/usr/share/psi/python/driver.py is in psi4-data 4.0~beta5+dfsg-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 | #
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#
from __future__ import print_function
"""Module with a *procedures* dictionary specifying available quantum
chemical methods and functions driving the main quantum chemical
functionality, namely single-point energies, geometry optimizations,
properties, and vibrational frequency calculations.
"""
import sys
import psi4
import p4util
import p4const
from proc import *
from functional import *
from p4regex import *
# never import wrappers or aliases into this file
# Procedure lookup tables
procedures = {
'energy': {
'scf' : run_scf,
'mcscf' : run_mcscf,
'dcft' : run_dcft,
'oldmp2' : run_oldmp2,
'dfmp2' : run_dfmp2,
'df-mp2' : run_dfmp2,
'conv-mp2' : run_mp2,
'mp3' : run_mp3,
'mp2.5' : run_mp2_5,
'mp2' : run_mp2_select,
'omp2' : run_omp2,
'scs-omp2' : run_scs_omp2,
'scsn-omp2' : run_scs_omp2,
'scs-mi-omp2' : run_scs_omp2,
'scs-omp2-vdw' : run_scs_omp2,
'sos-omp2' : run_sos_omp2,
'sos-pi-omp2' : run_sos_omp2,
'omp3' : run_omp3,
'scs-omp3' : run_scs_omp3,
'scsn-omp3' : run_scs_omp3,
'scs-mi-omp3' : run_scs_omp3,
'scs-omp3-vdw' : run_scs_omp3,
'sos-omp3' : run_sos_omp3,
'sos-pi-omp3' : run_sos_omp3,
'ocepa' : run_ocepa,
'cepa0' : run_cepa0,
'omp2.5' : run_omp2_5,
'sapt0' : run_sapt,
'sapt2' : run_sapt,
'sapt2+' : run_sapt,
'sapt2+(3)' : run_sapt,
'sapt2+3' : run_sapt,
'sapt2+(ccd)' : run_sapt,
'sapt2+(3)(ccd)': run_sapt,
'sapt2+3(ccd)' : run_sapt,
'sapt0-ct' : run_sapt_ct,
'sapt2-ct' : run_sapt_ct,
'sapt2+-ct' : run_sapt_ct,
'sapt2+(3)-ct' : run_sapt_ct,
'sapt2+3-ct' : run_sapt_ct,
'sapt2+(ccd)-ct' : run_sapt_ct,
'sapt2+(3)(ccd)-ct' : run_sapt_ct,
'sapt2+3(ccd)-ct' : run_sapt_ct,
'mp2c' : run_mp2c,
'ccenergy' : run_ccenergy, # full control over ccenergy
'ccsd' : run_ccenergy,
'ccsd(t)' : run_ccenergy,
'ccsd(at)' : run_ccenergy,
'a-ccsd(t)' : run_ccenergy,
'cc2' : run_ccenergy,
'cc3' : run_ccenergy,
'mrcc' : run_mrcc, # interface to Kallay's MRCC program
'bccd' : run_bccd,
'bccd(t)' : run_bccd_t,
'eom-ccsd' : run_eom_cc,
'eom-cc2' : run_eom_cc,
'eom-cc3' : run_eom_cc,
'detci' : run_detci, # full control over detci
'mp' : run_detci, # arbitrary order mp(n)
'detci-mp' : run_detci, # arbitrary order mp(n)
'zapt' : run_detci, # arbitrary order zapt(n)
'cisd' : run_detci,
'cisdt' : run_detci,
'cisdtq' : run_detci,
'ci' : run_detci, # arbitrary order ci(n)
'fci' : run_detci,
'adc' : run_adc,
'cphf' : run_libfock,
'cis' : run_libfock,
'tdhf' : run_libfock,
'cpks' : run_libfock,
'tda' : run_libfock,
'tddft' : run_libfock,
'psimrcc' : run_psimrcc,
'psimrcc_scf' : run_psimrcc_scf,
'hf' : run_scf,
'rhf' : run_scf,
'uhf' : run_scf,
'rohf' : run_scf,
'rscf' : run_scf,
'uscf' : run_scf,
'roscf' : run_scf,
'qcisd' : run_fnocc,
'qcisd(t)' : run_fnocc,
'mp4(sdq)' : run_fnocc,
'fno-ccsd' : run_fnocc,
'fno-ccsd(t)' : run_fnocc,
'fno-qcisd' : run_fnocc,
'fno-qcisd(t)' : run_fnocc,
'fno-mp3' : run_fnocc,
'fno-mp4(sdq)' : run_fnocc,
'fno-mp4' : run_fnocc,
'fnocc-mp' : run_fnocc,
'df-ccsd' : run_fnodfcc,
'df-ccsd(t)' : run_fnodfcc,
'fno-df-ccsd' : run_fnodfcc,
'fno-df-ccsd(t)': run_fnodfcc,
'fno-cepa(0)' : run_cepa,
'fno-cepa(1)' : run_cepa,
'fno-cepa(3)' : run_cepa,
'fno-acpf' : run_cepa,
'fno-aqcc' : run_cepa,
'fno-sdci' : run_cepa,
'fno-dci' : run_cepa,
'cepa(0)' : run_cepa,
'cepa(1)' : run_cepa,
'cepa(3)' : run_cepa,
'acpf' : run_cepa,
'aqcc' : run_cepa,
'sdci' : run_cepa,
'dci' : run_cepa,
# Upon adding a method to this list, add it to the docstring in energy() below
# If you must add an alias to this list (e.g., dfmp2/df-mp2), please search the
# whole driver to find uses of name in return values and psi variables and
# extend the logic to encompass the new alias.
},
'gradient' : {
'scf' : run_scf_gradient,
'ccsd' : run_cc_gradient,
'ccsd(t)' : run_cc_gradient,
'mp2' : run_mp2_select_gradient,
'conv-mp2' : run_mp2_gradient,
'df-mp2' : run_dfmp2_gradient,
'dfmp2' : run_dfmp2_gradient,
'eom-ccsd' : run_eom_cc_gradient,
'dcft' : run_dcft_gradient,
'omp2' : run_omp2_gradient,
'omp3' : run_omp3_gradient,
'mp3' : run_mp3_gradient,
'mp2.5' : run_mp2_5_gradient,
'omp2.5' : run_omp2_5_gradient,
'cepa0' : run_cepa0_gradient,
'ocepa' : run_ocepa_gradient
# Upon adding a method to this list, add it to the docstring in optimize() below
},
'hessian' : {
# Upon adding a method to this list, add it to the docstring in frequency() below
},
'property' : {
'scf' : run_scf_property,
'cc2' : run_cc_property,
'ccsd' : run_cc_property,
'df-mp2' : run_dfmp2_property,
'dfmp2' : run_dfmp2_property,
'eom-cc2' : run_cc_property,
'eom-ccsd' : run_cc_property,
# Upon adding a method to this list, add it to the docstring in property() below
}}
# Integrate DFT with driver routines
for ssuper in superfunctional_list():
procedures['energy'][ssuper.name().lower()] = run_dft
for ssuper in superfunctional_list():
if ((not ssuper.is_c_hybrid()) and (not ssuper.is_c_lrc()) and (not ssuper.is_x_lrc())):
procedures['gradient'][ssuper.name().lower()] = run_dft_gradient
def energy(name, **kwargs):
r"""Function to compute the single-point electronic energy.
:returns: (*float*) Total electronic energy in Hartrees. SAPT returns interaction energy.
:PSI variables:
.. hlist::
:columns: 1
* :psivar:`CURRENT ENERGY <CURRENTENERGY>`
* :psivar:`CURRENT REFERENCE ENERGY <CURRENTREFERENCEENERGY>`
* :psivar:`CURRENT CORRELATION ENERGY <CURRENTCORRELATIONENERGY>`
.. comment In this table immediately below, place methods that should only be called by
.. comment developers at present. This table won't show up in the manual.
