This file is indexed.

/usr/share/doc/prover9-doc/html/glossary.html is in prover9-doc 0.0.200902a-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
  <title>Prover9 Manual: Glossary</title>
 <link rel="stylesheet" href="manual.css">
</head>

<body>

<hr>
<table width="100%">
<tr>
<colgroup>
<col width="33%">
<col width="34%">
<col width="33%">
</colgroup>
<td align="left"><i>Prover9 Manual</i>
<td align="center"><img src="prover9-5a-256t.gif">
<td align="right"><i>Version 2009-02A</i>
</table>
<hr>

<!-- Main content -->

<h1>Glossary</h1>

<i>Under construction.  (Send suggestions of terms to include.)</i>


<hr>
<hr>
<h2>Terms, Clauses, Formulas, Interpretations</h2>

These definitions apply to first-order unsorted logic.
See a book on first-order logic for more formal definitions
of these concepts.

<hr>
<!-- start def term -->
<!-- start def terms -->
<a name="term">

<i>Term</i>
<blockquote>
A recursive definition of first-order unsorted <i class="g">terms</i>.
<ul>
<li>A variable is a term,
<li>a constant is a term, and
<li>an <i>n</i>-ary function symbol applied to <i>n</i> terms is a term.
</ul>
</blockquote>

<hr>
<!-- start def atomic formula -->
<a name="atomic formula">

<i>Atomic Formula</i>
<blockquote>
An <i>n</i>-ary predicate symbol applied to <i>n</i> terms
is an <i class="g">atomic formula</i>.
</blockquote>

<hr>
<!-- start def formula -->
<a name="formula">

<i>Formula</i>
<blockquote>
<ul>
<li>An atomic formula is a formula,
<li>if <tt>F</tt> and <tt>G</tt> are formulas, then the following are formulas.
<ul>
<li><tt>(-F)</tt>
<li><tt>(F | G)</tt>
<li><tt>(F & G)</tt>
<li><tt>(F -> G)</tt>
<li><tt>(F <-> G)</tt>
</ul>
<li>if <tt>F</tt> is a formula and <tt>x</tt> is a variable, then the
following are formulas.
<ul>
<li><tt>(all x F)</tt>
<li><tt>(exists x F)</tt>
</ul>
</ul>
When writing formulas for Prover9, many of the parentheses can be
omitted;  see the page <a href="syntax.html">Clauses and Formulas</a>
tor the parsing rules.
</blockquote>

<hr>
<!-- start def free variable -->
<!-- start def open formula -->
<!-- start def closed formula -->
<!-- start def closed formulas -->
<a name="quantifiers">

<i>Free Variables</i>
<blockquote>
A <i class="g">free variable</i> is a variable not bound by any quantifier.
A <i class="g">closed formula</i> has no free variables.
An <i class="g">open formula</i> has at least one free variable.
<p>
Prover9's default rule for distinguishing free variables
from constants is that free varaibles start with (lower case)
'<tt>u</tt>' through '<tt>z</tt>'.
</blockquote>

<hr>
<!-- start def literal -->
<a name="literal">

<i>Literal</i>
<blockquote>
A <i class="g">literal</i> is either an
<a href="glossary.html#atomic formula">atomic formula</a>
or the negation of an atomic formula.
</blockquote>

<hr>
<!-- start def clause -->
<!-- start def clauses -->
<a name="clause">

<i>Clause</i>
<blockquote>
A <i class="g">clause</i> is a formula consisting of a disjunction of literals.
All variables in a clause are
assumed to be universally quantified.
</blockquote>

<hr>
<!-- start def interpretation -->
<a name="interpretation">

<i>Interpretation</i>
<blockquote>
An <i class="g">interpretation</i> of a first-order language consists of
<ul>
<li> of a set of objects called the <i class="g">domain</i>,
<li> an <i>n</i>-ary function over the domain into the domain for
     each <i>n</i>-ary function symbol in the language,
<li> an <i>n</i>-ary relation over the domain for
     each <i>n</i>-ary predicate symbol in the language.
</ul>
</blockquote>
Given an interpretation, each term in the language
evaluates to a member of the domain, and
each clause or
closed formula in the language evaluates to TRUE or to FALSE.

