This file is indexed.

/usr/share/openscenegraph/examples/osgparticle/osgparticle.cpp is in openscenegraph-examples 3.2.0~rc1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
/* OpenSceneGraph example, osgparticle.
*
*  Permission is hereby granted, free of charge, to any person obtaining a copy
*  of this software and associated documentation files (the "Software"), to deal
*  in the Software without restriction, including without limitation the rights
*  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
*  copies of the Software, and to permit persons to whom the Software is
*  furnished to do so, subject to the following conditions:
*
*  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
*  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
*  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
*  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
*  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
*  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
*  THE SOFTWARE.
*/

#include <osgViewer/Viewer>
#include <osgViewer/ViewerEventHandlers>

#include <osg/Group>
#include <osg/Geode>

#include <osgParticle/Particle>
#include <osgParticle/ParticleSystem>
#include <osgParticle/ParticleSystemUpdater>
#include <osgParticle/ModularEmitter>
#include <osgParticle/ModularProgram>
#include <osgParticle/RandomRateCounter>
#include <osgParticle/SectorPlacer>
#include <osgParticle/RadialShooter>
#include <osgParticle/AccelOperator>
#include <osgParticle/FluidFrictionOperator>



//////////////////////////////////////////////////////////////////////////////
// CUSTOM OPERATOR CLASS
//////////////////////////////////////////////////////////////////////////////

// This class demonstrates Operator subclassing. This way you can create
// custom operators to apply your motion effects to the particles. See docs
// for more details.
class VortexOperator: public osgParticle::Operator {
public:
    VortexOperator() 
        : osgParticle::Operator(), center_(0, 0, 0), axis_(0, 0, 1), intensity_(0.1f) {}

    VortexOperator(const VortexOperator &copy, const osg::CopyOp &copyop = osg::CopyOp::SHALLOW_COPY)
        : osgParticle::Operator(copy, copyop), center_(copy.center_), axis_(copy.axis_), intensity_(copy.intensity_) {}

    META_Object(osgParticle, VortexOperator);

    void setCenter(const osg::Vec3 &c)
    {
        center_ = c;
    }

    void setAxis(const osg::Vec3 &a)
    {
        axis_ = a / a.length();
    }

    // this method is called by ModularProgram before applying
    // operators on the particle set via the operate() method.    
    void beginOperate(osgParticle::Program *prg)
    {
        // we have to check whether the reference frame is RELATIVE_RF to parents
        // or it's absolute; in the first case, we must transform the vectors
        // from local to world space.
        if (prg->getReferenceFrame() == osgParticle::Program::RELATIVE_RF) {
            // transform the center point (full transformation)
            xf_center_ = prg->transformLocalToWorld(center_);
            // transform the axis vector (only rotation and scale)
            xf_axis_ = prg->rotateLocalToWorld(axis_);
        } else {
            xf_center_ = center_;
            xf_axis_ = axis_;
        }
    }

    // apply a vortex-like acceleration. This code is not optimized,
    // it's here only for demonstration purposes.
    void operate(osgParticle::Particle *P, double dt)
    {
        float l = xf_axis_ * (P->getPosition() - xf_center_);
        osg::Vec3 lc = xf_center_ + xf_axis_ * l;
        osg::Vec3 R = P->getPosition() - lc;
        osg::Vec3 v = (R ^ xf_axis_) * P->getMassInv() * intensity_;

        // compute new position
        osg::Vec3 newpos = P->getPosition() + v * dt;

        // update the position of the particle without modifying its
        // velocity vector (this is unusual, normally you should call
        // the Particle::setVelocity() or Particle::addVelocity()
        // methods).
        P->setPosition(newpos);    
    }

protected:
    virtual ~VortexOperator() {}

private:
    osg::Vec3 center_;
    osg::Vec3 xf_center_;
    osg::Vec3 axis_;
    osg::Vec3 xf_axis_;
    float intensity_;
};


//////////////////////////////////////////////////////////////////////////////
// SIMPLE PARTICLE SYSTEM CREATION
//////////////////////////////////////////////////////////////////////////////


osgParticle::ParticleSystem *create_simple_particle_system(osg::Group *root)
{

    // Ok folks, this is the first particle system we build; it will be
    // very simple, with no textures and no special effects, just default
    // values except for a couple of attributes.