.. comment
.. comment .. _`table:energy_devel`:
.. comment
.. comment +-------------------------+---------------------------------------------------------------------------------------+
.. comment | name | calls method |
.. comment +=========================+=======================================================================================+
.. comment | mp2c | coupled MP2 (MP2C) |
.. comment +-------------------------+---------------------------------------------------------------------------------------+
.. comment | mp2-drpa | random phase approximation? |
.. comment +-------------------------+---------------------------------------------------------------------------------------+
.. comment | cphf | coupled-perturbed Hartree-Fock? |
.. comment +-------------------------+---------------------------------------------------------------------------------------+
.. comment | cpks | coupled-perturbed Kohn-Sham? |
.. comment +-------------------------+---------------------------------------------------------------------------------------+
.. comment | cis | CI singles (CIS) |
.. comment +-------------------------+---------------------------------------------------------------------------------------+
.. comment | tda | Tamm-Dankoff approximation (TDA) |
.. comment +-------------------------+---------------------------------------------------------------------------------------+
.. comment | tdhf | time-dependent HF (TDHF) |
.. comment +-------------------------+---------------------------------------------------------------------------------------+
.. comment | tddft | time-dependent DFT (TDDFT) |
.. comment +-------------------------+---------------------------------------------------------------------------------------+
.. _`table:energy_gen`:
+-------------------------+---------------------------------------------------------------------------------------+
| name | calls method |
+=========================+=======================================================================================+
| scf | Hartree--Fock (HF) or density functional theory (DFT) :ref:`[manual] <sec:scf>` |
+-------------------------+---------------------------------------------------------------------------------------+
| dcft | density cumulant functional theory :ref:`[manual] <sec:dcft>` |
+-------------------------+---------------------------------------------------------------------------------------+
| mcscf | multiconfigurational self consistent field (SCF) |
+-------------------------+---------------------------------------------------------------------------------------+
| mp2 | 2nd-order Moller-Plesset perturbation theory (MP2) :ref:`[manual] <sec:dfmp2>` |
+-------------------------+---------------------------------------------------------------------------------------+
| df-mp2 | MP2 with density fitting :ref:`[manual] <sec:dfmp2>` |
+-------------------------+---------------------------------------------------------------------------------------+
| conv-mp2 | conventional MP2 (non-density-fitting) :ref:`[manual] <sec:convocc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| mp3 | 3rd-order Moller-Plesset perturbation theory (MP3) :ref:`[manual] <sec:convocc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| mp2.5 | average of MP2 and MP3 :ref:`[manual] <sec:convocc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| mp4(sdq) | 4th-order MP perturbation theory (MP4) less triples :ref:`[manual] <sec:fnompn>` |
+-------------------------+---------------------------------------------------------------------------------------+
| mp4 | full MP4 :ref:`[manual] <sec:fnompn>` |
+-------------------------+---------------------------------------------------------------------------------------+
| mp\ *n* | *n*\ th-order Moller--Plesset (MP) perturbation theory :ref:`[manual] <sec:arbpt>` |
+-------------------------+---------------------------------------------------------------------------------------+
| zapt\ *n* | *n*\ th-order z-averaged perturbation theory (ZAPT) :ref:`[manual] <sec:arbpt>` |
+-------------------------+---------------------------------------------------------------------------------------+
| omp2 | orbital-optimized second-order MP perturbation theory :ref:`[manual] <sec:occ>` |
+-------------------------+---------------------------------------------------------------------------------------+
| omp3 | orbital-optimized third-order MP perturbation theory :ref:`[manual] <sec:occ>` |
+-------------------------+---------------------------------------------------------------------------------------+
| omp2.5 | orbital-optimized MP2.5 :ref:`[manual] <sec:occ>` |
+-------------------------+---------------------------------------------------------------------------------------+
| ocepa | orbital-optimized coupled electron pair approximation :ref:`[manual] <sec:occ>` |
+-------------------------+---------------------------------------------------------------------------------------+
| cepa0 | coupled electron pair approximation, equiv. linear. CCD :ref:`[manual] <sec:convocc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| cepa(0) | coupled electron pair approximation variant 0 :ref:`[manual] <sec:fnocepa>` |
+-------------------------+---------------------------------------------------------------------------------------+
| cepa(1) | coupled electron pair approximation variant 1 :ref:`[manual] <sec:fnocepa>` |
+-------------------------+---------------------------------------------------------------------------------------+
| cepa(3) | coupled electron pair approximation variant 3 :ref:`[manual] <sec:fnocepa>` |
+-------------------------+---------------------------------------------------------------------------------------+
| acpf | averaged coupled-pair functional :ref:`[manual] <sec:fnocepa>` |
+-------------------------+---------------------------------------------------------------------------------------+
| aqcc | averaged quadratic coupled cluster :ref:`[manual] <sec:fnocepa>` |
+-------------------------+---------------------------------------------------------------------------------------+
| qcisd | quadratic CI singles doubles (QCISD) :ref:`[manual] <sec:fnocc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| cc2 | approximate coupled cluster singles and doubles (CC2) :ref:`[manual] <sec:cc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| ccsd | coupled cluster singles and doubles (CCSD) :ref:`[manual] <sec:cc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| bccd | Brueckner coupled cluster doubles (BCCD) :ref:`[manual] <sec:cc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| qcisd(t) | QCISD with perturbative triples :ref:`[manual] <sec:fnocc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| ccsd(t) | CCSD with perturbative triples (CCSD(T)) :ref:`[manual] <sec:cc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| fno-df-ccsd(t) | CCSD(T) with density fitting and frozen natural orbitals :ref:`[manual] <sec:fnocc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| bccd(t) | BCCD with perturbative triples :ref:`[manual] <sec:cc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| cc3 | approximate CC singles, doubles, and triples (CC3) :ref:`[manual] <sec:cc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| ccenergy | **expert** full control over ccenergy module |
+-------------------------+---------------------------------------------------------------------------------------+
| cisd | configuration interaction (CI) singles and doubles (CISD) :ref:`[manual] <sec:ci>` |
+-------------------------+---------------------------------------------------------------------------------------+
| cisdt | CI singles, doubles, and triples (CISDT) :ref:`[manual] <sec:ci>` |
+-------------------------+---------------------------------------------------------------------------------------+
| cisdtq | CI singles, doubles, triples, and quadruples (CISDTQ) :ref:`[manual] <sec:ci>` |
+-------------------------+---------------------------------------------------------------------------------------+
| ci\ *n* | *n*\ th-order CI :ref:`[manual] <sec:ci>` |
+-------------------------+---------------------------------------------------------------------------------------+
| fci | full configuration interaction (FCI) :ref:`[manual] <sec:ci>` |
+-------------------------+---------------------------------------------------------------------------------------+
| detci | **expert** full control over detci module |
+-------------------------+---------------------------------------------------------------------------------------+
| gaussian-2 (g2) | gaussian-2 composite method :ref:`[manual] <sec:fnogn>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt0 | 0th-order symmetry adapted perturbation theory (SAPT) :ref:`[manual] <sec:sapt>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt2 | 2nd-order SAPT, traditional definition :ref:`[manual] <sec:sapt>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt2+ | SAPT including all 2nd-order terms :ref:`[manual] <sec:sapt>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt2+(3) | SAPT including perturbative triples :ref:`[manual] <sec:sapt>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt2+3 | SAPT including all 3rd-order terms :ref:`[manual] <sec:sapt>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt2+(ccd) | SAPT2+ with CC-based dispersion :ref:`[manual] <sec:sapt>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt2+(3)(ccd) | SAPT2+(3) with CC-based dispersion :ref:`[manual] <sec:sapt>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt2+3(ccd) | SAPT2+3 with CC-based dispersion :ref:`[manual] <sec:sapt>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt0-ct | 0th-order SAPT plus charge transfer (CT) calculation :ref:`[manual] <sec:saptct>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt2-ct | SAPT2 plus CT :ref:`[manual] <sec:saptct>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt2+-ct | SAPT2+ plus CT :ref:`[manual] <sec:saptct>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt2+(3)-ct | SAPT2+(3) plus CT :ref:`[manual] <sec:saptct>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt2+3-ct | SAPT2+3 plus CT :ref:`[manual] <sec:saptct>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt2+(ccd)-ct | SAPT2+(CCD) plus CT :ref:`[manual] <sec:saptct>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt2+(3)(ccd)-ct | SAPT2+(3)(CCD) plus CT :ref:`[manual] <sec:saptct>` |
+-------------------------+---------------------------------------------------------------------------------------+
| sapt2+3(ccd)-ct | SAPT2+3(CCD) plus CT :ref:`[manual] <sec:saptct>` |
+-------------------------+---------------------------------------------------------------------------------------+
| adc | 2nd-order algebraic diagrammatic construction (ADC) :ref:`[manual] <sec:adc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| eom-cc2 | EOM-CC2 :ref:`[manual] <sec:eomcc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| eom-ccsd | equation of motion (EOM) CCSD :ref:`[manual] <sec:eomcc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| eom-cc3 | EOM-CC3 :ref:`[manual] <sec:eomcc>` |