<hr>
<hr>
<h2>Types of Clause</h2>

<hr>
<!-- start def unit clause -->
<a name="unit-clause">

<i>Unit Clause</i>
<blockquote>
A <i class="g">unit clause</i> has exactly one literal.
</blockquote>

<hr>
<!-- start def positive clause -->
<!-- start def negative clause -->
<!-- start def mixed clause -->
<a name="clause-signs">

<i>Positive Clause, Negative Clause, Mixed Clause</i>
<blockquote>
A <i class="g">positive clause</i> has no negative literals.
A <i class="g">negative clause</i> has no positive literals.
Note that the empty clause is both positive and negative.
A <i class="g">mixed clause</i> has at least one literal of each sign.
</blockquote>

<hr>
<!-- start def non-Horn -->
<!-- start def non-Horn clause -->
<!-- start def non-Horn clauses -->
<!-- start def Horn -->
<!-- start def Horn clause -->
<!-- start def Horn set -->
<!-- start def Horn clauses -->
<!-- start def Horn sets -->
<a name="horn">

<i>Horn Clause, Horn Set</i>
<blockquote>
A <i class="g">Horn clause</i> has at most one positive literal.
A Horn set is a set of Horn clauses.
</blockquote>

<hr>
<!-- start def definite clause -->
<a name="definite-clause">

<i>Definite Clause</i>
<blockquote>
A <i class="g">definite clause</i> has exactly one positive literal.
</blockquote>

<hr>
<hr>
<h2>Logic Transformations</h2>

<hr>
<!-- start def negation normal form -->
<!-- start def NNF -->
<a name="NNF">

<i>Negation Normal Form (NNF)</i>
<blockquote>
A formula is in <i class="g">negation normal form</i>
if the only logic connectives are
negation, conjunction, disjunction, quantification (universal or existential),
and if all negation operations are applied directly to atomic formulas.
</blockquote>

<hr>
<!-- start def conjunctive normal form -->
<!-- start def CNF -->
<a name="CNF">

<i>Conjunctive Normal Form (CNF)</i>
<blockquote>
This definition applies to quantifier-free formulas.
<p>
A formula is in <i class="g">conjunctive normal form</i>
if (1) the only logic connectives
are negation, conjunction, and disjunction,
(2) no negation is applied to a conjunction or a disjunction,
and (3) no disjunction is applied to a conjunction.
<p>
Alternate definition: A formula is in CNF if it is a clause or a
conjunction of clauses.
</blockquote>

<hr>
<!-- start def Skolemization -->
<!-- start def skolemization -->
<!-- start def Skolem constant -->
<!-- start def Skolem function -->
<!-- start def Skolem -->
<a name="skolemization">

<i>Skolemization</i>
<blockquote>
</i>Skolemization</i> is the process of replacing
existentially quantified variables
in a formula with new constants (called <i class="g">Skolem constants</i>) or
functions (called <i class="g">Skolem functions</i>).  If an existential
quantifier is in the scope of some universal quantifiers, the
new symbol is a function of the corresponding universally quantified
variables.
The result of Skolemization is not, strictly speaking, equivalent to
the original formula, because new symbols may have been introduced,
but the result is inconsistent iff the the original formula is
inconsistent.
</blockquote>

<hr>
<!-- start def clause normal form -->
<!-- start def clausification -->
<!-- start def clausify -->
<a name="clausification">

<i>Clausification</i>
<blockquote>
<i class="g">Clausification</i> is the process of translating a formula
into a conjunction of clauses.  A standard way is
NNF conversion, Skolemization, moving universal quantifiers
to the top (renaming bound variables if necessary),
CNF conversion, and finally removing universal quantifiers.
The variables in each resulting clause are implicitly
universally quantified.
<p>
Each step produces an equivalent formula, except for
Skolemization, which produces an equiconsistent formula,
so the result of Clausification is inconsistent iff
the original formula is inconsistent.
</blockquote>

