This file is indexed.

/usr/share/psi/python/driver.py is in psi4-data 4.0~beta5+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
#
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#

from __future__ import print_function
"""Module with a *procedures* dictionary specifying available quantum
chemical methods and functions driving the main quantum chemical
functionality, namely single-point energies, geometry optimizations,
properties, and vibrational frequency calculations.

"""
import sys
import psi4
import p4util
import p4const
from proc import *
from functional import *
from p4regex import *
# never import wrappers or aliases into this file

# Procedure lookup tables
procedures = {
        'energy': {
            'scf'           : run_scf,
            'mcscf'         : run_mcscf,
            'dcft'          : run_dcft,
            'oldmp2'        : run_oldmp2,
            'dfmp2'         : run_dfmp2,
            'df-mp2'        : run_dfmp2,
            'conv-mp2'      : run_mp2,
            'mp3'           : run_mp3,
            'mp2.5'         : run_mp2_5,
            'mp2'           : run_mp2_select,
            'omp2'          : run_omp2,
            'scs-omp2'      : run_scs_omp2,
            'scsn-omp2'     : run_scs_omp2,
            'scs-mi-omp2'   : run_scs_omp2,
            'scs-omp2-vdw'  : run_scs_omp2,
            'sos-omp2'      : run_sos_omp2,
            'sos-pi-omp2'   : run_sos_omp2,
            'omp3'          : run_omp3,
            'scs-omp3'      : run_scs_omp3,
            'scsn-omp3'     : run_scs_omp3,
            'scs-mi-omp3'   : run_scs_omp3,
            'scs-omp3-vdw'  : run_scs_omp3,
            'sos-omp3'      : run_sos_omp3,
            'sos-pi-omp3'   : run_sos_omp3,
            'ocepa'         : run_ocepa,
            'cepa0'         : run_cepa0,
            'omp2.5'        : run_omp2_5,
            'sapt0'         : run_sapt,
            'sapt2'         : run_sapt,
            'sapt2+'        : run_sapt,
            'sapt2+(3)'     : run_sapt,
            'sapt2+3'       : run_sapt,
            'sapt2+(ccd)'   : run_sapt,
            'sapt2+(3)(ccd)': run_sapt,
            'sapt2+3(ccd)'  : run_sapt,
            'sapt0-ct'      : run_sapt_ct,
            'sapt2-ct'      : run_sapt_ct,
            'sapt2+-ct'     : run_sapt_ct,
            'sapt2+(3)-ct'  : run_sapt_ct,
            'sapt2+3-ct'    : run_sapt_ct,
            'sapt2+(ccd)-ct'     : run_sapt_ct,
            'sapt2+(3)(ccd)-ct'  : run_sapt_ct,
            'sapt2+3(ccd)-ct'    : run_sapt_ct,
            'mp2c'          : run_mp2c,
            'ccenergy'      : run_ccenergy,  # full control over ccenergy
            'ccsd'          : run_ccenergy,
            'ccsd(t)'       : run_ccenergy,
            'ccsd(at)'      : run_ccenergy,
            'a-ccsd(t)'      : run_ccenergy,
            'cc2'           : run_ccenergy,
            'cc3'           : run_ccenergy,
            'mrcc'          : run_mrcc,      # interface to Kallay's MRCC program
            'bccd'          : run_bccd,
            'bccd(t)'       : run_bccd_t,
            'eom-ccsd'      : run_eom_cc,
            'eom-cc2'       : run_eom_cc,
            'eom-cc3'       : run_eom_cc,
            'detci'         : run_detci,  # full control over detci
            'mp'            : run_detci,  # arbitrary order mp(n)
            'detci-mp'      : run_detci,  # arbitrary order mp(n)
            'zapt'          : run_detci,  # arbitrary order zapt(n)
            'cisd'          : run_detci,
            'cisdt'         : run_detci,
            'cisdtq'        : run_detci,
            'ci'            : run_detci,  # arbitrary order ci(n)
            'fci'           : run_detci,
            'adc'           : run_adc,
            'cphf'          : run_libfock,
            'cis'           : run_libfock,
            'tdhf'          : run_libfock,
            'cpks'          : run_libfock,
            'tda'           : run_libfock,
            'tddft'         : run_libfock,
            'psimrcc'       : run_psimrcc,
            'psimrcc_scf'   : run_psimrcc_scf,
            'hf'            : run_scf,
            'rhf'           : run_scf,
            'uhf'           : run_scf,
            'rohf'          : run_scf,
            'rscf'          : run_scf,
            'uscf'          : run_scf,
            'roscf'         : run_scf,
            'qcisd'         : run_fnocc,
            'qcisd(t)'      : run_fnocc,
            'mp4(sdq)'      : run_fnocc,
            'fno-ccsd'      : run_fnocc,
            'fno-ccsd(t)'   : run_fnocc,
            'fno-qcisd'     : run_fnocc,
            'fno-qcisd(t)'  : run_fnocc,
            'fno-mp3'       : run_fnocc,
            'fno-mp4(sdq)'  : run_fnocc,
            'fno-mp4'       : run_fnocc,
            'fnocc-mp'      : run_fnocc,
            'df-ccsd'       : run_fnodfcc,
            'df-ccsd(t)'    : run_fnodfcc,
            'fno-df-ccsd'   : run_fnodfcc,
            'fno-df-ccsd(t)': run_fnodfcc,
            'fno-cepa(0)'   : run_cepa,
            'fno-cepa(1)'   : run_cepa,
            'fno-cepa(3)'   : run_cepa,
            'fno-acpf'      : run_cepa,
            'fno-aqcc'      : run_cepa,
            'fno-sdci'      : run_cepa,
            'fno-dci'       : run_cepa,
            'cepa(0)'       : run_cepa,
            'cepa(1)'       : run_cepa,
            'cepa(3)'       : run_cepa,
            'acpf'          : run_cepa,
            'aqcc'          : run_cepa,
            'sdci'          : run_cepa,
            'dci'           : run_cepa,
            # Upon adding a method to this list, add it to the docstring in energy() below
            # If you must add an alias to this list (e.g., dfmp2/df-mp2), please search the
            #    whole driver to find uses of name in return values and psi variables and
            #    extend the logic to encompass the new alias.
        },
        'gradient' : {
            'scf'           : run_scf_gradient,
            'ccsd'          : run_cc_gradient,
            'ccsd(t)'       : run_cc_gradient,
            'mp2'           : run_mp2_select_gradient,
            'conv-mp2'      : run_mp2_gradient,
            'df-mp2'        : run_dfmp2_gradient,
            'dfmp2'         : run_dfmp2_gradient,
            'eom-ccsd'      : run_eom_cc_gradient,
            'dcft'          : run_dcft_gradient,
            'omp2'          : run_omp2_gradient,
            'omp3'          : run_omp3_gradient,
            'mp3'           : run_mp3_gradient,
            'mp2.5'         : run_mp2_5_gradient,
            'omp2.5'        : run_omp2_5_gradient,
            'cepa0'         : run_cepa0_gradient,
            'ocepa'         : run_ocepa_gradient
            # Upon adding a method to this list, add it to the docstring in optimize() below
        },
        'hessian' : {
            # Upon adding a method to this list, add it to the docstring in frequency() below
        },
        'property' : {
            'scf'  : run_scf_property,
            'cc2'  : run_cc_property,
            'ccsd' : run_cc_property,
            'df-mp2' : run_dfmp2_property,
            'dfmp2'  : run_dfmp2_property,
            'eom-cc2'  : run_cc_property,
            'eom-ccsd' : run_cc_property,
            # Upon adding a method to this list, add it to the docstring in property() below
        }}

