This file is indexed.

/usr/share/psi/plugin/scf.scf.cc.template is in psi4-data 4.0~beta5+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#include "liboptions/liboptions.h"
#include "libmints/mints.h"
#include "scf.h"

namespace psi{ namespace @plugin@{

SCF::SCF(Options &options):
   options_(options)
{
    print_   = options_.get_int("PRINT");
    maxiter_ = options_.get_int("SCF_MAXITER");
    e_convergence_ = options_.get_double("E_CONVERGENCE");
    d_convergence_ = options_.get_double("D_CONVERGENCE");

    init_integrals();
}


SCF::~SCF()
{
   free_matrix(tei_, nso_, nso_, nso_, nso_);
}


void SCF::init_matrix(double****& matrix, int size1, int size2, int size3, int size4) {
    if ((size1 == 0) || (size2 == 0) || (size3 == 0) || (size4 == 0)) {
        printf("\n\n\tNULL Matrix\n");
        matrix = NULL;
    } else {
        matrix = new double***[size1];
        for (int i = 0; i < size1; i++) {
            matrix[i] = new double**[size2];
        }
        for (int i = 0; i < size1; i++) {
            for (int j = 0; j < size2; j++) {
                matrix[i][j] = new double*[size3];
            }
        }
        for (int i = 0; i < size1; i++) {
            for (int j = 0; j < size2; j++) {
                for (int k = 0; k < size3; k++) {
                    matrix[i][j][k] = new double[size4];
                    for (int l = 0; l < size4; l++) {
                        matrix[i][j][k][l] = 0.0;
                    }
                }
            }
        }
    }
}

void SCF::free_matrix(double****& matrix, int size1, int size2, int size3, int size4) {
    if ((size1 == 0) || (size2 == 0) || (size3 == 0) || (size4 == 0)) {
        printf("\n\n\tNULL Matrix\n");
    }
    if (matrix != NULL) {
        for (int i = 0; i < size1; i++) {
            for (int j = 0; j < size2; j++) {
                for (int k = 0; k < size3; k++) {
                    delete[] matrix[i][j][k];
                }
            }
        }
        for (int i = 0; i < size1; i++) {
            for (int j = 0; j < size2; j++) {
                delete[] matrix[i][j];
            }
        }
        for (int i = 0; i < size1; i++) {
            delete[] matrix[i];
        }
        delete[] matrix;
    }
}


void SCF::init_integrals()
{
    // This grabs the current molecule
    boost::shared_ptr<Molecule> molecule = Process::environment.molecule();


    // Form basis object:
    // Create a basis set parser object.
    boost::shared_ptr<BasisSetParser> parser(new Gaussian94BasisSetParser());
    // Construct a new basis set.
    boost::shared_ptr<BasisSet> aoBasis = BasisSet::construct(parser, molecule, "BASIS");

    // The integral factory oversees the creation of integral objects
    boost::shared_ptr<IntegralFactory> integral(new IntegralFactory
            (aoBasis, aoBasis, aoBasis, aoBasis));
    
    // Determine the number of electrons in the system
    // N.B. This should be done after the basis has been built, because the geometry has not been
    // fully initialized until this time.
    int charge = molecule->molecular_charge();
    int nelec  = 0;
    for(int i = 0; i < molecule->natom(); ++i)
        nelec += (int)molecule->Z(i);
    nelec -= charge;
    if(nelec % 2)
        throw PSIEXCEPTION("This is only an RHF code, but you gave it an odd number of electrons.  Try again!");
    ndocc_ = nelec / 2;

    fprintf(outfile, "\tThere are %d doubly occupied orbitals\n", ndocc_);
    molecule->print();
    if(print_ > 1){ 
         aoBasis->print_detail();
         options_.print();
    }

    nso_ =  aoBasis->nbf();

    e_nuc_ = molecule->nuclear_repulsion_energy();
    fprintf(outfile, "\n    Nuclear repulsion energy: %16.8f\n\n", e_nuc_);