<hr>
<!-- start universal closure -->
<a name="universal_closure">

<i>Universal Closure</i>
<blockquote>
The <i class="g">universal closure</i> of a formula is constructed by universally
quantifying, at the top of the formula, all free variables
in the formula.
</blockquote>

<hr>
<hr>
<h2>Term Ordering Terminology</h2>

<hr>
<!-- start def kbo -->
<!-- start def KBO -->
<a name="KBO">

<i>Knuth-Bendix Ordering (KBO)</i>
<blockquote>
</blockquote>

<hr>
<!-- start def LPO -->
<!-- start def lpo -->
<a name="LPO">

<i>Lexicographic Path Ordering (LPO)</i>
<blockquote>
</blockquote>

<hr>
<!-- start def RPO -->
<!-- start def rpo -->
<a name="RPO">

<i>Recursive Path Ordering (RPO)</i>
<blockquote>
</blockquote>

<hr>
<!-- start def maximal -->
<!-- start def maximal literal -->
<!-- start def maximal literals -->
<a name="maximal">

<i>Maximal Literal</i>
<blockquote>
A literal is <i class="g">maximal</i> in a clause, with respect to some term ordering,
if no literal in the clause is greater.  The terms orderings used
by Prover9 (LPO, KBO, RPO) are, in general, only partial, so clauses
do not necessarily have greatest literals.
</blockquote>

<hr>
<hr>
<h2>Inference and Simplification Rules</h2>

<hr>
<!-- start def completeness -->
<a name="completeness">

<i>Completeness</i>
<blockquote>
An inference system is <i class="g">complete</i> if it is capable
(given enough time and memory) of proving any theorem
(in the language of the inference system).
</blockquote>

<hr>
<!-- start def binary resolution -->
<!-- start def resolution -->
<!-- start def positive resolution -->
<!-- start def negative resolution -->
<!-- start def positive binary resolution -->
<!-- start def negative binary resolution -->
<a name="Binary Resolution">

<i>Binary Resolution</i>
<blockquote>
The inference rule <i class="g">binary resolution</i>
takes two clauses containing
unifiable literals of opposite sign and produces a clause
consisting of the remaining literals to which the most general
unifying substitution has been applied.  The rule can be viewed
as a generalization of modus ponens.
<p>
Restrictions on Binary Resolution.
<ul>
<li><i class="g">Positive resolution</i>: one of the parents is is a positive clause.
<li><i class="g">Negative resolution</i>: one of the parents is is a negative clause.
<li><i class="g">Unit resolution</i>: one of the parents is is a unit clause.
</ul>
</blockquote>

<hr>
<!-- start def ordered resolution -->
<!-- start def ordered paramodulation -->
<!-- start def literal selection -->
<a name="ordered-inf">

<i>Ordered Inference, Literal Selection</i>
<blockquote>
<i class="g">Ordered Inference</i> is a restriction of resolution
or paramdulation based on literal ordering.  In some cases,
inferences can be restricted to <a href="glossary.html#maximal">maximal literals</a>.
<p>
<i class="g">Literal selection</i> is a restriction of resolution
or paramdulation.  In each clause, some subset of the
negative literals are marked as selected (the selection
may be arbitrary), and in some cases inferences can be
restricted to selected literals.
</blockquote>

<hr>
<!-- start def factoring -->
<!-- start def binary factoring -->
<!-- start def factor -->
<!-- start def factorization -->
<a name="factoring">

<i>Factoring</i>
<blockquote>
The inference rule <i class="g">factoring</i> takes one clause containing two or more
literals (of the same sign) that all unify.  The most general unifying
substitution is applied to the parent, and the unified literals
become identical and are merged into one.
<p>
Factoring in Prover9 is binary, operating on two literals
at a time.
</blockquote>

<hr>
<!-- start def hyperresolution -->
<!-- start def negative hyperresolution -->
<!-- start def nucleus -->
<!-- start def satellite -->
<a name="hyperresolution">