# Integrate DFT with driver routines
for ssuper in superfunctional_list():
    procedures['energy'][ssuper.name().lower()] = run_dft

for ssuper in superfunctional_list():
    if ((not ssuper.is_c_hybrid()) and (not ssuper.is_c_lrc()) and (not ssuper.is_x_lrc())):
        procedures['gradient'][ssuper.name().lower()] = run_dft_gradient


def energy(name, **kwargs):
    r"""Function to compute the single-point electronic energy.

    :returns: (*float*) Total electronic energy in Hartrees. SAPT returns interaction energy.

    :PSI variables:

    .. hlist::
       :columns: 1

       * :psivar:`CURRENT ENERGY <CURRENTENERGY>`
       * :psivar:`CURRENT REFERENCE ENERGY <CURRENTREFERENCEENERGY>`
       * :psivar:`CURRENT CORRELATION ENERGY <CURRENTCORRELATIONENERGY>`

    .. comment In this table immediately below, place methods that should only be called by
    .. comment developers at present. This table won't show up in the manual.
    .. comment
    .. comment    .. _`table:energy_devel`:
    .. comment
    .. comment    +-------------------------+---------------------------------------------------------------------------------------+
    .. comment    | name                    | calls method                                                                          |
    .. comment    +=========================+=======================================================================================+
    .. comment    | mp2c                    | coupled MP2 (MP2C)                                                                    |
    .. comment    +-------------------------+---------------------------------------------------------------------------------------+
    .. comment    | mp2-drpa                | random phase approximation?                                                           |
    .. comment    +-------------------------+---------------------------------------------------------------------------------------+
    .. comment    | cphf                    | coupled-perturbed Hartree-Fock?                                                       |
    .. comment    +-------------------------+---------------------------------------------------------------------------------------+
    .. comment    | cpks                    | coupled-perturbed Kohn-Sham?                                                          |
    .. comment    +-------------------------+---------------------------------------------------------------------------------------+
    .. comment    | cis                     | CI singles (CIS)                                                                      |
    .. comment    +-------------------------+---------------------------------------------------------------------------------------+
    .. comment    | tda                     | Tamm-Dankoff approximation (TDA)                                                      |
    .. comment    +-------------------------+---------------------------------------------------------------------------------------+
    .. comment    | tdhf                    | time-dependent HF (TDHF)                                                              |
    .. comment    +-------------------------+---------------------------------------------------------------------------------------+
    .. comment    | tddft                   | time-dependent DFT (TDDFT)                                                            |
    .. comment    +-------------------------+---------------------------------------------------------------------------------------+

    .. _`table:energy_gen`:

