This file is indexed.

/usr/share/psi/python/aliases.py is in psi4-data 4.0~beta5+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#

"""Module with functions that call upon those in modules
:py:mod:`proc`, :py:mod:`driver`, and :py:mod:`wrappers`.

Place in this file quickly defined procedures such as
   - aliases for complex methods
   - simple modifications to existing methods

"""
import re
import os
import math
import warnings
import psi4
import p4util
from driver import *
from wrappers import *
#from extend_Molecule import *
from molutil import *

# Python procedures like these can be run directly from the input file or integrated
#   with the energy(), etc. routines by means of lines like those at the end of this file.


def sherrill_gold_standard(name='mp2', **kwargs):
    r"""Function to call the quantum chemical method known as 'Gold Standard'
    in the Sherrill group. Uses :py:func:`~wrappers.complete_basis_set` to evaluate
    the following expression. Two-point extrapolation of the correlation energy
    performed according to :py:func:`~wrappers.corl_xtpl_helgaker_2`.

    .. math:: E_{total}^{\text{Au\_std}} = E_{total,\; \text{SCF}}^{\text{aug-cc-pVQZ}} \; + E_{corl,\; \text{MP2}}^{\text{aug-cc-pV[TQ]Z}} \; + \delta_{\text{MP2}}^{\text{CCSD(T)}}\big\vert_{\text{aug-cc-pVTZ}}

    >>> # [1] single-point energy by this composite method
    >>> energy('sherrill_gold_standard')

    >>> # [2] finite-difference geometry optimization
    >>> optimize('sherrill_gold_standard')

    >>> # [3] finite-difference geometry optimization, overwriting some pre-defined sherrill_gold_standard options
    >>> optimize('sherrill_gold_standard', corl_basis='cc-pV[DT]Z', delta_basis='3-21g')

    """
    lowername = name.lower()
    kwargs = p4util.kwargs_lower(kwargs)

    if not ('func_cbs' in kwargs):
        kwargs['func_cbs'] = energy

    if not ('scf_basis' in kwargs):
        kwargs['scf_basis'] = 'aug-cc-pVQZ'
    if not ('scf_scheme' in kwargs):
        kwargs['scf_scheme'] = highest_1

    if not ('corl_wfn' in kwargs):
        kwargs['corl_wfn'] = 'mp2'
        name = 'mp2'
    if not ('corl_basis' in kwargs):
        kwargs['corl_basis'] = 'aug-cc-pV[TQ]Z'
    if not ('corl_scheme' in kwargs):
        kwargs['corl_scheme'] = corl_xtpl_helgaker_2

    if not ('delta_wfn' in kwargs):
        kwargs['delta_wfn'] = 'ccsd(t)'
    if not ('delta_wfn_lesser' in kwargs):
        kwargs['delta_wfn_lesser'] = 'mp2'
    if not ('delta_basis' in kwargs):
        kwargs['delta_basis'] = 'aug-cc-pVTZ'
    if not ('delta_scheme' in kwargs):
        kwargs['delta_scheme'] = highest_1

    return cbs(name, **kwargs)


def allen_focal_point(name='mp2', **kwargs):
    r"""Function to call Wes Allen-style Focal
    Point Analysis. JCP 127 014306.  Uses
    :py:func:`~wrappers.complete_basis_set` to evaluate the following
    expression. SCF employs a three-point extrapolation according
    to :py:func:`~wrappers.scf_xtpl_helgaker_3`. MP2, CCSD, and
    CCSD(T) employ two-point extrapolation performed according to
    :py:func:`~wrappers.corl_xtpl_helgaker_2`.  CCSDT and CCSDT(Q)
    are plain deltas. This wrapper requires :ref:`Kallay's MRCC code <sec:mrcc>`.