<i>Hyperresolution</i>
<blockquote>
The <i class="g">hyperresolution</i> inference rule 
(also called positive hyperresolution)
takes a non-positive clause (called the
<i class="g">nucleus</i>) and simultaneously resolves each of its negative
literals with positive clauses (called the <i class="g">satellites</i>),
producing a positive clause.  Hyperresolution can be viewed as a
sequence of positive binary resolution steps ending with a positive
clause.
<p>
Negative hyperresolution is similar to hyperresolution but with the
signs reversed.
</blockquote>

<hr>
<!-- start def UR-resolution -->
<!-- start def positive UR-resolution -->
<!-- start def negative UR-resolution -->
<!-- start def unit-resulting resolution -->
<a name="UR-resolution">

<i>UR-Resolution</i>
<blockquote>
The <i class="g">UR-resolution</i>
(unit-resulting resolution) inference rule takes a nonunit
clause (called the <i class="g">nucleus</i>) and resolves all but one of its literals
with unit clauses (called the <i class="g">satellites</i>), producing a unit clause.
<p>
<i class="g">Positive UR-resolution</i> is UR-resolution with the constraint that the
result must be a positive unit clause.
<p>
<i class="g">Negative UR-resolution</i> is UR-resolution with the constraint that the
result must be a negative unit clause.
</blockquote>

<hr>
<!-- start def paramodulation -->
<!-- start def from parent -->
<!-- start def from clause -->
<!-- start def from literal -->
<!-- start def into term -->
<!-- start def into parent -->
<!-- start def into clause -->
<!-- start def into literal -->
<!-- start def into term -->
<!-- start def superposition -->
<a name="from-into">

<i>"From" and "Into" in Paramodulation</i>
<blockquote>
A <i class="g">paramodulation</i> inference consists of
two parents and a child.
The parent containing the equality used for the
replacement is the <i class="g">from</i> parent or the <i class="g">from clause</i>,
the equality is the <i class="g">from</i> literal,
and the side of the equality that unifies with
the term being replaced is the <i class="g">from</i> term.
<p>
The replaced term is the <i class="g">into</i> term,
the literal containing the replaced term
is the <i class="g">into</i> literal, and
the parent containing the replaced term is the
<i class="g">into</i> parent or <i class="g">into</i> clause.
<p>
<i class="g">Superposition</i> is a restricted form of paramodulation
in which substitution is not allowed into the
lighter side of an equation.
</blockquote>

<hr>
<!-- start def positive paramodulation -->
<a name="positive-paramodulation">

<i>Positive Paramodulation</i>
<blockquote>
<i class="g">Positive paramodulation</i> is a restriction
of paramodulation in which the "from" clause is positive,
and if the "into" literal is positive, the "into" clause
is also positive.
</blockquote>

<hr>
<!-- start def demodulation -->
<!-- start def demodulator -->
<!-- start def rewriting -->
<!-- start def back demodulation -->
<!-- start def demodulator -->
<a name="demodulation">

<i>Demodulation, Back Demodulation</i>
<blockquote>
<i class="g">Demodulation</i> (also called <i class="g">rewriting</i>) is the process
of using a set of oriented equations 
(demodulators) to rewrite (simplify, canonicalize) terms.
If the demodulators have good properties, demodulation terminates.
<p>
</i>Forward demodulation</i> (or just demodulation) is the process of using
a set of demodulators to rewrite newly generated clauses.
<p>
<i class="g">Back demodulation</i> is the process of using a new demodulator to
simplify previously stored clauses.
</blockquote>

<hr>
<!-- start def unit deletion -->
<!-- start def back unit deletion -->
<a name="unit-deletion">

<i>Unit Deletion, Back Unit Deletion</i>
<blockquote>
<i class="g">Unit deletion</i> is analogous to demodulation.  The difference is
that unit clauses, rather than equations, are used for simplification.
<p>
Unit deletion is the process of using unit clauses to remove literals
from newly generated clauses.
<p>
<i class="g">Back unit deletion</i> is the process of using a new unit clause to
remove literals from previously stored clauses.
</blockquote>