    +-------------------------+---------------------------------------------------------------------------------------+
    | name                    | calls method                                                                          |
    +=========================+=======================================================================================+
    | scf                     | Hartree--Fock (HF) or density functional theory (DFT) :ref:`[manual] <sec:scf>`       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | dcft                    | density cumulant functional theory :ref:`[manual] <sec:dcft>`                         |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mcscf                   | multiconfigurational self consistent field (SCF)                                      |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mp2                     | 2nd-order Moller-Plesset perturbation theory (MP2) :ref:`[manual] <sec:dfmp2>`        |
    +-------------------------+---------------------------------------------------------------------------------------+
    | df-mp2                  | MP2 with density fitting :ref:`[manual] <sec:dfmp2>`                                  |
    +-------------------------+---------------------------------------------------------------------------------------+
    | conv-mp2                | conventional MP2 (non-density-fitting) :ref:`[manual] <sec:convocc>`                  |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mp3                     | 3rd-order Moller-Plesset perturbation theory (MP3) :ref:`[manual] <sec:convocc>`      |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mp2.5                   | average of MP2 and MP3 :ref:`[manual] <sec:convocc>`                                  |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mp4(sdq)                | 4th-order MP perturbation theory (MP4) less triples :ref:`[manual] <sec:fnompn>`      |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mp4                     | full MP4 :ref:`[manual] <sec:fnompn>`                                                 |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mp\ *n*                 | *n*\ th-order Moller--Plesset (MP) perturbation theory :ref:`[manual] <sec:arbpt>`    |
    +-------------------------+---------------------------------------------------------------------------------------+
    | zapt\ *n*               | *n*\ th-order z-averaged perturbation theory (ZAPT) :ref:`[manual] <sec:arbpt>`       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | omp2                    | orbital-optimized second-order MP perturbation theory :ref:`[manual] <sec:occ>`       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | omp3                    | orbital-optimized third-order MP perturbation theory :ref:`[manual] <sec:occ>`        |
    +-------------------------+---------------------------------------------------------------------------------------+
    | omp2.5                  | orbital-optimized MP2.5 :ref:`[manual] <sec:occ>`                                     |
    +-------------------------+---------------------------------------------------------------------------------------+
    | ocepa                   | orbital-optimized coupled electron pair approximation :ref:`[manual] <sec:occ>`       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | cepa0                   | coupled electron pair approximation, equiv. linear. CCD :ref:`[manual] <sec:convocc>` |
    +-------------------------+---------------------------------------------------------------------------------------+
    | cepa(0)                 | coupled electron pair approximation variant 0 :ref:`[manual] <sec:fnocepa>`           |
    +-------------------------+---------------------------------------------------------------------------------------+
    | cepa(1)                 | coupled electron pair approximation variant 1 :ref:`[manual] <sec:fnocepa>`           |
    +-------------------------+---------------------------------------------------------------------------------------+
    | cepa(3)                 | coupled electron pair approximation variant 3 :ref:`[manual] <sec:fnocepa>`           |
    +-------------------------+---------------------------------------------------------------------------------------+
    | acpf                    | averaged coupled-pair functional :ref:`[manual] <sec:fnocepa>`                        |
    +-------------------------+---------------------------------------------------------------------------------------+
    | aqcc                    | averaged quadratic coupled cluster :ref:`[manual] <sec:fnocepa>`                      |
    +-------------------------+---------------------------------------------------------------------------------------+
    | qcisd                   | quadratic CI singles doubles (QCISD) :ref:`[manual] <sec:fnocc>`                      |
    +-------------------------+---------------------------------------------------------------------------------------+
    | cc2                     | approximate coupled cluster singles and doubles (CC2) :ref:`[manual] <sec:cc>`        |
    +-------------------------+---------------------------------------------------------------------------------------+
    | ccsd                    | coupled cluster singles and doubles (CCSD) :ref:`[manual] <sec:cc>`                   |
    +-------------------------+---------------------------------------------------------------------------------------+
    | bccd                    | Brueckner coupled cluster doubles (BCCD) :ref:`[manual] <sec:cc>`                     |
    +-------------------------+---------------------------------------------------------------------------------------+
    | qcisd(t)                | QCISD with perturbative triples :ref:`[manual] <sec:fnocc>`                           |
    +-------------------------+---------------------------------------------------------------------------------------+
    | ccsd(t)                 | CCSD with perturbative triples (CCSD(T)) :ref:`[manual] <sec:cc>`                     |
    +-------------------------+---------------------------------------------------------------------------------------+