    // These don't need to be declared, because they belong to the class
    S_ = SharedMatrix(new Matrix("Overlap matrix", nso_, nso_));
    H_ = SharedMatrix(new Matrix("Overlap matrix", nso_, nso_));
    // These don't belong to the class, so we have to define them as having type SharedMatrix
    SharedMatrix T = SharedMatrix(new Matrix("Kinetic integrals matrix", nso_, nso_));
    SharedMatrix V = SharedMatrix(new Matrix("Potential integrals matrix", nso_, nso_));

    // Form the one-electron integral objects from the integral factory
    boost::shared_ptr<OneBodyAOInt> sOBI(integral->ao_overlap());
    boost::shared_ptr<OneBodyAOInt> tOBI(integral->ao_kinetic());
    boost::shared_ptr<OneBodyAOInt> vOBI(integral->ao_potential());
    // Compute the one electron integrals, telling each object where to store the result
    sOBI->compute(S_);
    tOBI->compute(T);
    vOBI->compute(V);

    // Form h = T + V by first cloning T and then adding V
    H_->copy(T);
    H_->add(V);

    if(print_ > 3){
        S_->print();
        T->print();
        V->print();
        H_->print();
    }

    fprintf(outfile, "\tForming Two-electron Integrals\n\n");
    // Allocate some storage for the integrals
    init_matrix(tei_, nso_, nso_, nso_, nso_);

    // Now, the two-electron integrals
    boost::shared_ptr<TwoBodyAOInt> eri(integral->eri());
    // The buffer will hold the integrals for each shell, as they're computed
    const double *buffer = eri->buffer();
    // The iterator conveniently lets us iterate over functions within shells
    AOShellCombinationsIterator shellIter = integral->shells_iterator();
    int count=0;
    for (shellIter.first(); shellIter.is_done() == false; shellIter.next()) {
        // Compute quartet
        eri->compute_shell(shellIter);
        // From the quartet get all the integrals
        AOIntegralsIterator intIter = shellIter.integrals_iterator();
        for (intIter.first(); intIter.is_done() == false; intIter.next()) {
            int p = intIter.i();
            int q = intIter.j();
            int r = intIter.k();
            int s = intIter.l();
            double val = buffer[intIter.index()];
            if(print_ > 4)
                fprintf(outfile, "\t(%2d %2d | %2d %2d) = %20.15f\n", p, q, r, s, val);
            tei_[p][q][r][s] = tei_[p][q][s][r] = tei_[q][p][r][s] = tei_[q][p][s][r] =
            tei_[r][s][p][q] = tei_[s][r][p][q] = tei_[r][s][q][p] = tei_[s][r][q][p] = val;
            ++count;
        }
    }
    fprintf(outfile, "\n\tThere are %d unique integrals\n\n", count);
}


double SCF::compute_electronic_energy()
{
    Matrix HplusF;
    HplusF.copy(H_);
    HplusF.add(F_);
    return D_->vector_dot(HplusF);    
}

void SCF::form_density()
{
    for(int p = 0; p < nso_; ++p){
        for(int q = 0; q < nso_; ++q){
            double val = 0.0;
            for(int i = 0; i < ndocc_; ++i){
                val += C_->get(p, i) * C_->get(q, i);
            }
            D_->set(p, q, val);
        }
    }   
}


double SCF::compute_energy()
{
   // Allocate some matrices
   X_  = SharedMatrix(new Matrix("S^-1/2", nso_, nso_));
   F_  = SharedMatrix(new Matrix("Fock matrix", nso_, nso_));
   Ft_ = SharedMatrix(new Matrix("Transformed Fock matrix", nso_, nso_));
   C_  = SharedMatrix(new Matrix("MO Coefficients_", nso_, nso_));
   D_  = SharedMatrix(new Matrix("The Density Matrix", nso_, nso_));
   SharedMatrix Temp1(new Matrix("Temporary Array 1", nso_, nso_));
   SharedMatrix Temp2(new Matrix("Temporary Array 2", nso_, nso_));
   SharedMatrix FDS(new Matrix("FDS", nso_, nso_));
   SharedMatrix SDF(new Matrix("SDF", nso_, nso_));
   SharedMatrix Evecs(new Matrix("Eigenvectors", nso_, nso_));
   SharedVector Evals(new Vector("Eigenvalues", nso_));

