/usr/lib/open-axiom/input/numbers.input is in open-axiom-test 1.4.1+svn~2626-2ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | -- Input for page IntegerPage
)clear all
x := factorial(200)
y := 2**90 - 1
x + y
x - y
x * y
factor(x)
factor(y)
-- Input for page FloatIntroductionPage
)clear all
sqrt(2.0)
numeric %pi
exp(1.0)
exp(sqrt(163.0) * %pi)
sin(%pi/6.)
-- Input for page FractionPage
)clear all
1/4 - 1/5
f := (x**2 + 1)/(x - 1)
g := (x**2 - 3*x + 2)/(x + 2)
f * g
-- Input for page FloatPrecisionAnswerPage
)clear all
numeric(%pi, 500)
digits 500
numeric %pi
-- Input for page FiniteFieldPage
)clear all
F7 := PF 7
F49 := FF(7,2)
definingPolynomial()$F49
e := random()$F49
norm e
trace e
order e
allElts := [index(i)$F49 for i in 1..48]
reduce(+,allElts)
[order e for e in allElts]
u:UP(x, F7) := x**2 + 1
factor u
u2:UP(x, F49) := u
factor u2
-- Input for page IntegerProblemAnswerPage1
)clear all
f: NNI -> INT
f(n) == 2**n - 1
factor f(7)
ints := [n for n in 1..]
primes := [x for x in ints | prime? x]
primes.25
numbers := [f(n) for n in primes]
factors := [factor n for n in numbers]
nums := [x for x in numbers | not prime? x]
-- Input for page IntegerProblemAnswerPage2
)clear all
numbers := [n**2 - n + 41 for n in 0..40]
[factor n for n in numbers]
-- Input for page RomanNumeralPage
)clear all
f := operator 'f
differentiate(f x,x,7)
a := roman(1978 - 1965)
x : UTS(ROMAN,'x,0) := x
recip(1 - x - x**2)
m : MATRIX FRAC ROMAN
m := matrix [[1/(i + j) for i in 1..3] for j in 1..3]
inverse m
y := factorial 20
roman y
-- Input for page IntegerExamplePage
)clear all
f: NNI -> INT
f(n) == 2**(2**n) + 1
factor f(1)
factor f(2)
for n in 1..6 repeat output factor f(n)
-- Input for page FloatPrecisionPage
)clear all
exp(%pi * sqrt(163.0))
digits 40
x := exp(%pi * sqrt(163.0))
numeric(1/3, 5)
numeric(1/3, 60)
numeric(1/3)
-- Input for page RationalNumberPage
)clear all
61657 ** 10 / 999983 ** 12
x := 104348/33215
numeric x
numer(x)
denom(x)
factor(numer x) / factor(denom x)
-- Input for page RepeatingDecimalPage
)clear all
x := 2/7 :: DECIMAL
y := 13/17 :: DECIMAL
x - y
x + y
x * y
|