    | fno-df-ccsd(t)          | CCSD(T) with density fitting and frozen natural orbitals :ref:`[manual] <sec:fnocc>`  |
    +-------------------------+---------------------------------------------------------------------------------------+
    | bccd(t)                 | BCCD with perturbative triples :ref:`[manual] <sec:cc>`                               |
    +-------------------------+---------------------------------------------------------------------------------------+
    | cc3                     | approximate CC singles, doubles, and triples (CC3) :ref:`[manual] <sec:cc>`           |
    +-------------------------+---------------------------------------------------------------------------------------+
    | ccenergy                | **expert** full control over ccenergy module                                          |
    +-------------------------+---------------------------------------------------------------------------------------+
    | cisd                    | configuration interaction (CI) singles and doubles (CISD) :ref:`[manual] <sec:ci>`    |
    +-------------------------+---------------------------------------------------------------------------------------+
    | cisdt                   | CI singles, doubles, and triples (CISDT) :ref:`[manual] <sec:ci>`                     |
    +-------------------------+---------------------------------------------------------------------------------------+
    | cisdtq                  | CI singles, doubles, triples, and quadruples (CISDTQ) :ref:`[manual] <sec:ci>`        |
    +-------------------------+---------------------------------------------------------------------------------------+
    | ci\ *n*                 | *n*\ th-order CI :ref:`[manual] <sec:ci>`                                             |
    +-------------------------+---------------------------------------------------------------------------------------+
    | fci                     | full configuration interaction (FCI) :ref:`[manual] <sec:ci>`                         |
    +-------------------------+---------------------------------------------------------------------------------------+
    | detci                   | **expert** full control over detci module                                             |
    +-------------------------+---------------------------------------------------------------------------------------+
    | gaussian-2 (g2)         | gaussian-2 composite method :ref:`[manual] <sec:fnogn>`                               |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt0                   | 0th-order symmetry adapted perturbation theory (SAPT) :ref:`[manual] <sec:sapt>`      |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt2                   | 2nd-order SAPT, traditional definition :ref:`[manual] <sec:sapt>`                     |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt2+                  | SAPT including all 2nd-order terms :ref:`[manual] <sec:sapt>`                         |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt2+(3)               | SAPT including perturbative triples :ref:`[manual] <sec:sapt>`                        |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt2+3                 | SAPT including all 3rd-order terms :ref:`[manual] <sec:sapt>`                         |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt2+(ccd)             | SAPT2+ with CC-based dispersion :ref:`[manual] <sec:sapt>`                            |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt2+(3)(ccd)          | SAPT2+(3) with CC-based dispersion :ref:`[manual] <sec:sapt>`                         |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt2+3(ccd)            | SAPT2+3 with CC-based dispersion :ref:`[manual] <sec:sapt>`                           |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt0-ct                | 0th-order SAPT plus charge transfer (CT) calculation :ref:`[manual] <sec:saptct>`     |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt2-ct                | SAPT2 plus CT :ref:`[manual] <sec:saptct>`                                            |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt2+-ct               | SAPT2+ plus CT :ref:`[manual] <sec:saptct>`                                           |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt2+(3)-ct            | SAPT2+(3) plus CT :ref:`[manual] <sec:saptct>`                                        |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt2+3-ct              | SAPT2+3 plus CT :ref:`[manual] <sec:saptct>`                                          |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt2+(ccd)-ct          | SAPT2+(CCD) plus CT :ref:`[manual] <sec:saptct>`                                      |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt2+(3)(ccd)-ct       | SAPT2+(3)(CCD) plus CT :ref:`[manual] <sec:saptct>`                                   |
    +-------------------------+---------------------------------------------------------------------------------------+
    | sapt2+3(ccd)-ct         | SAPT2+3(CCD) plus CT :ref:`[manual] <sec:saptct>`                                     |
    +-------------------------+---------------------------------------------------------------------------------------+
    | adc                     | 2nd-order algebraic diagrammatic construction (ADC) :ref:`[manual] <sec:adc>`         |
    +-------------------------+---------------------------------------------------------------------------------------+
    | eom-cc2                 | EOM-CC2 :ref:`[manual] <sec:eomcc>`                                                   |
    +-------------------------+---------------------------------------------------------------------------------------+
    | eom-ccsd                | equation of motion (EOM) CCSD :ref:`[manual] <sec:eomcc>`                             |
    +-------------------------+---------------------------------------------------------------------------------------+
    | eom-cc3                 | EOM-CC3 :ref:`[manual] <sec:eomcc>`                                                   |
    +-------------------------+---------------------------------------------------------------------------------------+