   // Form the X_ matrix (S^-1/2)
   S_->diagonalize(Evecs, Evals, ascending);
   for(int p = 0; p < nso_; ++p){
       double val = 1.0 / sqrt(Evals->get(p));
       Evals->set(p, val);
   }
   Temp1->set_diagonal(Evals);
   Temp2->gemm(false, true, 1.0, Temp1, Evecs, 0.0);
   X_->gemm(false, false, 1.0, Evecs, Temp2, 0.0);

   F_->copy(H_);
   Ft_->transform(F_, X_);
   Ft_->diagonalize(Evecs, Evals, ascending);

   C_->gemm(false, false, 1.0, X_, Evecs, 0.0);
   form_density();
   if(print_ > 1){
       fprintf(outfile, "MO Coefficients and density from Core Hamiltonian guess:\n");
       C_->print();
       D_->print();
   }

   int iter = 1;
   bool converged = false;
   double e_old;
   double e_new = e_nuc_ + compute_electronic_energy();

   fprintf(outfile, "\tEnergy from core Hamiltonian guess: %20.16f\n\n", e_new);

   fprintf(outfile, "\t*=======================================================*\n");
   fprintf(outfile, "\t* Iter       Energy            delta E    ||gradient||  *\n");
   fprintf(outfile, "\t*-------------------------------------------------------*\n");

   while(!converged && iter < maxiter_){
       e_old = e_new;

       // Add the core Hamiltonian term to the Fock operator
       F_->copy(H_);
       // Add the two electron terms to the Fock operator
       for(int p = 0; p < nso_; ++p){
           for(int q = 0; q < nso_; ++q){
               double J = 0.0;
               double K = 0.0;
               for(int r = 0; r < nso_; ++r){
                   for(int s = 0; s < nso_; ++s){
                       J += tei_[p][q][r][s] * D_->get(r, s);
                       K += tei_[p][r][q][s] * D_->get(r, s);
                   }
               }
               F_->add(p, q, 2.0 * J - K);
           }   
       }

       // Transform the Fock operator and diagonalize it
       Ft_->transform(F_, X_);
       Ft_->diagonalize(Evecs, Evals, ascending);

       // Form the orbitals from the eigenvectors of the transformed Fock matrix 
       C_->gemm(false, false, 1.0, X_, Evecs, 0.0);


       // Rebuild the density using the new orbitals
       form_density();

       // Compute the energy
       e_new = e_nuc_ + compute_electronic_energy();
       double dE = e_new - e_old;
 
       // Compute the orbital gradient, FDS-SDF
       Temp1->gemm(false, false, 1.0, D_, S_, 0.0);
       FDS->gemm(false, false, 1.0, F_, Temp1, 0.0);
       Temp1->gemm(false, false, 1.0, D_, F_, 0.0);
       SDF->gemm(false, false, 1.0, S_, Temp1, 0.0);
       Temp1->copy(FDS);
       Temp1->subtract(SDF);
       double dRMS = Temp1->rms();

       if(print_ > 1){
           Ft_->print();
           Evecs->print();
           Evals->print();
           C_->print();
           D_->print();
           FDS->print();
           SDF->print();
           Temp1->set_name("Orbital gradient");
           Temp1->print();
       }
     
       converged = (fabs(dE) < e_convergence_) && (dRMS < d_convergence_);

       fprintf(outfile, "\t* %3d %20.14f    %9.2e    %9.2e    *\n", iter, e_new, dE, dRMS);
       iter++;
   }
   fprintf(outfile, "\t*=======================================================*\n");

   if(!converged)
       throw PSIEXCEPTION("The SCF iterations did not converge.");

   Evals->set_name("Orbital Energies");
   Evals->print();

   return e_new;
}

}} // End namespaces