This file is indexed.

/usr/share/php/JAMA/LUDecomposition.php is in php-jama 0~2+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
<?php
/**
* @package JAMA
*
* For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
* unit lower triangular matrix L, an n-by-n upper triangular matrix U,
* and a permutation vector piv of length m so that A(piv,:) = L*U.
* If m < n, then L is m-by-m and U is m-by-n.
*
* The LU decompostion with pivoting always exists, even if the matrix is
* singular, so the constructor will never fail.  The primary use of the
* LU decomposition is in the solution of square systems of simultaneous
* linear equations.  This will fail if isNonsingular() returns false.
*
* @author Paul Meagher
* @author Bartosz Matosiuk
* @author Michael Bommarito
* @version 1.1
* @license PHP v3.0
*/
class LUDecomposition {
  /**
  * Decomposition storage
  * @var array
  */
  var $LU = array();
  
  /**
  * Row dimension.
  * @var int  
  */
  var $m;

  /**
  * Column dimension.
  * @var int    
  */   
  var $n;
  
  /**
  * Pivot sign.
  * @var int    
  */      
  var $pivsign;

  /**
  * Internal storage of pivot vector.
  * @var array  
  */
  var $piv = array();
  
  /**
  * LU Decomposition constructor.
  * @param $A Rectangular matrix
  * @return Structure to access L, U and piv.
  */
  function LUDecomposition ($A) {   
    if( is_a($A, 'Matrix') ) {
    // Use a "left-looking", dot-product, Crout/Doolittle algorithm.
    $this->LU = $A->getArrayCopy();
    $this->m  = $A->getRowDimension();
    $this->n  = $A->getColumnDimension();
    for ($i = 0; $i < $this->m; $i++)
      $this->piv[$i] = $i;
    $this->pivsign = 1;   
    $LUrowi = array();
    $LUcolj = array();
    // Outer loop.
    for ($j = 0; $j < $this->n; $j++) {
      // Make a copy of the j-th column to localize references.
      for ($i = 0; $i < $this->m; $i++)
        $LUcolj[$i] = &$this->LU[$i][$j];
      // Apply previous transformations.
      for ($i = 0; $i < $this->m; $i++) {        
        $LUrowi = $this->LU[$i];        
        // Most of the time is spent in the following dot product.
        $kmax = min($i,$j);
        $s = 0.0;
        for ($k = 0; $k < $kmax; $k++)
          $s += $LUrowi[$k]*$LUcolj[$k];
          $LUrowi[$j] = $LUcolj[$i] -= $s;                                                  
      }       
      // Find pivot and exchange if necessary.
      $p = $j;
      for ($i = $j+1; $i < $this->m; $i++) {
      if (abs($LUcolj[$i]) > abs($LUcolj[$p]))
        $p = $i;
      }
      if ($p != $j) {
      for ($k = 0; $k < $this->n; $k++) {                
        $t = $this->LU[$p][$k];                              
        $this->LU[$p][$k] = $this->LU[$j][$k];                              
        $this->LU[$j][$k] = $t;                              
      }
      $k = $this->piv[$p];
      $this->piv[$p] = $this->piv[$j];
      $this->piv[$j] = $k;
      $this->pivsign = $this->pivsign * -1;
      }
      // Compute multipliers.     
      if ( ($j < $this->m) AND ($this->LU[$j][$j] != 0.0) ) {
      for ($i = $j+1; $i < $this->m; $i++)
        $this->LU[$i][$j] /= $this->LU[$j][$j];               
      }      
    }
    } else {
      trigger_error(ArgumentTypeException, ERROR);
    }
  }
  
  /**
  * Get lower triangular factor.
  * @return array Lower triangular factor
  */
  function getL () {
    for ($i = 0; $i < $this->m; $i++) {
      for ($j = 0; $j < $this->n; $j++) {
        if ($i > $j)
          $L[$i][$j] = $this->LU[$i][$j];
        else if($i == $j)
          $L[$i][$j] = 1.0;
        else
          $L[$i][$j] = 0.0;
      }
    }
    return new Matrix($L);
  }

  /**
  * Get upper triangular factor.
  * @return array Upper triangular factor
  */  
  function getU () {
    for ($i = 0; $i < $this->n; $i++) {
      for ($j = 0; $j < $this->n; $j++) {
        if ($i <= $j)
          $U[$i][$j] = $this->LU[$i][$j];
        else
          $U[$i][$j] = 0.0;
      }
    }
    return new Matrix($U);
  }
  
  /**
  * Return pivot permutation vector.
  * @return array Pivot vector
  */
  function getPivot () {
     return $this->piv;
  }
  
  /**
  * Alias for getPivot
  * @see getPivot
  */
  function getDoublePivot () {
     return $this->getPivot();
  }

  /**
  * Is the matrix nonsingular?
  * @return true if U, and hence A, is nonsingular.
  */
  function isNonsingular () {
    for ($j = 0; $j < $this->n; $j++) {
      if ($this->LU[$j][$j] == 0)
        return false;
    }
    return true;
  }

  /**
  * Count determinants
  * @return array d matrix deterninat
  */
  function det() {
    if ($this->m == $this->n) {
      $d = $this->pivsign;      
      for ($j = 0; $j < $this->n; $j++)
        $d *= $this->LU[$j][$j];            
      return $d;
    } else {
      trigger_error(MatrixDimensionException, ERROR);
    }
  }
  
  /**
  * Solve A*X = B
  * @param  $B  A Matrix with as many rows as A and any number of columns.
  * @return  X so that L*U*X = B(piv,:)
  * @exception  IllegalArgumentException Matrix row dimensions must agree.
  * @exception  RuntimeException  Matrix is singular.
  */
  function solve($B) {          
    if ($B->getRowDimension() == $this->m) {
      if ($this->isNonsingular()) {        
        // Copy right hand side with pivoting
        $nx = $B->getColumnDimension();
        $X  = $B->getMatrix($this->piv, 0, $nx-1);
        // Solve L*Y = B(piv,:)
        for ($k = 0; $k < $this->n; $k++)
          for ($i = $k+1; $i < $this->n; $i++)
            for ($j = 0; $j < $nx; $j++)
              $X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];
        // Solve U*X = Y;
        for ($k = $this->n-1; $k >= 0; $k--) {
          for ($j = 0; $j < $nx; $j++)
            $X->A[$k][$j] /= $this->LU[$k][$k];
          for ($i = 0; $i < $k; $i++)
            for ($j = 0; $j < $nx; $j++)
              $X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];
        }
        return $X;
      } else {
        trigger_error(MatrixSingularException, ERROR);
      }
    } else {
      trigger_error(MatrixSquareException, ERROR);
    }
  }   
}
?>