/usr/share/psi/plugin/scf.scf.cc.template is in psi4-data 4.0~beta5+dfsg-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | #include "liboptions/liboptions.h"
#include "libmints/mints.h"
#include "scf.h"
namespace psi{ namespace @plugin@{
SCF::SCF(Options &options):
options_(options)
{
print_ = options_.get_int("PRINT");
maxiter_ = options_.get_int("SCF_MAXITER");
e_convergence_ = options_.get_double("E_CONVERGENCE");
d_convergence_ = options_.get_double("D_CONVERGENCE");
init_integrals();
}
SCF::~SCF()
{
free_matrix(tei_, nso_, nso_, nso_, nso_);
}
void SCF::init_matrix(double****& matrix, int size1, int size2, int size3, int size4) {
if ((size1 == 0) || (size2 == 0) || (size3 == 0) || (size4 == 0)) {
printf("\n\n\tNULL Matrix\n");
matrix = NULL;
} else {
matrix = new double***[size1];
for (int i = 0; i < size1; i++) {
matrix[i] = new double**[size2];
}
for (int i = 0; i < size1; i++) {
for (int j = 0; j < size2; j++) {
matrix[i][j] = new double*[size3];
}
}
for (int i = 0; i < size1; i++) {
for (int j = 0; j < size2; j++) {
for (int k = 0; k < size3; k++) {
matrix[i][j][k] = new double[size4];
for (int l = 0; l < size4; l++) {
matrix[i][j][k][l] = 0.0;
}
}
}
}
}
}
void SCF::free_matrix(double****& matrix, int size1, int size2, int size3, int size4) {
if ((size1 == 0) || (size2 == 0) || (size3 == 0) || (size4 == 0)) {
printf("\n\n\tNULL Matrix\n");
}
if (matrix != NULL) {
for (int i = 0; i < size1; i++) {
for (int j = 0; j < size2; j++) {
for (int k = 0; k < size3; k++) {
delete[] matrix[i][j][k];
}
}
}
for (int i = 0; i < size1; i++) {
for (int j = 0; j < size2; j++) {
delete[] matrix[i][j];
}
}
for (int i = 0; i < size1; i++) {
delete[] matrix[i];
}
delete[] matrix;
}
}
void SCF::init_integrals()
{
// This grabs the current molecule
boost::shared_ptr<Molecule> molecule = Process::environment.molecule();
// Form basis object:
// Create a basis set parser object.
boost::shared_ptr<BasisSetParser> parser(new Gaussian94BasisSetParser());
// Construct a new basis set.
boost::shared_ptr<BasisSet> aoBasis = BasisSet::construct(parser, molecule, "BASIS");
// The integral factory oversees the creation of integral objects
boost::shared_ptr<IntegralFactory> integral(new IntegralFactory
(aoBasis, aoBasis, aoBasis, aoBasis));
// Determine the number of electrons in the system
// N.B. This should be done after the basis has been built, because the geometry has not been
// fully initialized until this time.
int charge = molecule->molecular_charge();
int nelec = 0;
for(int i = 0; i < molecule->natom(); ++i)
nelec += (int)molecule->Z(i);
nelec -= charge;
if(nelec % 2)
throw PSIEXCEPTION("This is only an RHF code, but you gave it an odd number of electrons. Try again!");
ndocc_ = nelec / 2;
fprintf(outfile, "\tThere are %d doubly occupied orbitals\n", ndocc_);
molecule->print();
if(print_ > 1){
aoBasis->print_detail();
options_.print();
}
nso_ = aoBasis->nbf();
e_nuc_ = molecule->nuclear_repulsion_energy();
fprintf(outfile, "\n Nuclear repulsion energy: %16.8f\n\n", e_nuc_);
// These don't need to be declared, because they belong to the class
S_ = SharedMatrix(new Matrix("Overlap matrix", nso_, nso_));
H_ = SharedMatrix(new Matrix("Overlap matrix", nso_, nso_));
// These don't belong to the class, so we have to define them as having type SharedMatrix
SharedMatrix T = SharedMatrix(new Matrix("Kinetic integrals matrix", nso_, nso_));
SharedMatrix V = SharedMatrix(new Matrix("Potential integrals matrix", nso_, nso_));
// Form the one-electron integral objects from the integral factory
boost::shared_ptr<OneBodyAOInt> sOBI(integral->ao_overlap());
boost::shared_ptr<OneBodyAOInt> tOBI(integral->ao_kinetic());
boost::shared_ptr<OneBodyAOInt> vOBI(integral->ao_potential());
// Compute the one electron integrals, telling each object where to store the result
sOBI->compute(S_);
tOBI->compute(T);
vOBI->compute(V);
// Form h = T + V by first cloning T and then adding V
H_->copy(T);
H_->add(V);
if(print_ > 3){
S_->print();
T->print();
V->print();
H_->print();
}
fprintf(outfile, "\tForming Two-electron Integrals\n\n");
// Allocate some storage for the integrals
init_matrix(tei_, nso_, nso_, nso_, nso_);
// Now, the two-electron integrals
boost::shared_ptr<TwoBodyAOInt> eri(integral->eri());
// The buffer will hold the integrals for each shell, as they're computed
const double *buffer = eri->buffer();
// The iterator conveniently lets us iterate over functions within shells
AOShellCombinationsIterator shellIter = integral->shells_iterator();
