This file is indexed.

/usr/share/psi/python/diatomic.py is in psi4-data 4.0~beta5+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#

import psi4
import p4const
from math import sqrt, pi
from diatomic_fits import *

def anharmonicity(rvals, energies, mol = None):
    """Generates spectroscopic constants for a diatomic molecules.
       Fits a diatomic potential energy curve using either a 5 or 9 point Legendre fit, locates the minimum
       energy point, and then applies second order vibrational perturbation theory to obtain spectroscopic
       constants.  The r values provided must bracket the minimum energy point, or an error will result.

       A dictionary with the following keys, which correspond to spectroscopic constants, is returned:

       :type rvals: list
       :param rvals: The bond lengths (in Angstrom) for which energies are
           provided of length either 5 or 9 but must be the same length as
           the energies array

       :type energies: list
       :param energies: The energies (Eh) computed at the bond lengths in the rvals list

       :returns: (*dict*) Keys: "re", "r0", "we", "wexe", "nu", "ZPVE(harmonic)", "ZPVE(anharmonic)", "Be", "B0", "ae", "De"
                 corresponding to the spectroscopic constants in cm-1
    """

    angstrom_to_bohr = 1.0 / p4const.psi_bohr2angstroms
    angstrom_to_meter = 10e-10;

    if len(rvals) != len(energies):
        raise Exception("The number of energies must match the number of distances")

    npoints = len(rvals)

    if npoints != 5 and npoints != 9:
        raise Exception("Only 5- or 9-point fits are implemented right now")

    psi4.print_out("\n\nPerforming a %d-point fit\n" % npoints)

    psi4.print_out("\nOptimizing geometry based on current surface:\n\n");
    if (npoints == 5):
        optx = rvals[2]
    elif (npoints == 9):
        optx = rvals[4]

    # Molecule can be passed in be user. Look at the function definition above.
    if mol == None:
        mol = psi4.get_active_molecule()
    natoms = mol.natom()
    if natoms != 2:
        raise Exception("The current molecule must be a diatomic for this code to work!")
    m1 = mol.mass(0)
    m2 = mol.mass(1)

    maxit = 30
    thres = 1.0e-9
    for i in range(maxit):
        if (npoints == 5):
            grad= first_deriv_5pt(rvals, energies, optx)
            secd = second_deriv_5pt(rvals, energies, optx)
            energy = function_5pt(rvals, energies, optx)
        elif (npoints == 9):
            grad = first_deriv_9pt(rvals, energies, optx)
            secd = second_deriv_9pt(rvals, energies, optx)
            energy = function_9pt(rvals, energies, optx)
        psi4.print_out("       E = %20.14f, x = %14.7f, grad = %20.14f\n" % (energy, optx, grad))
        if abs(grad) < thres:
            break
        optx -= grad / secd;
    psi4.print_out(" Final E = %20.14f, x = %14.7f, grad = %20.14f\n" % (function_5pt(rvals, energies, optx), optx, grad));

    if optx < min(rvals):
        raise Exception("Minimum energy point is outside range of points provided.  Use a lower range of r values.")
    if optx > max(rvals):
        raise Exception("Minimum energy point is outside range of points provided.  Use a higher range of r values.")

    if (npoints == 5):
        energy = function_5pt(rvals, energies, optx)
        first = first_deriv_5pt(rvals, energies, optx)
        secd = second_deriv_5pt(rvals, energies, optx) * p4const.psi_hartree2aJ
        third = third_deriv_5pt(rvals, energies, optx) * p4const.psi_hartree2aJ
        fourth = fourth_deriv_5pt(rvals, energies, optx) * p4const.psi_hartree2aJ
    elif (npoints == 9):
        energy = function_9pt(rvals, energies, optx)
        first = first_deriv_9pt(rvals, energies, optx)
        secd = second_deriv_9pt(rvals, energies, optx) * p4const.psi_hartree2aJ
        third = third_deriv_9pt(rvals, energies, optx) * p4const.psi_hartree2aJ
        fourth = fourth_deriv_9pt(rvals, energies, optx) * p4const.psi_hartree2aJ

    psi4.print_out("\nEquilibrium Energy %20.14f Hartrees\n" % energy)
    psi4.print_out("Gradient           %20.14f\n" % first)
    psi4.print_out("Quadratic Force Constant %14.7f MDYNE/A\n" % secd)
    psi4.print_out("Cubic Force Constant     %14.7f MDYNE/A**2\n" % third)
    psi4.print_out("Quartic Force Constant   %14.7f MDYNE/A**3\n" % fourth)

    hbar = p4const.psi_h / (2.0 * pi)
    mu = ((m1*m2)/(m1+m2))*p4const.psi_amu2kg
    we = 5.3088375e-11*sqrt(secd/mu)
    wexe = (1.2415491e-6)*(we/secd)**2 * ((5.0*third*third)/(3.0*secd)-fourth)

    # Rotational constant: Be
    I = ((m1*m2)/(m1+m2)) * p4const.psi_amu2kg * (optx * angstrom_to_meter)**2
    B = p4const.psi_h / (8.0 * pi**2 * p4const.psi_c * I)

    # alpha_e and quartic centrifugal distortion constant
    ae = -(6.0 * B**2 / we) * ((1.05052209e-3*we*third)/(sqrt(B * secd**3))+1.0)
    de = 4.0*B**3 / we**2

    # B0 and r0 (plus re check using Be)
    B0 = B - ae / 2.0
    r0 = sqrt(p4const.psi_h / (8.0 * pi**2 * mu * p4const.psi_c * B0))
    recheck = sqrt(p4const.psi_h / (8.0 * pi**2 * mu * p4const.psi_c * B))
    r0 /= angstrom_to_meter;
    recheck /= angstrom_to_meter;

    # Fundamental frequency nu
    nu = we - 2.0 * wexe;
    zpve_nu = 0.5 * we - 0.25 * wexe;

    psi4.print_out("\nre     = %10.6f A  check: %10.6f\n" % (optx, recheck))
    psi4.print_out("r0       = %10.6f A\n" % r0)
    psi4.print_out("we       = %10.4f cm-1\n" % we)
    psi4.print_out("wexe     = %10.4f cm-1\n" % wexe)
    psi4.print_out("nu       = %10.4f cm-1\n" % nu)
    psi4.print_out("ZPVE(nu) = %10.4f cm-1\n" % zpve_nu)
    psi4.print_out("Be       = %10.4f cm-1\n" % B)
    psi4.print_out("B0       = %10.4f cm-1\n" % B0)
    psi4.print_out("ae       = %10.4f cm-1\n" % ae)
    psi4.print_out("De       = %10.7f cm-1\n" % de)
    results = {
               "re"               :  optx,
               "r0"               :  r0,
               "we"               :  we,
               "wexe"             :  wexe,
               "nu"               :  nu,
               "ZPVE(harmonic)"   :  zpve_nu,
               "ZPVE(anharmonic)" :  zpve_nu,
               "Be"               :  B,
               "B0"               :  B0,
               "ae"               :  ae,
               "De"               :  de
              }
    return results