<hr>
<!-- start def subsume -->
<!-- start def subsumption -->
<!-- start def back subsumption -->
<!-- start def forward subsumption -->
<a name="subsumption">

<i>Subsumption, Forward and Backward Subsumption</i>
<blockquote>
Clause C <i class="g">subsumes</i> clause D if the variables of C can be
instantiated in such a way that it becomes a subclause of D.
If C subsumes D, then D can be discarded, because it is weaker
than or equivalent to C.  (There are some proof procedures that
require retention of subsumed clauses.)
<p>
<i class="g">Forward subsumption</i> (or just subsumption) is the process of
deleting a newly derived clause if it is subsumed by some
previously stored clause.
<p>
<i class="g">Back subsumption</i> is the process of deleting all previously stored
clauses that are subsumed by a newly derived clause.
</blockquote>

<hr>
<!-- start def unit conflict -->
<a name="conflict">

<i>Unit Conflict</i>
<blockquote>
<i class="g">Unit Conflict</i> is an inference rule that derives
a contradiction from unit clauses, for example, from
<tt>P(a,b)</tt> and <tt>-P(x,b)</tt>.
</blockquote>

<hr>
<hr>
<h2>Prover9 Terminology</h2>

<hr>
<!-- start def given clause -->
<!-- start def given clause algorithm -->
<!-- start def given clause loop  -->
<!-- start def given clauses -->
<a name="given-clause">

<i>Given Clause</i>
<blockquote>
The <i class="g">given clause loop</i> drives the inference process
int Prover9.  At each iteration of the loop, a <i class="g">given clause</i>
is selected from the
<a href="glossary.html#sos-usable">sos list</a>, moved the the
<a href="glossary.html#sos-usable">usable list</a>, and
then inferences are made using the given clause and other
clauses in the usable list.
</blockquote>

<hr>
<!-- start def assumptions -->
<!-- start def assumptions list -->
<!-- start def sos -->
<!-- start def sos list -->
<!-- start def usable -->
<!-- start def usable list -->
<a name="sos-usable">

<i>Sos List, Assumptions List, Usable List</i>
<blockquote>
During the search, the <i class="g">usable</i> list is the list of clauses that
are available for making inferences with the
<a href="glossary.html#given-clause">given clause</a>, and
the <i class="g">sos list</i> is the list of clauses that
are waiting to be selected as
<a href="glossary.html#given-clause">given clause</a>s.
Clauses in the sos list are not available for making primary inferences,
but they can be used to simplify inferred clauses by
<a href="glossary.html#demodulation">demodulation</a> and
<a href="glossary.html#unit-deletion">unit deletion</a>.
<p>
The <i class="g">assumptions list</i> is identical to the sos list; that is,
"assumptions" is a synonym for "sos".
<p>
Prover9 also accepts non-clausal formulas in lists named usable or sos.
Such formulas are transformed to clauses which are placed in the
clause list of the same name.
<p>
The name "sos" is used because it can be employed to achieve the
set-of-support strategy, which requires that all lines of reasoning
start with a subset of the input clauses called the set of support.
The clauses or formulas in the initial set of support are placed
the sos list, and the rest of the clauses or formulas are placed in the
usable list.
</blockquote>

<hr>
<!-- start def goal -->
<!-- start def goals list -->
<!-- start def goals -->
<a name="goals">

<i>Goal, Goals List</i>
<blockquote>
A <i class="g">goal</i> is the conclusion of a conjecture, stated in positive form.
Each goals is transformed to clauses by constructing its 
<a href="glossary.html#">universal closure</a>,
negation, then
<a href="glossary.html#clausification">clausification</a>.
<p>
If there is more than one goal, Prover9 may impose restrictions
on the structure of the goals.
</blockquote>

<hr>
<!-- start def hint -->
<!-- start def hints list -->
<!-- start def hints -->
<a name="hints">

<i>Hint, Hints List</i>
<blockquote>
<i class="g">Hints</i> are clauses that are intended to guide Prover9 toward proofs.
Hints are not part of the problem specification; that is, they
are not used for making inferences.  They are used only as
a component of the weighting function for selecting <a href="glossary.html#given-clause">given clauses</a>.
</blockquote>