+-------------------------+---------------------------------------------------------------------------------------+
.. _`table:energy_scf`:
+-------------------------+---------------------------------------------------------------------------------------+
| name | calls method (aliases to *name* = 'scf') |
+=========================+=======================================================================================+
| hf | HF |
+-------------------------+---------------------------------------------------------------------------------------+
| rhf | HF with restricted reference |
+-------------------------+---------------------------------------------------------------------------------------+
| uhf | HF with unrestricted reference |
+-------------------------+---------------------------------------------------------------------------------------+
| rohf | HF with restricted open-shell reference |
+-------------------------+---------------------------------------------------------------------------------------+
| rscf | HF or DFT with restricted reference |
+-------------------------+---------------------------------------------------------------------------------------+
| uscf | HF or DFT with unrestricted reference |
+-------------------------+---------------------------------------------------------------------------------------+
| roscf | HF or DFT with restricted open-shell reference |
+-------------------------+---------------------------------------------------------------------------------------+
.. include:: autodoc_dft_energy.rst
.. _`table:energy_mrcc`:
+-------------------------+---------------------------------------------------------------------------------------+
| name | calls method in Kallay's MRCC program :ref:`[manual] <sec:mrcc>` |
+=========================+=======================================================================================+
| mrccsd | CC through doubles |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdt | CC through triples |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtq | CC through quadruples |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtqp | CC through quintuples |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtqph | CC through sextuples |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsd(t) | CC through doubles with perturbative triples |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdt(q) | CC through triples with perturbative quadruples |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtq(p) | CC through quadruples with pertubative quintuples |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtqp(h) | CC through quintuples with pertubative sextuples |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsd(t)_l | |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdt(q)_l | |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtq(p)_l | |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtqp(h)_l | |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdt-1a | CC through doubles with iterative triples (cheapest terms) |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtq-1a | CC through triples with iterative quadruples (cheapest terms) |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtqp-1a | CC through quadruples with iterative quintuples (cheapest terms) |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtqph-1a | CC through quintuples with iterative sextuples (cheapest terms) |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdt-1b | CC through doubles with iterative triples (cheaper terms) |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtq-1b | CC through triples with iterative quadruples (cheaper terms) |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtqp-1b | CC through quadruples with iterative quintuples (cheaper terms) |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtqph-1b | CC through quintuples with iterative sextuples (cheaper terms) |
+-------------------------+---------------------------------------------------------------------------------------+
| mrcc2 | approximate CC through doubles |
+-------------------------+---------------------------------------------------------------------------------------+
| mrcc3 | approximate CC through triples |
+-------------------------+---------------------------------------------------------------------------------------+
| mrcc4 | approximate CC through quadruples |
+-------------------------+---------------------------------------------------------------------------------------+
| mrcc5 | approximate CC through quintuples |
+-------------------------+---------------------------------------------------------------------------------------+
| mrcc6 | approximate CC through sextuples |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdt-3 | CC through doubles with iterative triples (all but the most expensive terms) |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtq-3 | CC through triples with iterative quadruples (all but the most expensive terms) |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtqp-3 | CC through quadruples with iterative quintuples (all but the most expensive terms) |
+-------------------------+---------------------------------------------------------------------------------------+
| mrccsdtqph-3 | CC through quintuples with iterative sextuples (all but the most expensive terms) |
+-------------------------+---------------------------------------------------------------------------------------+
:type name: string
:param name: ``'scf'`` || ``'df-mp2'`` || ``'ci5'`` || etc.
First argument, usually unlabeled. Indicates the computational method
to be applied to the system.
:type molecule: :ref:`molecule <op_py_molecule>`
:param molecule: ``h2o`` || etc.
The target molecule, if not the last molecule defined.
.. comment :type cast_up: :ref:`boolean <op_py_boolean>` or string
.. comment :param cast_up: ``'on'`` || |dl| ``'off'`` |dr| || ``'3-21g'`` || ``'cc-pVDZ'`` || etc.
.. comment Indicates whether, to accelerate convergence for the scf portion of
.. comment the *name* calculation, a preliminary scf should be performed with a
.. comment small basis set (3-21G if a basis name is not supplied as keyword
.. comment value) followed by projection into the full target basis.
.. comment .. deprecated:: Sept-2012
.. comment Use option |scf__basis_guess| instead.
.. comment :type cast_up_df: :ref:`boolean <op_py_boolean>` or string
.. comment :param cast_up_df: ``'on'`` || |dl| ``'off'`` |dr| || ``'cc-pVDZ-RI'`` || ``'aug-cc-pVDZ-JKFIT'`` || etc.
.. comment Indicates whether, when *cast_up* is active, to run the preliminary
.. comment scf in density-fitted mode or what fitting basis to employ (when
.. comment available for all elements, cc-pVDZ-RI is the default).
.. comment .. deprecated:: Sept-2012
.. comment Use option |scf__df_basis_guess| instead.
:type bypass_scf: :ref:`boolean <op_py_boolean>`
:param bypass_scf: ``'on'`` || |dl| ``'off'`` |dr|
Indicates whether, for *name* values built atop of scf calculations,
the scf step is skipped. Suitable when special steps are taken to get
the scf to converge in an explicit preceeding scf step.
:examples:
>>> # [1] Coupled-cluster singles and doubles calculation with psi code
>>> energy('ccsd')
>>> # [2] Charge-transfer SAPT calculation with scf projection from small into
>>> # requested basis, with specified projection fitting basis
>>> set basis_guess true
>>> set df_basis_guess jun-cc-pVDZ-JKFIT
>>> energy('sapt0-ct')
>>> # [3] Arbitrary-order MPn calculation
>>> energy('mp4')
>>> # [4] Converge scf as singlet, then run detci as triplet upon singlet reference
>>> molecule H2 {\\n0 1\\nH\\nH 1 0.74\\n}
>>> energy('scf')
>>> H2.set_multiplicity(3)
>>> energy('detci', bypass_scf=True)
"""
lowername = name.lower()
kwargs = p4util.kwargs_lower(kwargs)
optstash = p4util.OptionsState(
['SCF', 'E_CONVERGENCE'],
['SCF', 'D_CONVERGENCE'],
['E_CONVERGENCE'])
# Make sure the molecule the user provided is the active one
if 'molecule' in kwargs:
activate(kwargs['molecule'])
del kwargs['molecule']
molecule = psi4.get_active_molecule()
molecule.update_geometry()
# Allow specification of methods to arbitrary order
lowername, level = parse_arbitrary_order(lowername)
if level:
kwargs['level'] = level
try:
# Set method-dependent scf convergence criteria
if not psi4.has_option_changed('SCF', 'E_CONVERGENCE'):
if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
psi4.set_local_option('SCF', 'E_CONVERGENCE', 6)
else:
psi4.set_local_option('SCF', 'E_CONVERGENCE', 8)
if not psi4.has_option_changed('SCF', 'D_CONVERGENCE'):
if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
psi4.set_local_option('SCF', 'D_CONVERGENCE', 6)
else:
psi4.set_local_option('SCF', 'D_CONVERGENCE', 8)
# Set post-scf convergence criteria (global will cover all correlated modules)
if not psi4.has_global_option_changed('E_CONVERGENCE'):
if not procedures['energy'][lowername] == run_scf and not procedures['energy'][lowername] == run_dft:
psi4.set_global_option('E_CONVERGENCE', 6)
procedures['energy'][lowername](lowername, **kwargs)
except KeyError:
raise ValidationError('Energy method %s not available.' % (lowername))
optstash.restore()
return psi4.get_variable('CURRENT ENERGY')
def gradient(name, **kwargs):
r"""Function complementary to optimize(). Carries out one gradient pass,
deciding analytic or finite difference.
"""
lowername = name.lower()
kwargs = p4util.kwargs_lower(kwargs)
dertype = 1
optstash = p4util.OptionsState(
['SCF', 'E_CONVERGENCE'],
['SCF', 'D_CONVERGENCE'],
['E_CONVERGENCE'])
# Order of precedence:
# 1. Default for wavefunction
# 2. Value obtained from kwargs, if user changed it
# 3. If user provides a custom 'func' use that
# Allow specification of methods to arbitrary order
lowername, level = parse_arbitrary_order(lowername)
if level:
kwargs['level'] = level
# 1. set the default to that of the provided name
if lowername in procedures['gradient']:
dertype = 1
elif lowername in procedures['energy']:
dertype = 0
func = energy
# 2. Check if the user passes dertype into this function
if 'dertype' in kwargs:
opt_dertype = kwargs['dertype']
if der0th.match(str(opt_dertype)):
dertype = 0
func = energy
elif der1st.match(str(opt_dertype)):
dertype = 1
else:
raise ValidationError('Requested derivative level \'dertype\' %s not valid for helper function optimize.' % (opt_dertype))
# 3. if the user provides a custom function THAT takes precendence
if ('opt_func' in kwargs) or ('func' in kwargs):
if ('func' in kwargs):
kwargs['opt_func'] = kwargs['func']
del kwargs['func']
dertype = 0
func = kwargs['opt_func']
# Summary validation
if (dertype == 1) and (lowername in procedures['gradient']):
pass
elif (dertype == 0) and (func is energy) and (lowername in procedures['energy']):
pass
elif (dertype == 0) and not(func is energy):
pass
else:
raise ValidationError('Requested method \'name\' %s and derivative level \'dertype\' %s are not available.'