int count=0;
for (shellIter.first(); shellIter.is_done() == false; shellIter.next()) {
// Compute quartet
eri->compute_shell(shellIter);
// From the quartet get all the integrals
AOIntegralsIterator intIter = shellIter.integrals_iterator();
for (intIter.first(); intIter.is_done() == false; intIter.next()) {
int p = intIter.i();
int q = intIter.j();
int r = intIter.k();
int s = intIter.l();
double val = buffer[intIter.index()];
if(print_ > 4)
fprintf(outfile, "\t(%2d %2d | %2d %2d) = %20.15f\n", p, q, r, s, val);
tei_[p][q][r][s] = tei_[p][q][s][r] = tei_[q][p][r][s] = tei_[q][p][s][r] =
tei_[r][s][p][q] = tei_[s][r][p][q] = tei_[r][s][q][p] = tei_[s][r][q][p] = val;
++count;
}
}
fprintf(outfile, "\n\tThere are %d unique integrals\n\n", count);
}
double SCF::compute_electronic_energy()
{
Matrix HplusF;
HplusF.copy(H_);
HplusF.add(F_);
return D_->vector_dot(HplusF);
}
void SCF::form_density()
{
for(int p = 0; p < nso_; ++p){
for(int q = 0; q < nso_; ++q){
double val = 0.0;
for(int i = 0; i < ndocc_; ++i){
val += C_->get(p, i) * C_->get(q, i);
}
D_->set(p, q, val);
}
}
}
double SCF::compute_energy()
{
// Allocate some matrices
X_ = SharedMatrix(new Matrix("S^-1/2", nso_, nso_));
F_ = SharedMatrix(new Matrix("Fock matrix", nso_, nso_));
Ft_ = SharedMatrix(new Matrix("Transformed Fock matrix", nso_, nso_));
C_ = SharedMatrix(new Matrix("MO Coefficients_", nso_, nso_));
D_ = SharedMatrix(new Matrix("The Density Matrix", nso_, nso_));
SharedMatrix Temp1(new Matrix("Temporary Array 1", nso_, nso_));
SharedMatrix Temp2(new Matrix("Temporary Array 2", nso_, nso_));
SharedMatrix FDS(new Matrix("FDS", nso_, nso_));
SharedMatrix SDF(new Matrix("SDF", nso_, nso_));
SharedMatrix Evecs(new Matrix("Eigenvectors", nso_, nso_));
SharedVector Evals(new Vector("Eigenvalues", nso_));
// Form the X_ matrix (S^-1/2)
S_->diagonalize(Evecs, Evals, ascending);
for(int p = 0; p < nso_; ++p){
double val = 1.0 / sqrt(Evals->get(p));
Evals->set(p, val);
}
Temp1->set_diagonal(Evals);
Temp2->gemm(false, true, 1.0, Temp1, Evecs, 0.0);
X_->gemm(false, false, 1.0, Evecs, Temp2, 0.0);
F_->copy(H_);
Ft_->transform(F_, X_);
Ft_->diagonalize(Evecs, Evals, ascending);
C_->gemm(false, false, 1.0, X_, Evecs, 0.0);
form_density();
if(print_ > 1){
fprintf(outfile, "MO Coefficients and density from Core Hamiltonian guess:\n");
C_->print();
D_->print();
}
int iter = 1;
bool converged = false;
double e_old;
double e_new = e_nuc_ + compute_electronic_energy();
fprintf(outfile, "\tEnergy from core Hamiltonian guess: %20.16f\n\n", e_new);
fprintf(outfile, "\t*=======================================================*\n");
fprintf(outfile, "\t* Iter Energy delta E ||gradient|| *\n");
fprintf(outfile, "\t*-------------------------------------------------------*\n");
while(!converged && iter < maxiter_){
e_old = e_new;
// Add the core Hamiltonian term to the Fock operator
F_->copy(H_);
// Add the two electron terms to the Fock operator
for(int p = 0; p < nso_; ++p){
for(int q = 0; q < nso_; ++q){
double J = 0.0;
double K = 0.0;
for(int r = 0; r < nso_; ++r){
for(int s = 0; s < nso_; ++s){
J += tei_[p][q][r][s] * D_->get(r, s);
K += tei_[p][r][q][s] * D_->get(r, s);
}
}
F_->add(p, q, 2.0 * J - K);
}
}
// Transform the Fock operator and diagonalize it
Ft_->transform(F_, X_);
Ft_->diagonalize(Evecs, Evals, ascending);
// Form the orbitals from the eigenvectors of the transformed Fock matrix
C_->gemm(false, false, 1.0, X_, Evecs, 0.0);
// Rebuild the density using the new orbitals
form_density();
// Compute the energy
e_new = e_nuc_ + compute_electronic_energy();
double dE = e_new - e_old;
// Compute the orbital gradient, FDS-SDF
Temp1->gemm(false, false, 1.0, D_, S_, 0.0);
FDS->gemm(false, false, 1.0, F_, Temp1, 0.0);
Temp1->gemm(false, false, 1.0, D_, F_, 0.0);
SDF->gemm(false, false, 1.0, S_, Temp1, 0.0);
Temp1->copy(FDS);
Temp1->subtract(SDF);
double dRMS = Temp1->rms();
if(print_ > 1){
Ft_->print();
Evecs->print();
Evals->print();
C_->print();
D_->print();
FDS->print();
SDF->print();
Temp1->set_name("Orbital gradient");
Temp1->print();
}
converged = (fabs(dE) < e_convergence_) && (dRMS < d_convergence_);
fprintf(outfile, "\t* %3d %20.14f %9.2e %9.2e *\n", iter, e_new, dE, dRMS);
iter++;
}
fprintf(outfile, "\t*=======================================================*\n");
if(!converged)
throw PSIEXCEPTION("The SCF iterations did not converge.");
Evals->set_name("Orbital Energies");
Evals->print();
return e_new;
}
}} // End namespaces
|