    // First of all, we create the ParticleSystem object; it will hold
    // our particles and expose the interface for managing them; this object
    // is a Drawable, so we'll have to add it to a Geode later.

    osgParticle::ParticleSystem *ps = new osgParticle::ParticleSystem;

    // As for other Drawable classes, the aspect of graphical elements of
    // ParticleSystem (the particles) depends on the StateAttribute's we
    // give it. The ParticleSystem class has an helper function that let
    // us specify a set of the most common attributes: setDefaultAttributes().
    // This method can accept up to three parameters; the first is a texture
    // name (std::string), which can be empty to disable texturing, the second
    // sets whether particles have to be "emissive" (additive blending) or not;
    // the third parameter enables or disables lighting.

    ps->setDefaultAttributes("", true, false);

    // Now that our particle system is set we have to create an emitter, that is
    // an object (actually a Node descendant) that generate new particles at 
    // each frame. The best choice is to use a ModularEmitter, which allow us to
    // achieve a wide variety of emitting styles by composing the emitter using
    // three objects: a "counter", a "placer" and a "shooter". The counter must
    // tell the ModularEmitter how many particles it has to create for the
    // current frame; then, the ModularEmitter creates these particles, and for
    // each new particle it instructs the placer and the shooter to set its
    // position vector and its velocity vector, respectively.
    // By default, a ModularEmitter object initializes itself with a counter of
    // type RandomRateCounter, a placer of type PointPlacer and a shooter of
    // type RadialShooter (see documentation for details). We are going to leave
    // these default objects there, but we'll modify the counter so that it
    // counts faster (more particles are emitted at each frame).

    osgParticle::ModularEmitter *emitter = new osgParticle::ModularEmitter;

    // the first thing you *MUST* do after creating an emitter is to set the
    // destination particle system, otherwise it won't know where to create
    // new particles.

    emitter->setParticleSystem(ps);

    // Ok, get a pointer to the emitter's Counter object. We could also
    // create a new RandomRateCounter object and assign it to the emitter,
    // but since the default counter is already a RandomRateCounter, we
    // just get a pointer to it and change a value.

    osgParticle::RandomRateCounter *rrc = 
        static_cast<osgParticle::RandomRateCounter *>(emitter->getCounter());

    // Now set the rate range to a better value. The actual rate at each frame
    // will be chosen randomly within that range.

    rrc->setRateRange(20, 30);    // generate 20 to 30 particles per second

    // The emitter is done! Let's add it to the scene graph. The cool thing is
    // that any emitter node will take into account the accumulated local-to-world
    // matrix, so you can attach an emitter to a transform node and see it move.

    root->addChild(emitter);

    // Ok folks, we have almost finished. We don't add any particle modifier 
    // here (see ModularProgram and Operator classes), so all we still need is
    // to create a Geode and add the particle system to it, so it can be
    // displayed.

    osg::Geode *geode = new osg::Geode;    
    geode->addDrawable(ps);

    // add the geode to the scene graph
    root->addChild(geode);

    return ps;

}



//////////////////////////////////////////////////////////////////////////////
// COMPLEX PARTICLE SYSTEM CREATION
//////////////////////////////////////////////////////////////////////////////


osgParticle::ParticleSystem *create_complex_particle_system(osg::Group *root)
{
    // Are you ready for a more complex particle system? Well, read on!

    // Now we take one step we didn't before: create a particle template.
    // A particle template is simply a Particle object for which you set
    // the desired properties (see documentation for details). When the
    // particle system has to create a new particle and it's been assigned
    // a particle template, the new particle will inherit the template's
    // properties.
    // You can even assign different particle templates to each emitter; in
    // this case, the emitter's template will override the particle system's
    // default template.

    osgParticle::Particle ptemplate;

    ptemplate.setLifeTime(3);        // 3 seconds of life

    // the following ranges set the envelope of the respective 
    // graphical properties in time.
    ptemplate.setSizeRange(osgParticle::rangef(0.75f, 3.0f));
    ptemplate.setAlphaRange(osgParticle::rangef(0.0f, 1.5f));
    ptemplate.setColorRange(osgParticle::rangev4(
        osg::Vec4(1, 0.5f, 0.3f, 1.5f), 
        osg::Vec4(0, 0.7f, 1.0f, 0.0f)));

    // these are physical properties of the particle
    ptemplate.setRadius(0.05f);    // 5 cm wide particles
    ptemplate.setMass(0.05f);    // 50 g heavy

    // As usual, let's create the ParticleSystem object and set its
    // default state attributes. This time we use a texture named
    // "smoke.rgb", you can find it in the data distribution of OSG.
    // We turn off the additive blending, because smoke has no self-
    // illumination.
    osgParticle::ParticleSystem *ps = new osgParticle::ParticleSystem;
    ps->setDefaultAttributes("Images/smoke.rgb", false, false);

    // assign the particle template to the system.
    ps->setDefaultParticleTemplate(ptemplate);