% (lowername, dertype))
# no analytic derivatives for scf_type cd
if psi4.get_option('SCF', 'SCF_TYPE') == 'CD':
if (dertype == 1):
raise ValidationError('No analytic derivatives for SCF_TYPE CD.')
# Make sure the molecule the user provided is the active one
if ('molecule' in kwargs):
activate(kwargs['molecule'])
del kwargs['molecule']
molecule = psi4.get_active_molecule()
molecule.update_geometry()
psi4.set_global_option('BASIS', psi4.get_global_option('BASIS'))
# S/R: Mode of operation- whether finite difference opt run in one job or files farmed out
opt_mode = 'continuous'
if ('mode' in kwargs) and (dertype == 0):
opt_mode = kwargs['mode']
if (opt_mode.lower() == 'continuous'):
pass
elif (opt_mode.lower() == 'sow'):
pass
elif (opt_mode.lower() == 'reap'):
if('linkage' in kwargs):
opt_linkage = kwargs['linkage']
else:
raise ValidationError('Optimize execution mode \'reap\' requires a linkage option.')
else:
raise ValidationError('Optimize execution mode \'%s\' not valid.' % (opt_mode))
# Set method-dependent scf convergence criteria (test on procedures['energy'] since that's guaranteed)
if not psi4.has_option_changed('SCF', 'E_CONVERGENCE'):
if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
psi4.set_local_option('SCF', 'E_CONVERGENCE', 8)
else:
psi4.set_local_option('SCF', 'E_CONVERGENCE', 10)
if not psi4.has_option_changed('SCF', 'D_CONVERGENCE'):
if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
psi4.set_local_option('SCF', 'D_CONVERGENCE', 8)
else:
psi4.set_local_option('SCF', 'D_CONVERGENCE', 10)
# Set post-scf convergence criteria (global will cover all correlated modules)
if not psi4.has_global_option_changed('E_CONVERGENCE'):
if not procedures['energy'][lowername] == run_scf and not procedures['energy'][lowername] == run_dft:
psi4.set_global_option('E_CONVERGENCE', 8)
# Does dertype indicate an analytic procedure both exists and is wanted?
if (dertype == 1):
# Nothing to it but to do it. Gradient information is saved
# into the current reference wavefunction
procedures['gradient'][lowername](lowername, **kwargs)
if 'mode' in kwargs and kwargs['mode'].lower() == 'sow':
raise ValidationError('Optimize execution mode \'sow\' not valid for analytic gradient calculation.')
psi4.wavefunction().energy()
optstash.restore()
return psi4.get_variable('CURRENT ENERGY')
else:
# If not, perform finite difference of energies
opt_iter = 1
if ('opt_iter' in kwargs):
opt_iter = kwargs['opt_iter']
if opt_iter == 1:
print('Performing finite difference calculations')
# Obtain list of displacements
displacements = psi4.fd_geoms_1_0()
ndisp = len(displacements)
# This version is pretty dependent on the reference geometry being last (as it is now)
print(' %d displacements needed ...' % (ndisp), end="")
energies = []
# S/R: Write instructions for sow/reap procedure to output file and reap input file
if (opt_mode.lower() == 'sow'):
instructionsO = """\n The optimization sow/reap procedure has been selected through mode='sow'. In addition\n"""
instructionsO += """ to this output file (which contains no quantum chemical calculations), this job\n"""
instructionsO += """ has produced a number of input files (OPT-%s-*.in) for individual components\n""" % (str(opt_iter))
instructionsO += """ and a single input file (OPT-master.in) with an optimize(mode='reap') command.\n"""
instructionsO += """ These files may look very peculiar since they contain processed and pickled python\n"""
instructionsO += """ rather than normal input. Follow the instructions in OPT-master.in to continue.\n\n"""
instructionsO += """ Alternatively, a single-job execution of the gradient may be accessed through\n"""
instructionsO += """ the optimization wrapper option mode='continuous'.\n\n"""
psi4.print_out(instructionsO)
instructionsM = """\n# Follow the instructions below to carry out this optimization cycle.\n#\n"""
instructionsM += """# (1) Run all of the OPT-%s-*.in input files on any variety of computer architecture.\n""" % (str(opt_iter))
instructionsM += """# The output file names must be as given below.\n#\n"""
for rgt in range(ndisp):
pre = 'OPT-' + str(opt_iter) + '-' + str(rgt + 1)
instructionsM += """# psi4 -i %-27s -o %-27s\n""" % (pre + '.in', pre + '.out')
instructionsM += """#\n# (2) Gather all the resulting output files in a directory. Place input file\n"""
instructionsM += """# OPT-master.in into that directory and run it. The job will be minimal in\n"""
instructionsM += """# length and give summary results for the gradient step in its output file.\n#\n"""
if opt_iter == 1:
instructionsM += """# psi4 -i %-27s -o %-27s\n#\n""" % ('OPT-master.in', 'OPT-master.out')
else:
instructionsM += """# psi4 -a -i %-27s -o %-27s\n#\n""" % ('OPT-master.in', 'OPT-master.out')
instructionsM += """# After each optimization iteration, the OPT-master.in file is overwritten so return here\n"""
instructionsM += """# for new instructions. With the use of the psi4 -a flag, OPT-master.out is not\n"""
instructionsM += """# overwritten and so maintains a history of the job. To use the (binary) optimizer\n"""
instructionsM += """# data file to accelerate convergence, the OPT-master jobs must run on the same computer.\n\n"""
fmaster = open('OPT-master.in', 'w')
fmaster.write('# This is a psi4 input file auto-generated from the gradient() wrapper.\n\n')
fmaster.write(p4util.format_molecule_for_input(molecule))
fmaster.write(p4util.format_options_for_input())
p4util.format_kwargs_for_input(fmaster, 2, **kwargs)
fmaster.write("""%s('%s', **kwargs)\n\n""" % (optimize.__name__, lowername))
fmaster.write(instructionsM)
fmaster.close()
for n, displacement in enumerate(displacements):
rfile = 'OPT-%s-%s' % (opt_iter, n + 1)
#rfile = 'OPT-fd-%s' % (n + 1)
# Build string of title banner
banners = ''
banners += """psi4.print_out('\\n')\n"""
banners += """p4util.banner(' Gradient %d Computation: Displacement %d ')\n""" % (opt_iter, n + 1)
banners += """psi4.print_out('\\n')\n\n"""
if (opt_mode.lower() == 'continuous'):
# Print information to output.dat
psi4.print_out('\n')
p4util.banner('Loading displacement %d of %d' % (n + 1, ndisp))
# Print information to the screen
print(' %d' % (n + 1), end="")
if (n + 1) == ndisp:
print('\n', end="")
# Load in displacement into the active molecule
psi4.get_active_molecule().set_geometry(displacement)
# Perform the energy calculation
#E = func(lowername, **kwargs)
func(lowername, **kwargs)
E = psi4.get_variable('CURRENT ENERGY')
#E = func(**kwargs)
# Save the energy
energies.append(E)
# S/R: Write each displaced geometry to an input file
elif (opt_mode.lower() == 'sow'):
psi4.get_active_molecule().set_geometry(displacement)
# S/R: Prepare molecule, options, and kwargs
freagent = open('%s.in' % (rfile), 'w')
freagent.write('# This is a psi4 input file auto-generated from the gradient() wrapper.\n\n')
freagent.write(p4util.format_molecule_for_input(molecule))
freagent.write(p4util.format_options_for_input())
p4util.format_kwargs_for_input(freagent, **kwargs)
# S/R: Prepare function call and energy save
freagent.write("""electronic_energy = %s('%s', **kwargs)\n\n""" % (func.__name__, lowername))
freagent.write("""psi4.print_out('\\nGRADIENT RESULT: computation %d for item %d """ % (os.getpid(), n + 1))
freagent.write("""yields electronic energy %20.12f\\n' % (electronic_energy))\n\n""")
freagent.close()
# S/R: Read energy from each displaced geometry output file and save in energies array
elif (opt_mode.lower() == 'reap'):
exec(banners)
psi4.set_variable('NUCLEAR REPULSION ENERGY', molecule.nuclear_repulsion_energy())
energies.append(p4util.extract_sowreap_from_output(rfile, 'GRADIENT', n, opt_linkage, True))
# S/R: Quit sow after writing files
if (opt_mode.lower() == 'sow'):
optstash.restore()
return 0.0
if (opt_mode.lower() == 'reap'):
psi4.set_variable('CURRENT ENERGY', energies[-1])
# Obtain the gradient
psi4.fd_1_0(energies)
# The last item in the list is the reference energy, return it
optstash.restore()
return energies[-1]
def property(name, **kwargs):
r"""Function to compute various properties.
:aliases: prop()
:returns: none.
.. caution:: Some features are not yet implemented. Buy a developer a coffee.