    .. math:: E_{total}^{\text{FPA}} = E_{total,\; \text{SCF}}^{\text{cc-pV[Q56]Z}} \; + E_{corl,\; \text{MP2}}^{\text{cc-pV[56]Z}} \; + \delta_{\text{MP2}}^{\text{CCSD}}\big\vert_{\text{cc-pV[56]Z}} \; + \delta_{\text{CCSD}}^{\text{CCSD(T)}}\big\vert_{\text{cc-pV[56]Z}} \; + \delta_{\text{CCSD(T)}}^{\text{CCSDT}}\big\vert_{\text{cc-pVTZ}} \; + \delta_{\text{CCSDT}}^{\text{CCSDT(Q)}}\big\vert_{\text{cc-pVDZ}}

    >>> # [1] single-point energy by this composite method
    >>> energy('allen_focal_point')

    >>> # [2] finite-difference geometry optimization embarrasingly parallel
    >>> optimize('allen_focal_point', mode='sow')

    """
    lowername = name.lower()
    kwargs = p4util.kwargs_lower(kwargs)

    if not ('func_cbs' in kwargs):
        kwargs['func_cbs'] = energy

    # SCF
    if not ('scf_basis' in kwargs):
        kwargs['scf_basis'] = 'cc-pV[Q56]Z'
    if not ('scf_scheme' in kwargs):
        kwargs['scf_scheme'] = scf_xtpl_helgaker_3

    # delta MP2 - SCF
    if not ('corl_wfn' in kwargs):
        kwargs['corl_wfn'] = 'mp2'
        name = 'mp2'
    if not ('corl_basis' in kwargs):
        kwargs['corl_basis'] = 'cc-pV[56]Z'
    if not ('corl_scheme' in kwargs):
        kwargs['corl_scheme'] = corl_xtpl_helgaker_2

    # delta CCSD - MP2
    if not ('delta_wfn' in kwargs):
        kwargs['delta_wfn'] = 'mrccsd'
    if not ('delta_wfn_lesser' in kwargs):
        kwargs['delta_wfn_lesser'] = 'mp2'
    if not ('delta_basis' in kwargs):
        kwargs['delta_basis'] = 'cc-pV[56]Z'
    if not ('delta_scheme' in kwargs):
        kwargs['delta_scheme'] = corl_xtpl_helgaker_2

    # delta CCSD(T) - CCSD
    if not ('delta2_wfn' in kwargs):
        kwargs['delta2_wfn'] = 'mrccsd(t)'
    if not ('delta2_wfn_lesser' in kwargs):
        kwargs['delta2_wfn_lesser'] = 'mrccsd'
    if not ('delta2_basis' in kwargs):
        kwargs['delta2_basis'] = 'cc-pV[56]Z'
    if not ('delta2_scheme' in kwargs):
        kwargs['delta2_scheme'] = corl_xtpl_helgaker_2

    # delta CCSDT - CCSD(T)
    if not ('delta3_wfn' in kwargs):
        kwargs['delta3_wfn'] = 'mrccsdt'
    if not ('delta3_wfn_lesser' in kwargs):
        kwargs['delta3_wfn_lesser'] = 'mrccsd(t)'
    if not ('delta3_basis' in kwargs):
        kwargs['delta3_basis'] = 'cc-pVTZ'
    if not ('delta3_scheme' in kwargs):
        kwargs['delta3_scheme'] = highest_1

    # delta CCSDT(Q) - CCSDT
    if not ('delta4_wfn' in kwargs):
        kwargs['delta4_wfn'] = 'mrccsdt(q)'
    if not ('delta4_wfn_lesser' in kwargs):
        kwargs['delta4_wfn_lesser'] = 'mrccsdt'
    if not ('delta4_basis' in kwargs):
        kwargs['delta4_basis'] = 'cc-pVDZ'
    if not ('delta4_scheme' in kwargs):
        kwargs['delta4_scheme'] = highest_1

    return cbs(name, **kwargs)