    // now we have to create an emitter; this will be a ModularEmitter, for which
    // we define a RandomRateCounter as counter, a SectorPlacer as placer, and
    // a RadialShooter as shooter.
    osgParticle::ModularEmitter *emitter = new osgParticle::ModularEmitter;
    emitter->setParticleSystem(ps);

    // setup the counter
    osgParticle::RandomRateCounter *counter = new osgParticle::RandomRateCounter;
    counter->setRateRange(60, 60);
    emitter->setCounter(counter);

    // setup the placer; it will be a circle of radius 5 (the particles will
    // be placed inside this circle).
    osgParticle::SectorPlacer *placer = new osgParticle::SectorPlacer;
    placer->setCenter(8, 0, 10);
    placer->setRadiusRange(2.5, 5);
    placer->setPhiRange(0, 2 * osg::PI);    // 360° angle to make a circle
    emitter->setPlacer(placer);

    // now let's setup the shooter; we use a RadialShooter but we set the
    // initial speed to zero, because we want the particles to fall down
    // only under the effect of the gravity force. Since we se the speed
    // to zero, there is no need to setup the shooting angles.
    osgParticle::RadialShooter *shooter = new osgParticle::RadialShooter;
    shooter->setInitialSpeedRange(0, 0);
    emitter->setShooter(shooter);

    // add the emitter to the scene graph
    root->addChild(emitter);

    // WELL, we got our particle system and a nice emitter. Now we want to
    // simulate the effect of the earth gravity, so first of all we have to
    // create a Program. It is a particle processor just like the Emitter
    // class, but it allows to modify particle properties *after* they have
    // been created.
    // The ModularProgram class can be thought as a sequence of operators,
    // each one performing some actions on the particles. So, the trick is:
    // create the ModularProgram object, create one or more Operator objects,
    // add those operators to the ModularProgram, and finally add the
    // ModularProgram object to the scene graph.
    // NOTE: since the Program objects perform actions after the particles
    // have been emitted by one or more Emitter objects, all instances of
    // Program (and its descendants) should be placed *after* the instances
    // of Emitter objects in the scene graph.

    osgParticle::ModularProgram *program = new osgParticle::ModularProgram;
    program->setParticleSystem(ps);

    // create an operator that simulates the gravity acceleration.
    osgParticle::AccelOperator *op1 = new osgParticle::AccelOperator;
    op1->setToGravity();
    program->addOperator(op1);

    // now create a custom operator, we have defined it before (see
    // class VortexOperator).
    VortexOperator *op2 = new VortexOperator;
    op2->setCenter(osg::Vec3(8, 0, 0));
    program->addOperator(op2);

    // let's add a fluid operator to simulate air friction.
    osgParticle::FluidFrictionOperator *op3 = new osgParticle::FluidFrictionOperator;
    op3->setFluidToAir();
    program->addOperator(op3);

    // add the program to the scene graph
    root->addChild(program);

    // create a Geode to contain our particle system.
    osg::Geode *geode = new osg::Geode;
    geode->addDrawable(ps);

    // add the geode to the scene graph.
    root->addChild(geode);

    return ps;
}



//////////////////////////////////////////////////////////////////////////////
// ANIMATED PARTICLE SYSTEM CREATION
//////////////////////////////////////////////////////////////////////////////


osgParticle::ParticleSystem *create_animated_particle_system(osg::Group *root)
{

    // Now we will create a particle system that uses two emitters to 
    // display two animated particles, one showing an explosion, the other
    // a smoke cloud. A particle system can only use one texture, so
    // the animations for both particles are stored in a single bitmap.
    // The frames of the animation are stored in tiles. For each particle
    // template, the start and end tile of their animation have to be given.
    // The example file used here has 64 tiles, stored in eight rows with
    // eight images each.

    // First create a prototype for the explosion particle.
    osgParticle::Particle pexplosion;

    // The frames of the explosion particle are played from birth to
    // death of the particle. So if lifetime is one second, all 16 images 
    // of the particle are shown in this second.
    pexplosion.setLifeTime(1);

    // some other particle properties just as in the last example.
    pexplosion.setSizeRange(osgParticle::rangef(0.75f, 3.0f));
    pexplosion.setAlphaRange(osgParticle::rangef(0.5f, 1.0f));
    pexplosion.setColorRange(osgParticle::rangev4(
        osg::Vec4(1, 1, 1, 1), 
        osg::Vec4(1, 1, 1, 1)));
    pexplosion.setRadius(0.05f);
    pexplosion.setMass(0.05f);

    // This command sets the animation tiles to be shown for the particle.
    // The first two parameters define the tile layout of the texture image.
    // 8, 8 means the texture has eight rows of tiles with eight columns each.
    // 0, 15 defines the start and end tile 
    pexplosion.setTextureTileRange(8, 8, 0, 15);