- This function at present handles property functions only for CC methods.
Consult the keywords sections for other modules for further property capabilities.
+-------------------------+---------------------------------------------------------------------------------------+
| name | calls method |
+=========================+=======================================================================================+
| scf | Self-consistent field method(s) |
+-------------------------+---------------------------------------------------------------------------------------+
| cc2 | 2nd-order approximate CCSD |
+-------------------------+---------------------------------------------------------------------------------------+
| ccsd | coupled cluster singles and doubles (CCSD) |
+-------------------------+---------------------------------------------------------------------------------------+
| df-mp2 | MP2 with density fitting |
+-------------------------+---------------------------------------------------------------------------------------+
| eom-cc2 | 2nd-order approximate EOM-CCSD |
+-------------------------+---------------------------------------------------------------------------------------+
| eom-ccsd | equation-of-motion coupled cluster singles and doubles (EOM-CCSD) |
+-------------------------+---------------------------------------------------------------------------------------+
:type name: string
:param name: ``'ccsd'`` || etc.
First argument, usually unlabeled. Indicates the computational method
to be applied to the system.
:type properties: array of strings
:param properties: |dl| ``[]`` |dr| || ``['rotation', 'polarizability', 'oscillator_strength', 'roa']`` || etc.
Indicates which properties should be computed.
:type molecule: :ref:`molecule <op_py_molecule>`
:param molecule: ``h2o`` || etc.
The target molecule, if not the last molecule defined.
:examples:
>>> # [1] Optical rotation calculation
>>> property('cc2', properties=['rotation'])
"""
lowername = name.lower()
kwargs = p4util.kwargs_lower(kwargs)
optstash = p4util.OptionsState(
['SCF', 'E_CONVERGENCE'],
['SCF', 'D_CONVERGENCE'],
['E_CONVERGENCE'])
# Make sure the molecule the user provided is the active one
if ('molecule' in kwargs):
activate(kwargs['molecule'])
del kwargs['molecule']
molecule = psi4.get_active_molecule()
molecule.update_geometry()
#psi4.set_global_option('BASIS', psi4.get_global_option('BASIS'))
# Allow specification of methods to arbitrary order
lowername, level = parse_arbitrary_order(lowername)
if level:
kwargs['level'] = level
try:
# Set method-dependent scf convergence criteria (test on procedures['energy'] since that's guaranteed)
# SCF properties have been set as 6/5 so as to match those
# run normally through OEProp so subject to change
if not psi4.has_option_changed('SCF', 'E_CONVERGENCE'):
if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
psi4.set_local_option('SCF', 'E_CONVERGENCE', 6)
else:
psi4.set_local_option('SCF', 'E_CONVERGENCE', 10)
if not psi4.has_option_changed('SCF', 'D_CONVERGENCE'):
if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
psi4.set_local_option('SCF', 'D_CONVERGENCE', 6)
else:
psi4.set_local_option('SCF', 'D_CONVERGENCE', 10)
# Set post-scf convergence criteria (global will cover all correlated modules)
if not psi4.has_global_option_changed('E_CONVERGENCE'):
if not procedures['energy'][lowername] == run_scf and not procedures['energy'][lowername] == run_dft:
psi4.set_global_option('E_CONVERGENCE', 8)
returnvalue = procedures['property'][lowername](lowername, **kwargs)
except KeyError:
raise ValidationError('Property method %s not available.' % (lowername))
optstash.restore()
return returnvalue
## Aliases ##
prop = property
def optimize(name, **kwargs):
r"""Function to perform a geometry optimization.
:aliases: opt()
:returns: (*float*) Total electronic energy of optimized structure in Hartrees.
:PSI variables:
.. hlist::
:columns: 1
* :psivar:`CURRENT ENERGY <CURRENTENERGY>`
.. note:: Analytic gradients area available for all methods in the table
below. Optimizations with other methods in the energy table proceed
by finite differences.
.. _`table:grad_gen`:
+-------------------------+---------------------------------------------------------------------------------------+
| name | calls method |
+=========================+=======================================================================================+
| scf | Hartree--Fock (HF) or density functional theory (DFT) :ref:`[manual] <sec:scf>` |
+-------------------------+---------------------------------------------------------------------------------------+
| dcft | density cumulant functional theory :ref:`[manual] <sec:dcft>` |
+-------------------------+---------------------------------------------------------------------------------------+
| mp2 | 2nd-order Moller-Plesset perturbation theory (MP2) :ref:`[manual] <sec:dfmp2>` |
+-------------------------+---------------------------------------------------------------------------------------+
| df-mp2 | MP2 with density fitting :ref:`[manual] <sec:dfmp2>` |
+-------------------------+---------------------------------------------------------------------------------------+
| conv-mp2 | conventional MP2 (non-density-fitting) :ref:`[manual] <sec:convocc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| mp2.5 | MP2.5 :ref:`[manual] <sec:convocc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| mp3 | third-order MP perturbation theory :ref:`[manual] <sec:convocc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| omp2 | orbital-optimized second-order MP perturbation theory :ref:`[manual] <sec:occ>` |
+-------------------------+---------------------------------------------------------------------------------------+
| omp2.5 | orbital-optimized MP2.5 :ref:`[manual] <sec:occ>` |
+-------------------------+---------------------------------------------------------------------------------------+
| omp3 | orbital-optimized third-order MP perturbation theory :ref:`[manual] <sec:occ>` |
+-------------------------+---------------------------------------------------------------------------------------+
| ocepa | orbital-optimized coupled electron pair approximation :ref:`[manual] <sec:occ>` |
+-------------------------+---------------------------------------------------------------------------------------+
| cepa0 | coupled electron pair approximation(0) :ref:`[manual] <sec:convocc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| ccsd | coupled cluster singles and doubles (CCSD) :ref:`[manual] <sec:cc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| ccsd(t) | CCSD with perturbative triples (CCSD(T)) :ref:`[manual] <sec:cc>` |
+-------------------------+---------------------------------------------------------------------------------------+
| eom-ccsd | equation of motion (EOM) CCSD :ref:`[manual] <sec:eomcc>` |
+-------------------------+---------------------------------------------------------------------------------------+
.. include:: autodoc_dft_opt.rst
.. warning:: Optimizations where the molecule is specified in Z-matrix format
with dummy atoms will result in the geometry being converted to a Cartesian representation.
:type name: string
:param name: ``'scf'`` || ``'df-mp2'`` || ``'ci5'`` || etc.
First argument, usually unlabeled. Indicates the computational method
to be applied to the database. May be any valid argument to
:py:func:`~driver.energy`.
:type func: :ref:`function <op_py_function>`
:param func: |dl| ``gradient`` |dr| || ``energy`` || ``cbs``
Indicates the type of calculation to be performed on the molecule.
The default dertype accesses ``'gradient'`` or ``'energy'``, while
``'cbs'`` performs a multistage finite difference calculation.
If a nested series of python functions is intended (see :ref:`sec:intercalls`),
use keyword ``opt_func`` instead of ``func``.
:type mode: string
:param mode: |dl| ``'continuous'`` |dr| || ``'sow'`` || ``'reap'``
For a finite difference of energies optimization, indicates whether
the calculations required to complete the
optimization are to be run in one file (``'continuous'``) or are to be
farmed out in an embarrassingly parallel fashion
(``'sow'``/``'reap'``). For the latter, run an initial job with
``'sow'`` and follow instructions in its output file.
:type dertype: :ref:`dertype <op_py_dertype>`
:param dertype: ``'gradient'`` || ``'energy'``
Indicates whether analytic (if available) or finite difference
optimization is to be performed.
:type molecule: :ref:`molecule <op_py_molecule>`
:param molecule: ``h2o`` || etc.
The target molecule, if not the last molecule defined.
