/usr/share/psi/python/diatomic.py is in psi4-data 4.0~beta5+dfsg-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | #
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#
import psi4
import p4const
from math import sqrt, pi
from diatomic_fits import *
def anharmonicity(rvals, energies, mol = None):
"""Generates spectroscopic constants for a diatomic molecules.
Fits a diatomic potential energy curve using either a 5 or 9 point Legendre fit, locates the minimum
energy point, and then applies second order vibrational perturbation theory to obtain spectroscopic
constants. The r values provided must bracket the minimum energy point, or an error will result.
A dictionary with the following keys, which correspond to spectroscopic constants, is returned:
:type rvals: list
:param rvals: The bond lengths (in Angstrom) for which energies are
provided of length either 5 or 9 but must be the same length as
the energies array
:type energies: list
:param energies: The energies (Eh) computed at the bond lengths in the rvals list
:returns: (*dict*) Keys: "re", "r0", "we", "wexe", "nu", "ZPVE(harmonic)", "ZPVE(anharmonic)", "Be", "B0", "ae", "De"
corresponding to the spectroscopic constants in cm-1
"""
angstrom_to_bohr = 1.0 / p4const.psi_bohr2angstroms
angstrom_to_meter = 10e-10;
if len(rvals) != len(energies):
raise Exception("The number of energies must match the number of distances")
npoints = len(rvals)
if npoints != 5 and npoints != 9:
raise Exception("Only 5- or 9-point fits are implemented right now")
psi4.print_out("\n\nPerforming a %d-point fit\n" % npoints)
psi4.print_out("\nOptimizing geometry based on current surface:\n\n");
if (npoints == 5):
optx = rvals[2]
elif (npoints == 9):
optx = rvals[4]
# Molecule can be passed in be user. Look at the function definition above.
if mol == None:
mol = psi4.get_active_molecule()
natoms = mol.natom()
if natoms != 2:
raise Exception("The current molecule must be a diatomic for this code to work!")
m1 = mol.mass(0)
m2 = mol.mass(1)
maxit = 30
thres = 1.0e-9
for i in range(maxit):
if (npoints == 5):
grad= first_deriv_5pt(rvals, energies, optx)
secd = second_deriv_5pt(rvals, energies, optx)
energy = function_5pt(rvals, energies, optx)
elif (npoints == 9):
grad = first_deriv_9pt(rvals, energies, optx)
secd = second_deriv_9pt(rvals, energies, optx)
energy = function_9pt(rvals, energies, optx)
psi4.print_out(" E = %20.14f, x = %14.7f, grad = %20.14f\n" % (energy, optx, grad))
if abs(grad) < thres:
break
optx -= grad / secd;
psi4.print_out(" Final E = %20.14f, x = %14.7f, grad = %20.14f\n" % (function_5pt(rvals, energies, optx), optx, grad));
if optx < min(rvals):
raise Exception("Minimum energy point is outside range of points provided. Use a lower range of r values.")
if optx > max(rvals):
raise Exception("Minimum energy point is outside range of points provided. Use a higher range of r values.")
if (npoints == 5):
energy = function_5pt(rvals, energies, optx)
first = first_deriv_5pt(rvals, energies, optx)
secd = second_deriv_5pt(rvals, energies, optx) * p4const.psi_hartree2aJ
third = third_deriv_5pt(rvals, energies, optx) * p4const.psi_hartree2aJ
fourth = fourth_deriv_5pt(rvals, energies, optx) * p4const.psi_hartree2aJ
elif (npoints == 9):
energy = function_9pt(rvals, energies, optx)
first = first_deriv_9pt(rvals, energies, optx)
secd = second_deriv_9pt(rvals, energies, optx) * p4const.psi_hartree2aJ
third = third_deriv_9pt(rvals, energies, optx) * p4const.psi_hartree2aJ
fourth = fourth_deriv_9pt(rvals, energies, optx) * p4const.psi_hartree2aJ
psi4.print_out("\nEquilibrium Energy %20.14f Hartrees\n" % energy)
psi4.print_out("Gradient %20.14f\n" % first)
psi4.print_out("Quadratic Force Constant %14.7f MDYNE/A\n" % secd)
psi4.print_out("Cubic Force Constant %14.7f MDYNE/A**2\n" % third)
psi4.print_out("Quartic Force Constant %14.7f MDYNE/A**3\n" % fourth)
hbar = p4const.psi_h / (2.0 * pi)
mu = ((m1*m2)/(m1+m2))*p4const.psi_amu2kg
we = 5.3088375e-11*sqrt(secd/mu)
wexe = (1.2415491e-6)*(we/secd)**2 * ((5.0*third*third)/(3.0*secd)-fourth)
# Rotational constant: Be
I = ((m1*m2)/(m1+m2)) * p4const.psi_amu2kg * (optx * angstrom_to_meter)**2
B = p4const.psi_h / (8.0 * pi**2 * p4const.psi_c * I)
# alpha_e and quartic centrifugal distortion constant
ae = -(6.0 * B**2 / we) * ((1.05052209e-3*we*third)/(sqrt(B * secd**3))+1.0)
de = 4.0*B**3 / we**2
# B0 and r0 (plus re check using Be)
B0 = B - ae / 2.0
r0 = sqrt(p4const.psi_h / (8.0 * pi**2 * mu * p4const.psi_c * B0))
recheck = sqrt(p4const.psi_h / (8.0 * pi**2 * mu * p4const.psi_c * B))
r0 /= angstrom_to_meter;
recheck /= angstrom_to_meter;
# Fundamental frequency nu
nu = we - 2.0 * wexe;
zpve_nu = 0.5 * we - 0.25 * wexe;
psi4.print_out("\nre = %10.6f A check: %10.6f\n" % (optx, recheck))
psi4.print_out("r0 = %10.6f A\n" % r0)
psi4.print_out("we = %10.4f cm-1\n" % we)
psi4.print_out("wexe = %10.4f cm-1\n" % wexe)
psi4.print_out("nu = %10.4f cm-1\n" % nu)
psi4.print_out("ZPVE(nu) = %10.4f cm-1\n" % zpve_nu)
psi4.print_out("Be = %10.4f cm-1\n" % B)
psi4.print_out("B0 = %10.4f cm-1\n" % B0)
psi4.print_out("ae = %10.4f cm-1\n" % ae)
psi4.print_out("De = %10.7f cm-1\n" % de)
results = {
"re" : optx,
"r0" : r0,
"we" : we,
"wexe" : wexe,
"nu" : nu,
"ZPVE(harmonic)" : zpve_nu,
"ZPVE(anharmonic)" : zpve_nu,
"Be" : B,
"B0" : B0,
"ae" : ae,
"De" : de
}
return results
|