<hr>
<!-- start def initial clause -->
<!-- start def input clause -->
<a name="initial">

<i>Initial Clause</i>
<blockquote>
A clause is an <i class="g">initial clause</i> if it exists at the
time when the first <a href="glossary.html#given-clause">given clause</a> is selected.
Initial clauses are not necessarily input clauses, because
they may be created during preprocessing, for example, by
<a href="glossary.html#demodulation">rewriting</a> or <a href="glossary.html#clausification">clausification</a>.
</blockquote>

<hr>
<!-- start def denial -->
<!-- start def denials list -->
<!-- start def denials -->
<a name="denials">

<i>Denial</i>
<blockquote>
In Prover9 terminology, a
<a href="glossary.html#clause-signs">negative clause</a>
in a </g>Horn set</g> is
called a <i class="g">denial</i>, because such clauses usually come from the
negation of a conclusion.
(The term does not apply to non-Horn sets, because a proof of a non-Horn
set may require more than one negative clause.)
</blockquote>

<hr>
<!-- start def fof reduction -->
<a name="fof-reduction">

<i>FOF Reduction</i>
<blockquote>
<i class="g">FOF (First-Order Formula) reduction</i> is a method of attempting to
simplify a problem by reducing it to an equivalent set of
independent subproblems.  A trivial example is to reduce the
conjecture <tt>A <-> B</tt> to the pair of problems
<tt>A -> B</tt> and <tt>B -> A</tt>.
</blockquote>

<hr>
<!-- start def lex-dependent demodulator -->
<!-- start def lex-dependent demodulation -->
<a name="lex-dep">

<i>Lex-Dependent Demodulator</i>
<blockquote>
A <i class="g">lex-dependent demodulator</i> is one that cannot be oriented by
the primary term ordering (LPO or KBO).  An example is commutativity
of a binary operation.  During demodulation, a lex-dependent demodulator
is applied only if it produces a term that is smaller in the primary
term ordering.
</blockquote>

<hr>
<!-- start def depth of the term -->
<!-- start def depth of the atom -->
<!-- start def depth of the literal -->
<!-- start def depth of the clause -->
<!-- start def depth(C) -->
<a name="depth-C">

<i>Depth of Term, Atom, Literal, Clause</i>
<blockquote>
<ul>
<li>depth of variable, constant, or propositional atom: 0;
<li>depth of term or atom with arguments: one more than the maximum argument depth;
<li>depth of literal: depth of its atom (negation signs don't count);
<li>depth of clause: maximum of depths of literals;
</ul>
For example, <tt>p(x) | -p(f(x))</tt> has depth 2.
</blockquote>

<hr>
<!-- start def relational definition -->
<a name="relational-def">

<i>Relational Definition</i>
<blockquote>
A <i class="g">relational definition</i>
for an <i>n</i>-ary relation
(say <tt>P</tt> with <i>n</i>=3) is a
<a href="glossary.html#quantifiers">closed formula</a> of the form
(using Prover9 syntax)
<blockquote>
<tt>all x all y all z (P(x,y,z) <-> <i class="g">f</i>)</tt>
</blockquote>
for some formula <i>f</i> that does not contain the symbol <tt>P</tt>.
</blockquote>

<hr>
<!-- start def equational definition -->
<a name="equational-def">

<i>Equational Definition</i>
<blockquote>
An <i class="g">equational definition</i> for an <i>n</i>-ary function
(say <tt>f</tt> with <i>n</i>=3) is an equation
(using Prover9 syntax)
<blockquote>
<tt>f(x,y,z) = <i class="g">t</i></tt>
</blockquote>
for some term <i>t</i> that does not contain the symbol <tt>f</tt>
and that does not contain free variables other than
<tt>x</tt>, <tt>y</tt>, and <tt>z</tt>.
</blockquote>

<hr>
Next Section:
<a href="references.html">References</a>

</body>
</html>