:examples:
>>> # [1] Analytic scf optimization
>>> optimize('scf')
>>> # [2] Finite difference mp5 optimization
>>> opt('mp5')
>>> # [3] Forced finite difference ccsd optimization
>>> optimize('ccsd', dertype=1)
"""
lowername = name.lower()
kwargs = p4util.kwargs_lower(kwargs)
full_hess_every = psi4.get_local_option('OPTKING', 'FULL_HESS_EVERY')
steps_since_last_hessian = 0
# are we in sow/reap mode?
isSowReap = False
if ('mode' in kwargs) and (kwargs['mode'].lower() == 'sow'):
isSowReap = True
if ('mode' in kwargs) and (kwargs['mode'].lower() == 'reap'):
isSowReap = True
optstash = p4util.OptionsState(
['SCF', 'GUESS'])
n = 1
if ('opt_iter' in kwargs):
n = kwargs['opt_iter']
psi4.get_active_molecule().update_geometry()
mol = psi4.get_active_molecule()
mol.update_geometry()
initial_sym = mol.schoenflies_symbol()
while n <= psi4.get_global_option('GEOM_MAXITER'):
mol = psi4.get_active_molecule()
mol.update_geometry()
current_sym = mol.schoenflies_symbol()
if initial_sym != current_sym:
raise Exception("Point group changed! You should restart using " +\
"the last geometry in the output, after carefully " +\
"making sure all symmetry-dependent information in " +\
"the input, such as DOCC, is correct.")
kwargs['opt_iter'] = n
# Use orbitals from previous iteration as a guess
if (n > 1) and (not isSowReap):
psi4.set_local_option('SCF', 'GUESS', 'READ')
# Compute the gradient
thisenergy = gradient(name, **kwargs)
# S/R: Quit after getting new displacements or if forming gradient fails
if ('mode' in kwargs) and (kwargs['mode'].lower() == 'sow'):
return 0.0
if ('mode' in kwargs) and (kwargs['mode'].lower() == 'reap') and (thisenergy == 0.0):
return 0.0
# S/R: Move opt data file from last pass into namespace for this pass
if ('mode' in kwargs) and (kwargs['mode'].lower() == 'reap') and (n != 0):
psi4.IOManager.shared_object().set_specific_retention(1, True)
psi4.IOManager.shared_object().set_specific_path(1, './')
if 'opt_datafile' in kwargs:
restartfile = kwargs.pop('opt_datafile')
if(psi4.me() == 0):
shutil.copy(restartfile, p4util.get_psifile(1))
# compute Hessian as requested; frequency wipes out gradient so stash it
if ((full_hess_every > -1) and (n == 1)) or (steps_since_last_hessian + 1 == full_hess_every):
G = psi4.get_gradient()
psi4.IOManager.shared_object().set_specific_retention(1, True)
psi4.IOManager.shared_object().set_specific_path(1, './')
frequencies(name, **kwargs)
steps_since_last_hessian = 0
psi4.set_gradient(G)
psi4.set_global_option('CART_HESS_READ', True)
elif ((full_hess_every == -1) and (psi4.get_global_option('CART_HESS_READ')) and (n == 1)):
pass
# Do nothing; user said to read existing hessian once
else:
psi4.set_global_option('CART_HESS_READ', False)
steps_since_last_hessian += 1
# print 'cart_hess_read', psi4.get_global_option('CART_HESS_READ')
# Take step
if psi4.optking() == psi4.PsiReturnType.EndLoop:
print('Optimizer: Optimization complete!')
psi4.print_out('\n Final optimized geometry and variables:\n')
psi4.get_active_molecule().print_in_input_format()
# Check if user wants to see the intcos; if so, don't delete them.
if (psi4.get_option('OPTKING', 'INTCOS_GENERATE_EXIT') == False):
psi4.opt_clean()
psi4.clean()
# S/R: Clean up opt input file
if ('mode' in kwargs) and (kwargs['mode'].lower() == 'reap'):
fmaster = open('OPT-master.in', 'w')
fmaster.write('# This is a psi4 input file auto-generated from the gradient() wrapper.\n\n')
fmaster.write('# Optimization complete!\n\n')
fmaster.close()
optstash.restore()
return thisenergy
psi4.print_out('\n Structure for next step:\n')
psi4.get_active_molecule().print_in_input_format()
# S/R: Preserve opt data file for next pass and switch modes to get new displacements
if ('mode' in kwargs) and (kwargs['mode'].lower() == 'reap'):
kwargs['opt_datafile'] = p4util.get_psifile(1)
kwargs['mode'] = 'sow'
n += 1
psi4.print_out('\tOptimizer: Did not converge!')
optstash.restore()
return 0.0
## Aliases ##
opt = optimize
def parse_arbitrary_order(name):
r"""Function to parse name string into a method family like CI or MRCC and specific
level information like 4 for CISDTQ or MRCCSDTQ.
"""
namelower = name.lower()
# matches 'mrccsdt(q)'
if namelower.startswith('mrcc'):
# grabs 'sdt(q)'
ccfullname = namelower[4:]
# A negative order indicates perturbative method
methods = {
'sd' : { 'method' : 1, 'order' : 2, 'fullname' : 'CCSD' },
'sdt' : { 'method' : 1, 'order' : 3, 'fullname' : 'CCSDT' },
'sdtq' : { 'method' : 1, 'order' : 4, 'fullname' : 'CCSDTQ' },
'sdtqp' : { 'method' : 1, 'order' : 5, 'fullname' : 'CCSDTQP' },
'sdtqph' : { 'method' : 1, 'order' : 6, 'fullname' : 'CCSDTQPH' },
'sd(t)' : { 'method' : 3, 'order' : -3, 'fullname' : 'CCSD(T)' },
'sdt(q)' : { 'method' : 3, 'order' : -4, 'fullname' : 'CCSDT(Q)' },
'sdtq(p)' : { 'method' : 3, 'order' : -5, 'fullname' : 'CCSDTQ(P)' },
'sdtqp(h)' : { 'method' : 3, 'order' : -6, 'fullname' : 'CCSDTQP(H)' },
'sd(t)_l' : { 'method' : 4, 'order' : -3, 'fullname' : 'CCSD(T)_L' },
'sdt(q)_l' : { 'method' : 4, 'order' : -4, 'fullname' : 'CCSDT(Q)_L' },
'sdtq(p)_l' : { 'method' : 4, 'order' : -5, 'fullname' : 'CCSDTQ(P)_L' },
'sdtqp(h)_l' : { 'method' : 4, 'order' : -6, 'fullname' : 'CCSDTQP(H)_L' },
'sdt-1a' : { 'method' : 5, 'order' : 3, 'fullname' : 'CCSDT-1a' },
'sdtq-1a' : { 'method' : 5, 'order' : 4, 'fullname' : 'CCSDTQ-1a' },
'sdtqp-1a' : { 'method' : 5, 'order' : 5, 'fullname' : 'CCSDTQP-1a' },
'sdtqph-1a' : { 'method' : 5, 'order' : 6, 'fullname' : 'CCSDTQPH-1a' },
'sdt-1b' : { 'method' : 6, 'order' : 3, 'fullname' : 'CCSDT-1b' },
'sdtq-1b' : { 'method' : 6, 'order' : 4, 'fullname' : 'CCSDTQ-1b' },
'sdtqp-1b' : { 'method' : 6, 'order' : 5, 'fullname' : 'CCSDTQP-1b' },
'sdtqph-1b' : { 'method' : 6, 'order' : 6, 'fullname' : 'CCSDTQPH-1b' },
'2' : { 'method' : 7, 'order' : 2, 'fullname' : 'CC2' },
'3' : { 'method' : 7, 'order' : 3, 'fullname' : 'CC3' },
'4' : { 'method' : 7, 'order' : 4, 'fullname' : 'CC4' },
'5' : { 'method' : 7, 'order' : 5, 'fullname' : 'CC5' },
'6' : { 'method' : 7, 'order' : 6, 'fullname' : 'CC6' },
'sdt-3' : { 'method' : 8, 'order' : 3, 'fullname' : 'CCSDT-3' },
'sdtq-3' : { 'method' : 8, 'order' : 4, 'fullname' : 'CCSDTQ-3' },
'sdtqp-3' : { 'method' : 8, 'order' : 5, 'fullname' : 'CCSDTQP-3' },
'sdtqph-3' : { 'method' : 8, 'order' : 6, 'fullname' : 'CCSDTQPH-3' }
}
# looks for 'sdt(q)' in dictionary
if ccfullname in methods:
return 'mrcc', methods[ccfullname]
else:
raise ValidationError('MRCC method \'%s\' invalid.' % (namelower))
elif re.match(r'^[a-z]+\d+$', namelower):
decompose = re.compile(r'^([a-z]+)(\d+)$').match(namelower)
namestump = decompose.group(1)
namelevel = int(decompose.group(2))
if (namestump == 'mp') or (namestump == 'zapt') or (namestump == 'ci'):
# Let 'mp2' and 'mp3' pass through as themselves to occ module
if (namestump == 'mp') and ((namelevel == 2) or (namelevel == 3)):
return namelower, None
# Let 'mp4' be redirected to fnocc module if rhf
elif (namestump == 'mp') and (namelevel == 4):
if psi4.get_option('SCF', 'REFERENCE') == 'RHF':
return 'fnocc-mp', 4
else:
return 'detci-mp', 4
# Otherwise return method and order
else:
return namestump, namelevel
else:
return namelower, None
else:
return namelower, None
def hessian(name, **kwargs):
r"""Function complementary to :py:func:`~frequency`. Computes force
constants, deciding analytic, finite difference of gradients, or
finite difference of energies.