    // The smoke particle is just the same, only plays another tile range.
    osgParticle::Particle psmoke = pexplosion;
    psmoke.setTextureTileRange(8, 8, 32, 45);

    // Create a single particle system for both particle types
    osgParticle::ParticleSystem *ps = new osgParticle::ParticleSystem;

    // Assign the tiled texture
    ps->setDefaultAttributes("Images/fireparticle8x8.png", false, false);

    // Create two emitters, one for the explosions, one for the smoke balls.
    osgParticle::ModularEmitter *emitter1 = new osgParticle::ModularEmitter;
    emitter1->setParticleSystem(ps);
    emitter1->setParticleTemplate(pexplosion);

    osgParticle::ModularEmitter *emitter2 = new osgParticle::ModularEmitter;
    emitter2->setParticleSystem(ps);
    emitter2->setParticleTemplate(psmoke);

    // create a counter each. We could reuse the counter for both emitters, but
    // then we could not control the ratio of smoke balls to explosions
    osgParticle::RandomRateCounter *counter1 = new osgParticle::RandomRateCounter;
    counter1->setRateRange(10, 10);
    emitter1->setCounter(counter1);

    osgParticle::RandomRateCounter *counter2 = new osgParticle::RandomRateCounter;
    counter2->setRateRange(3, 4);
    emitter2->setCounter(counter2);

    // setup a single placer for both emitters.
    osgParticle::SectorPlacer *placer = new osgParticle::SectorPlacer;
    placer->setCenter(-8, 0, 0);
    placer->setRadiusRange(2.5, 5);
    placer->setPhiRange(0, 2 * osg::PI);    // 360° angle to make a circle
    emitter1->setPlacer(placer);
    emitter2->setPlacer(placer);

    // the shooter is reused for both emitters
    osgParticle::RadialShooter *shooter = new osgParticle::RadialShooter;
    shooter->setInitialSpeedRange(0, 0);

    // give particles a little spin
    shooter->setInitialRotationalSpeedRange(osgParticle::rangev3(
       osg::Vec3(0, 0, -1),
       osg::Vec3(0, 0, 1)));
    emitter1->setShooter(shooter);
    emitter2->setShooter(shooter);

    // add both emitters to the scene graph
    root->addChild(emitter1);
    root->addChild(emitter2);
   
    // create a program, just as before
    osgParticle::ModularProgram *program = new osgParticle::ModularProgram;
    program->setParticleSystem(ps);

    // create an operator that moves the particles upwards
    osgParticle::AccelOperator *op1 = new osgParticle::AccelOperator;
    op1->setAcceleration(osg::Vec3(0, 0, 2.0f));
    program->addOperator(op1);  

    // add the program to the scene graph
    root->addChild(program);

    // create a Geode to contain our particle system.
    osg::Geode *geode = new osg::Geode;
    geode->addDrawable(ps);

    // add the geode to the scene graph.
    root->addChild(geode);

    return ps;
}

//////////////////////////////////////////////////////////////////////////////
// MAIN SCENE GRAPH BUILDING FUNCTION
//////////////////////////////////////////////////////////////////////////////


void build_world(osg::Group *root)
{

    // In this function we are going to create two particle systems;
    // the first one will be very simple, based mostly on default properties;
    // the second one will be a little bit more complex, showing how to
    // create custom operators.
    // To avoid inserting too much code in a single function, we have
    // splitted the work into two functions which accept a Group node as
    // parameter, and return a pointer to the particle system they created.

    osgParticle::ParticleSystem *ps1 = create_simple_particle_system(root);
    osgParticle::ParticleSystem *ps2 = create_complex_particle_system(root);
    osgParticle::ParticleSystem *ps3 = create_animated_particle_system(root);

    // Now that the particle systems and all other related objects have been
    // created, we have to add an "updater" node to the scene graph. This node
    // will react to cull traversal by updating the specified particles system.

    osgParticle::ParticleSystemUpdater *psu = new osgParticle::ParticleSystemUpdater;
    psu->addParticleSystem(ps1);
    psu->addParticleSystem(ps2);
    psu->addParticleSystem(ps3);

    // add the updater node to the scene graph
    root->addChild(psu);

}


//////////////////////////////////////////////////////////////////////////////
// main()
//////////////////////////////////////////////////////////////////////////////


int main(int, char **)
{
    // construct the viewer.
    osgViewer::Viewer viewer;
    
    osg::Group *root = new osg::Group;
    build_world(root);
   
    // add the stats handler
    viewer.addEventHandler(new osgViewer::StatsHandler);

    // add a viewport to the viewer and attach the scene graph.
    viewer.setSceneData(root);
        
    return viewer.run();
}