#def run_mp2_5(name, **kwargs):
#    r"""Function that computes MP2.5 energy from results of a FNOCC
#    MP3 calculation.
#
#    .. math:: E_{total}^{\text{MP2.5}} = E_{total,\; \text{SCF}} \; + E_{corl,\; \text{MP2}} + E_{corl, \; \text{MP3}}
#
#    :PSI variables:
#
#    .. hlist::
#       :columns: 1
#
#       * :psivar:`MP2.5 TOTAL ENERGY <MP2.5TOTALENERGY>`
#       * :psivar:`MP2.5 CORRELATION ENERGY <MP2.5CORRELATIONENERGY>`
#
#    >>> energy('mp2.5')
#
#    """
#    lowername = name.lower()
#    kwargs = kwargs_lower(kwargs)
#
#    # Run detci calculation and collect conventional quantities
#    energy('mp3', **kwargs)
#    e_scf = psi4.get_variable('SCF TOTAL ENERGY')
#    ce_mp2 = psi4.get_variable('MP2 CORRELATION ENERGY')
#    ce_mp3 = psi4.get_variable('MP3 CORRELATION ENERGY')
#    e_mp2 = e_scf + ce_mp2
#    e_mp3 = e_scf + ce_mp3
#
#    # Compute quantities particular to MP2.5
#    ce_mp25 = 0.5 * (ce_mp2 + ce_mp3)
#    e_mp25 = e_scf + ce_mp25
#    psi4.set_variable('MP2.5 CORRELATION ENERGY', ce_mp25)
#    psi4.set_variable('MP2.5 TOTAL ENERGY', e_mp25)
#    psi4.set_variable('CURRENT CORRELATION ENERGY', ce_mp25)
#    psi4.set_variable('CURRENT ENERGY', e_mp25)
#
#    # build string of title banner and print results
#    banners = ''
#    banners += """psi4.print_out('\\n')\n"""
#    banners += """banner(' MP2.5 ')\n"""
#    banners += """psi4.print_out('\\n')\n\n"""
#    exec(banners)
#
#    tables = ''
#    tables += """  SCF total energy:                        %16.8f\n""" % (e_scf)
#    tables += """  MP2 total energy:                        %16.8f\n""" % (e_mp2)
#    tables += """  MP2.5 total energy:                      %16.8f\n""" % (e_mp25)
#    tables += """  MP3 total energy:                        %16.8f\n\n""" % (e_mp3)
#    tables += """  MP2 correlation energy:                  %16.8f\n""" % (ce_mp2)
#    tables += """  MP2.5 correlation energy:                %16.8f\n""" % (ce_mp25)
#    tables += """  MP3 correlation energy:                  %16.8f\n""" % (ce_mp3)
#    psi4.print_out(tables)
#
#    return e_mp25


# A direct translation of a plugin input file into a function call. Function calls are the only
#     way to call plugins in sow/reap mode for db(), opt(), etc. This isn't best practices
#     but is an example of what to do for a more complicated procedure where different options
#     are set for different qc steps.
#def run_plugin_omega(name, **kwargs):
#    r"""Function encoding sequence of PSI module and plugin calls, as well
#    as typical options, to access Rob Parrish's omega plugin.
#
#    >>> energy('plugin_omega')
#
#    """
#    lowername = name.lower()
#    kwargs = p4util.kwargs_lower(kwargs)
#
#    plugfile = psi4.Process.environment["PSIDATADIR"] + "/../tests/plugin_omega/plugin_omega.so"
#    psi4.plugin_load("%s" % (plugfile))
#
#    psi4.set_global_option('BASIS', 'AUG-CC-PVDZ')
#    psi4.set_global_option('DF_BASIS_SCF', 'AUG-CC-PVDZ-RI')
#    psi4.set_global_option('REFERENCE', 'UHF')
#    psi4.set_global_option('SCF_TYPE', 'DF')
#    energy('scf', **kwargs)
#
#    psi4.set_global_option('dft_functional', 'wB97')
#    psi4.set_global_option('dft_order_spherical', 25)
#    psi4.set_global_option('dft_num_radial', 35)
#    psi4.set_global_option('omega_procedure', 'ip')
#    psi4.set_global_option('maxiter', 50)
#    psi4.set_global_option('d_convergence', 5)
#    psi4.set_global_option('e_convergence', 7)
#    psi4.plugin("plugin_omega.so")
#
#    return psi4.get_variable('SCF TOTAL ENERGY')


# Integration with driver routines
#procedures['energy']['mp2.5'] = run_mp2_5
procedures['energy']['sherrill_gold_standard'] = sherrill_gold_standard
procedures['energy']['allen_focal_point'] = allen_focal_point
#procedures['energy']['plugin_omega'] = run_plugin_omega