"""
lowername = name.lower()
kwargs = p4util.kwargs_lower(kwargs)
dertype = 2
optstash = p4util.OptionsState(
['SCF', 'E_CONVERGENCE'],
['SCF', 'D_CONVERGENCE'],
['E_CONVERGENCE'])
# Order of precedence:
# 1. Default for wavefunction
# 2. Value obtained from kwargs, if user changed it
# 3. If user provides a custom 'func' use that
# Allow specification of methods to arbitrary order
lowername, level = parse_arbitrary_order(lowername)
if level:
kwargs['level'] = level
# 1. set the default to that of the provided name
if lowername in procedures['hessian']:
dertype = 2
elif lowername in procedures['gradient']:
dertype = 1
func = gradient
elif lowername in procedures['energy']:
dertype = 0
func = energy
# 2. Check if the user passes dertype into this function
if 'dertype' in kwargs:
freq_dertype = kwargs['dertype']
if der0th.match(str(freq_dertype)):
dertype = 0
func = energy
elif der1st.match(str(freq_dertype)):
dertype = 1
func = gradient
elif der2nd.match(str(freq_dertype)):
dertype = 2
else:
raise ValidationError('Requested derivative level \'dertype\' %s not valid for helper function frequency.' % (freq_dertype))
# 3. if the user provides a custom function THAT takes precedence
if ('freq_func' in kwargs) or ('func' in kwargs):
if ('func' in kwargs):
kwargs['freq_func'] = kwargs['func']
del kwargs['func']
dertype = 0
func = kwargs['freq_func']
# Summary validation
if (dertype == 2) and (lowername in procedures['hessian']):
pass
elif (dertype == 1) and (func is gradient) and (lowername in procedures['gradient']):
pass
elif (dertype == 1) and not(func is gradient):
pass
elif (dertype == 0) and (func is energy) and (lowername in procedures['energy']):
pass
elif (dertype == 0) and not(func is energy):
pass
else:
raise ValidationError('Requested method \'name\' %s and derivative level \'dertype\' %s are not available.'
% (lowername, dertype))
# Make sure the molecule the user provided is the active one
if ('molecule' in kwargs):
activate(kwargs['molecule'])
del kwargs['molecule']
molecule = psi4.get_active_molecule()
molecule.update_geometry()
psi4.set_global_option('BASIS', psi4.get_global_option('BASIS'))
# S/R: Mode of operation- whether finite difference opt run in one job or files farmed out
freq_mode = 'continuous'
if ('mode' in kwargs) and ((dertype == 0) or (dertype == 1)):
freq_mode = kwargs['mode']
if (freq_mode.lower() == 'continuous'):
pass
elif (freq_mode.lower() == 'sow'):
pass
elif (freq_mode.lower() == 'reap'):
if('linkage' in kwargs):
freq_linkage = kwargs['linkage']
else:
raise ValidationError('Frequency execution mode \'reap\' requires a linkage option.')
else:
raise ValidationError('Frequency execution mode \'%s\' not valid.' % (freq_mode))
# Set method-dependent scf convergence criteria (test on procedures['energy'] since that's guaranteed)
if not psi4.has_option_changed('SCF', 'E_CONVERGENCE'):
if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
psi4.set_local_option('SCF', 'E_CONVERGENCE', 8)
else:
psi4.set_local_option('SCF', 'E_CONVERGENCE', 10)
if not psi4.has_option_changed('SCF', 'D_CONVERGENCE'):
if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
psi4.set_local_option('SCF', 'D_CONVERGENCE', 8)
else:
psi4.set_local_option('SCF', 'D_CONVERGENCE', 10)
# Set post-scf convergence criteria (global will cover all correlated modules)
if not psi4.has_global_option_changed('E_CONVERGENCE'):
if not procedures['energy'][lowername] == run_scf and not procedures['energy'][lowername] == run_dft:
psi4.set_global_option('E_CONVERGENCE', 8)
# Select certain irreps
if 'irrep' in kwargs:
irrep = parse_cotton_irreps(kwargs['irrep']) - 1 # externally, A1 irrep is 1, internally 0
else:
irrep = -1 # -1 implies do all irreps
# Does an analytic procedure exist for the requested method?
if (dertype == 2):
# We have the desired method. Do it.
procedures['hessian'][lowername](lowername, **kwargs)
optstash.restore()
if 'mode' in kwargs and kwargs['mode'].lower() == 'sow':
raise ValidationError('Frequency execution mode \'sow\' not valid for analytic frequency calculation.')
# TODO: check that current energy's being set to the right figure when this code is actually used
psi4.set_variable('CURRENT ENERGY', psi4.wavefunction().energy())
# TODO: return hessian matrix
elif (dertype == 1):
# Ok, we're doing frequencies by gradients
print('Performing finite difference by gradient calculations')
func = procedures['gradient'][lowername]
if 'mode' in kwargs and kwargs['mode'].lower() == 'sow':
raise ValidationError('Frequency execution mode \'sow\' not yet implemented for finite difference of analytic gradient calculation.')
# Obtain list of displacements
displacements = psi4.fd_geoms_freq_1(irrep)
molecule.reinterpret_coordentry(False)
molecule.fix_orientation(True)
# Make a note of the undisplaced molecule's symmetry
psi4.set_parent_symmetry(molecule.schoenflies_symbol())
ndisp = len(displacements)
print(' %d displacements needed.' % ndisp)
#print displacements to output.dat
#for n, displacement in enumerate(displacements):
# displacement.print_out();
gradients = []
for n, displacement in enumerate(displacements):
# Print information to output.dat
psi4.print_out('\n')
p4util.banner('Loading displacement %d of %d' % (n + 1, ndisp))
# Print information to the screen
print(' %d' % (n + 1), end="")
if (n + 1) == ndisp:
print('\n', end="")
sys.stdout.flush()
# Load in displacement into the active molecule (xyz coordinates only)
molecule.set_geometry(displacement)
# Perform the gradient calculation
func(lowername, **kwargs)
# Save the gradient
G = psi4.get_gradient()
gradients.append(G)
# clean may be necessary when changing irreps of displacements
psi4.clean()
psi4.fd_freq_1(gradients, irrep)
print(' Computation complete.')
# Clear the "parent" symmetry now
psi4.set_parent_symmetry("")
# TODO: These need to be restored to the user specified setting
psi4.get_active_molecule().fix_orientation(False)
# But not this one, it always goes back to True
psi4.get_active_molecule().reinterpret_coordentry(True)
optstash.restore()
# TODO: add return statement of hessian matrix
# TODO: set current energy to un-displaced energy
else:
# If not, perform finite difference of energies
print('Performing finite difference calculations by energies')
# Set method-dependent scf convergence criteria (test on procedures['energy'] since that's guaranteed)
optstash.restore()
if not psi4.has_option_changed('SCF', 'E_CONVERGENCE'):
if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
psi4.set_local_option('SCF', 'E_CONVERGENCE', 10)
else:
psi4.set_local_option('SCF', 'E_CONVERGENCE', 11)
if not psi4.has_option_changed('SCF', 'D_CONVERGENCE'):
if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
psi4.set_local_option('SCF', 'D_CONVERGENCE', 10)
else:
psi4.set_local_option('SCF', 'D_CONVERGENCE', 11)
# Set post-scf convergence criteria (global will cover all correlated modules)
if not psi4.has_global_option_changed('E_CONVERGENCE'):
if not procedures['energy'][lowername] == run_scf and not procedures['energy'][lowername] == run_dft:
psi4.set_global_option('E_CONVERGENCE', 10)
# Obtain list of displacements
displacements = psi4.fd_geoms_freq_0(irrep)
molecule.fix_orientation(True)
molecule.reinterpret_coordentry(False)
# Make a note of the undisplaced molecule's symmetry
psi4.set_parent_symmetry(molecule.schoenflies_symbol())
ndisp = len(displacements)
# This version is pretty dependent on the reference geometry being last (as it is now)
print(' %d displacements needed.' % ndisp)
energies = []
# S/R: Write instructions for sow/reap procedure to output file and reap input file
if (freq_mode.lower() == 'sow'):
instructionsO = """\n# The frequency sow/reap procedure has been selected through mode='sow'. In addition\n"""
instructionsO += """# to this output file (which contains no quantum chemical calculations), this job\n"""
instructionsO += """# has produced a number of input files (FREQ-*.in) for individual components\n"""
instructionsO += """# and a single input file (FREQ-master.in) with a frequency(mode='reap') command.\n"""
instructionsO += """# These files may look very peculiar since they contain processed and pickled python\n"""
