e
order e
allElts := [index(i)$F49 for i in 1..48]
reduce(+,allElts)
[order e for e in allElts]
u:UP(x, F7) := x**2 + 1
factor u
u2:UP(x, F49) := u
factor u2

-- Input for page IntegerProblemAnswerPage1
)clear all

f: NNI -> INT
f(n) == 2**n - 1
factor f(7)
ints := [n for n in 1..]
primes := [x for x in ints | prime? x]
primes.25
numbers := [f(n) for n in primes]
factors := [factor n for n in numbers]
nums := [x for x in numbers | not prime? x]

-- Input for page IntegerProblemAnswerPage2
)clear all

numbers := [n**2 - n + 41 for n in 0..40]
[factor n for n in numbers]

-- Input for page RomanNumeralPage
)clear all

f := operator 'f
differentiate(f x,x,7)
a := roman(1978 - 1965)
x : UTS(ROMAN,'x,0) := x
recip(1 - x - x**2)
m : MATRIX FRAC ROMAN
m := matrix [[1/(i + j) for i in 1..3] for j in 1..3]
inverse m
y := factorial 20
roman y

-- Input for page IntegerExamplePage
)clear all

f: NNI -> INT
f(n) == 2**(2**n) + 1
factor f(1)
factor f(2)
for n in 1..6 repeat output factor f(n)

-- Input for page FloatPrecisionPage
)clear all

exp(%pi * sqrt(163.0))
digits 40
x := exp(%pi * sqrt(163.0))
numeric(1/3, 5)
numeric(1/3, 60)
numeric(1/3)

-- Input for page RationalNumberPage
)clear all

61657 ** 10 / 999983 ** 12
x := 104348/33215
numeric x
numer(x)
denom(x)
factor(numer x) / factor(denom x)

-- Input for page RepeatingDecimalPage
)clear all

x := 2/7 :: DECIMAL
y := 13/17 :: DECIMAL
x - y
x + y
x * y