/usr/lib/open-axiom/input/r21bugs.input is in open-axiom-test 1.4.1+svn~2626-2ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | --Copyright The Numerical Algorithms Group Limited 1996.
-- This file tests bugs fixed since release 2.1.
-- Mike Dewar 19-11-96
)clear completely
-- This bug, spotted by Claude Quitte, meant that we generated incorrect
-- expressions for Chebyshev polynomials of the second kind, so that they
-- did not satisfy the recurrence relation:
-- U_n(x) - x U_{n-1}(x) = T_n(x)
)set expose add constructor PolynomialNumberTheoryFunctions
X : UP('x, Integer) := x
[chebyshevU(n) - X*chebyshevU(n-1) - chebyshevT(n) for n in 1 .. ]
)clear completely
Fp:=PF 2
poly:=createIrreduciblePoly(4)$FFPOLY(Fp)
Fq:=FFP(Fp, poly) -- Field with 16 elements
R:=DMP([X,Y,Z],Fq)
Q:=FRAC R
F:=X**4+X*Z**3
G:=X**4+X**2*Y**2+Z**4
h:Q:=F/G
)clear completely
squareFree ((c^15*e^8+c^23*d^4)::POLY PF 2)
)clear completely
FiniteFieldExtensionByPolynomial(FF(3,3),1+2*x**2+x**3)
)clear completely
Field has Ring
)clear completely
-- from bmt
y:=operator y
u:=operator u
eval(y x, y, c[1]*x,x)
eval(y x, y, D(u t,t),t)
eval(y x ,y, integral(u t,t),t)
eval(y x ,y, integral(u z,z=z0..t),t)
eval(y x+D(y x,x), y, u t+ D(u t,t),t)
eval(D(y x,x)+y(x),y,D(u x,x)+u(x),x)
)clear completely
-- from bmt
ps:=x::TS FRAC INT
D(ps,x) -- fails to find function
D(ps,[x]) -- works
D(ps,[y]) -- causes ccl to disappear (at least under windows)
)clear completely
-- from bmt
T1:=3
a | a^2+1
--gets an error while trying to display the type of the expression
--since it uses fortran code generation stuff which wants to use
-- the variable name T1 for some other purpose
)clear completely
-- from bmt
u1 := operator 'u1
u2 := operator 'u2
eq1 := D(u1(t),t,2) + 5*u1(t) = 2*u2(t)
eq2 := D(u2(t),t,2) + 2*u2(t) = 2*u1(t)
eq1/2
_rule(rhs %, lhs %)
%(lhs eq2)
eval(%,t=0)
)clear completely
-- from bmt
bug := [exp(sqrt(-5))]
complexForm(bug.1) -- works
map(complexForm,bug::List EXPR COMPLEX INT) -- works
map(complexForm,bug) -- fails
)clear completely
-- from bmt
f x == c[1]*exp(x)
f x -- works
g(x:EXPR(INT)):EXPR(INT) == c[1]*exp(x)
g x -- fails
g(x:EXPR(INT)):EXPR(INT) == (c[1]::EXPR INT)*exp(x)
g x -- fails
)clear completely
-- from bmt
a | a**8+a**4+a**3+a**2+(1::PF 2)
tt:Matrix SAEa:=[_
[0,0,0,1,1,1,0,1],_
[1,0,0,0,0,0,0,0],_
[0,1,0,0,0,0,0,0],_
[0,0,1,0,0,0,0,0],_
[0,0,0,1,0,0,0,0],_
[0,0,0,0,1,0,0,0],_
[0,0,0,0,0,1,0,0],_
[0,0,0,0,0,0,1,0]];
T:=transpose tt
T0:=T**91
T1:=T**95
)clear completely
-- from bmt
u1:=operator 'u1
u2:=operator 'u2
eq1 := D(u1(t),t,2) + 5*u1(t) = 2*u2(t)
eq2 := D(u2(t),t,2) + 2*u2(t) = 2*u1(t)
eq1/2
_rule(rhs %, lhs %)
%(lhs eq2)=%(rhs eq2)
rightZero %
-2*%
eval(lhs %,u1,exp(r*t),t)
%/exp(r*t)
solve(%,r)
[eval(exp(r*t),eq) for eq in %]
map(complexForm, %::List EXPR COMPLEX INT)
[real %(1), imag %(1), real %(3), imag %(3)]
gform:= u1(t)=reduce(+, [c[i]*%.i for i in 1..#%])
_rule(lhs %, rhs %)
%(lhs eq1)=rhs eq1
%/2
--part c
inits := [u1(0)=1, eval(D(u1 t,t),t=0)=0, u2(0)=2, eval(D(u2 t,t),t=0)=0]
eqq := eq1-5*u1(t)
eval(eqq,t=0)
eval(%,inits)
inits:=cons(%,inits)
D(eqq,t)
eval(%,t=0)
)clear completely
-- from bmt
u:=operator 'u
exp:=D(u t,t)
k:=kernels(exp).1
l:=argument %
difop:=operator k
l2:=[l.1+l.2,l.2,l.3]
bug:=evaluate(difop,l2)
kernels(bug).1
argument %
eval(bug,t=0)
)clear completely
R := Polynomial(PrimeField(3)) ;
A := UP('X, R)
X : A := monomial(1, 1) ;
f : A := a*X^3 + b*X^2 + c*X + d
discriminant(f)
s := differentiate f
resultant(f,s)
exquo(%,leadingCoefficient(f))
|