instructionsO += """# rather than normal input. Follow the instructions below (repeated in FREQ-master.in)\n"""
instructionsO += """# to continue.\n#\n"""
instructionsO += """# Alternatively, a single-job execution of the hessian may be accessed through\n"""
instructionsO += """# the frequency wrapper option mode='continuous'.\n#\n"""
psi4.print_out(instructionsO)
instructionsM = """\n# Follow the instructions below to carry out this frequency computation.\n#\n"""
instructionsM += """# (1) Run all of the FREQ-*.in input files on any variety of computer architecture.\n"""
instructionsM += """# The output file names must be as given below (these are the defaults when executed\n"""
instructionsM += """# as `psi4 FREQ-1.in`, etc.).\n#\n"""
for rgt in range(ndisp):
pre = 'FREQ-' + str(rgt + 1)
instructionsM += """# psi4 -i %-27s -o %-27s\n""" % (pre + '.in', pre + '.out')
instructionsM += """#\n# (2) Gather all the resulting output files in a directory. Place input file\n"""
instructionsM += """# FREQ-master.in into that directory and run it. The job will be minimal in\n"""
instructionsM += """# length and give summary results for the frequency computation in its output file.\n#\n"""
instructionsM += """# psi4 -i %-27s -o %-27s\n#\n\n""" % ('FREQ-master.in', 'FREQ-master.out')
fmaster = open('FREQ-master.in', 'w')
fmaster.write('# This is a psi4 input file auto-generated from the hessian() wrapper.\n\n')
fmaster.write(p4util.format_molecule_for_input(molecule))
fmaster.write(p4util.format_options_for_input())
p4util.format_kwargs_for_input(fmaster, 2, **kwargs)
fmaster.write("""%s('%s', **kwargs)\n\n""" % (frequency.__name__, lowername))
fmaster.write(instructionsM)
fmaster.close()
psi4.print_out(instructionsM)
for n, displacement in enumerate(displacements):
rfile = 'FREQ-%s' % (n + 1)
# Build string of title banner
banners = ''
banners += """psi4.print_out('\\n')\n"""
banners += """p4util.banner(' Hessian Computation: Energy Displacement %d ')\n""" % (n + 1)
banners += """psi4.print_out('\\n')\n\n"""
if (freq_mode.lower() == 'continuous'):
# Print information to output.dat
psi4.print_out('\n')
p4util.banner('Loading displacement %d of %d' % (n + 1, ndisp))
# Print information to the screen
print(' %d' % (n + 1), end="")
if (n + 1) == ndisp:
print('\n', end='')
sys.stdout.flush()
# Load in displacement into the active molecule
molecule.set_geometry(displacement)
# Perform the energy calculation
func(lowername, **kwargs)
# Save the energy
energies.append(psi4.get_variable('CURRENT ENERGY'))
# clean may be necessary when changing irreps of displacements
psi4.clean()
# S/R: Write each displaced geometry to an input file
elif (freq_mode.lower() == 'sow'):
molecule.set_geometry(displacement)
# S/R: Prepare molecule, options, and kwargs
freagent = open('%s.in' % (rfile), 'w')
freagent.write('# This is a psi4 input file auto-generated from the gradient() wrapper.\n\n')
freagent.write(p4util.format_molecule_for_input(molecule))
freagent.write(p4util.format_options_for_input())
p4util.format_kwargs_for_input(freagent, **kwargs)
# S/R: Prepare function call and energy save
freagent.write("""electronic_energy = %s('%s', **kwargs)\n\n""" % (func.__name__, lowername))
freagent.write("""psi4.print_out('\\nHESSIAN RESULT: computation %d for item %d """ % (os.getpid(), n + 1))
freagent.write("""yields electronic energy %20.12f\\n' % (electronic_energy))\n\n""")
freagent.close()
# S/R: Read energy from each displaced geometry output file and save in energies array
elif (freq_mode.lower() == 'reap'):
exec(banners)
psi4.set_variable('NUCLEAR REPULSION ENERGY', molecule.nuclear_repulsion_energy())
energies.append(p4util.extract_sowreap_from_output(rfile, 'HESSIAN', n, freq_linkage, True))
# S/R: Quit sow after writing files
if (freq_mode.lower() == 'sow'):
optstash.restore()
return None
# Obtain the gradient. This function stores the gradient in the wavefunction.
psi4.fd_freq_0(energies, irrep)
print(' Computation complete.')
# Clear the "parent" symmetry now
psi4.set_parent_symmetry("")
# TODO: These need to be restored to the user specified setting
psi4.get_active_molecule().fix_orientation(False)
# But not this one, it always goes back to True
psi4.get_active_molecule().reinterpret_coordentry(True)
# Clear the "parent" symmetry now
psi4.set_parent_symmetry("")
# The last item in the list is the reference energy, return it
optstash.restore()
psi4.set_variable('CURRENT ENERGY', energies[-1])
#TODO: return hessian matrix
def frequency(name, **kwargs):
r"""Function to compute harmonic vibrational frequencies.
:aliases: frequencies(), freq()
:returns: (*float*) Total electronic energy in Hartrees.
.. note:: Analytic hessians are not available. Frequencies will proceed through
finite differences according to availability of gradients or energies.
.. caution:: Some features are not yet implemented. Buy a developer a coffee.
- Implement sow/reap mode for finite difference of gradients. Presently only for findif of energies.
.. _`table:freq_gen`:
:type name: string
:param name: ``'scf'`` || ``'df-mp2'`` || ``'ci5'`` || etc.
First argument, usually unlabeled. Indicates the computational method
to be applied to the system.
:type dertype: :ref:`dertype <op_py_dertype>`
:param dertype: |dl| ``'hessian'`` |dr| || ``'gradient'`` || ``'energy'``
Indicates whether analytic (if available- they're not), finite
difference of gradients (if available) or finite difference of
energies is to be performed.
:type mode: string
:param mode: |dl| ``'continuous'`` |dr| || ``'sow'`` || ``'reap'``
For a finite difference of energies or gradients frequency, indicates
whether the calculations required to complet the frequency are to be run
in one file (``'continuous'``) or are to be farmed out in an
embarrassingly parallel fashion (``'sow'``/``'reap'``)/ For the latter,
run an initial job with ``'sow'`` and follow instructions in its output file.
:type irrep: int or string
:param irrep: |dl| ``-1`` |dr| || ``1`` || ``'b2'`` || ``'App'`` || etc.
Indicates which symmetry block (:ref:`Cotton <table:irrepOrdering>` ordering) of vibrational
frequencies to be computed. ``1``, ``'1'``, or ``'a1'`` represents
:math:`a_1`, requesting only the totally symmetric modes.
``-1`` indicates a full frequency calculation.
:type molecule: :ref:`molecule <op_py_molecule>`
:param molecule: ``h2o`` || etc.
The target molecule, if not the last molecule defined.
:examples:
>>> # [1] <example description>
>>> <example python command>
>>> # [2] Frequency calculation for b2 modes through finite difference of gradients
>>> frequencies('scf', dertype=1, irrep=4)
"""
lowername = name.lower()
kwargs = p4util.kwargs_lower(kwargs)
# Compute the hessian
hessian(name, **kwargs)
if not (('mode' in kwargs) and (kwargs['mode'].lower() == 'sow')):
# call thermo module
psi4.thermo()
#TODO add return current energy once satisfied that's set to energy at eq, not a findif
return psi4.get_variable('CURRENT ENERGY')
## Aliases ##
frequencies = frequency
freq = frequency
def molden(filename):
"""Function to write wavefunction information in molden
format to *filename*
"""
m = psi4.MoldenWriter(psi4.wavefunction())
m.write(filename)
def parse_cotton_irreps(irrep):
r"""Function to return validated Cotton ordering index from string or integer
irreducible representation *irrep*.
"""
cotton = {
'c1': {
'a': 1,
'1': 1
},
'ci': {
'ag': 1,
'au': 2,
'1': 1,
'2': 2
},
'c2': {
'a': 1,
'b': 2,
'1': 1,
'2': 2
},
'cs': {
'ap': 1,
'app': 2,
'1': 1,
'2': 2
},
'd2': {
'a': 1,
'b1': 2,
'b2': 3,
'b3': 4,
'1': 1,
'2': 2,
'3': 3,
'4': 4
},
'c2v': {
'a1': 1,
'a2': 2,
'b1': 3,
'b2': 4,
'1': 1,
'2': 2,
'3': 3,
'4': 4
},
'c2h': {
'ag': 1,
'bg': 2,
'au': 3,
'bu': 4,
'1': 1,
'2': 2,
'3': 3,
'4': 4,
},
'd2h': {
'ag': 1,
'b1g': 2,
'b2g': 3,
'b3g': 4,
'au': 5,
'b1u': 6,
'b2u': 7,
'b3u': 8,
'1': 1,
'2': 2,
'3': 3,
'4': 4,
'5': 5,
'6': 6,
'7': 7,
'8': 8
}
}
point_group = psi4.get_active_molecule().schoenflies_symbol().lower()
irreducible_representation = str(irrep).lower()
try:
return cotton[point_group][irreducible_representation]
except KeyError:
raise ValidationError("Irrep \'%s\' not valid for point group \'%s\'." % (str(irrep), point_group))
|