    .. _`table:energy_scf`:

    +-------------------------+---------------------------------------------------------------------------------------+
    | name                    | calls method (aliases to *name* = 'scf')                                              |
    +=========================+=======================================================================================+
    | hf                      | HF                                                                                    |
    +-------------------------+---------------------------------------------------------------------------------------+
    | rhf                     | HF with restricted reference                                                          |
    +-------------------------+---------------------------------------------------------------------------------------+
    | uhf                     | HF with unrestricted reference                                                        |
    +-------------------------+---------------------------------------------------------------------------------------+
    | rohf                    | HF with restricted open-shell reference                                               |
    +-------------------------+---------------------------------------------------------------------------------------+
    | rscf                    | HF or DFT with restricted reference                                                   |
    +-------------------------+---------------------------------------------------------------------------------------+
    | uscf                    | HF or DFT with unrestricted reference                                                 |
    +-------------------------+---------------------------------------------------------------------------------------+
    | roscf                   | HF or DFT with restricted open-shell reference                                        |
    +-------------------------+---------------------------------------------------------------------------------------+

    .. include:: autodoc_dft_energy.rst

    .. _`table:energy_mrcc`:

    +-------------------------+---------------------------------------------------------------------------------------+
    | name                    | calls method in Kallay's MRCC program :ref:`[manual] <sec:mrcc>`                      |
    +=========================+=======================================================================================+
    | mrccsd                  | CC through doubles                                                                    |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdt                 | CC through triples                                                                    |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtq                | CC through quadruples                                                                 |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtqp               | CC through quintuples                                                                 |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtqph              | CC through sextuples                                                                  |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsd(t)               | CC through doubles with perturbative triples                                          |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdt(q)              | CC through triples with perturbative quadruples                                       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtq(p)             | CC through quadruples with pertubative quintuples                                     |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtqp(h)            | CC through quintuples with pertubative sextuples                                      |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsd(t)_l             |                                                                                       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdt(q)_l            |                                                                                       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtq(p)_l           |                                                                                       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtqp(h)_l          |                                                                                       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdt-1a              | CC through doubles with iterative triples (cheapest terms)                            |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtq-1a             | CC through triples with iterative quadruples (cheapest terms)                         |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtqp-1a            | CC through quadruples with iterative quintuples (cheapest terms)                      |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtqph-1a           | CC through quintuples with iterative sextuples (cheapest terms)                       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdt-1b              | CC through doubles with iterative triples (cheaper terms)                             |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtq-1b             | CC through triples with iterative quadruples (cheaper terms)                          |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtqp-1b            | CC through quadruples with iterative quintuples (cheaper terms)                       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtqph-1b           | CC through quintuples with iterative sextuples (cheaper terms)                        |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrcc2                   | approximate CC through doubles                                                        |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrcc3                   | approximate CC through triples                                                        |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrcc4                   | approximate CC through quadruples                                                     |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrcc5                   | approximate CC through quintuples                                                     |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrcc6                   | approximate CC through sextuples                                                      |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdt-3               | CC through doubles with iterative triples (all but the most expensive terms)          |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtq-3              | CC through triples with iterative quadruples (all but the most expensive terms)       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtqp-3             | CC through quadruples with iterative quintuples (all but the most expensive terms)    |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mrccsdtqph-3            | CC through quintuples with iterative sextuples (all but the most expensive terms)     |
    +-------------------------+---------------------------------------------------------------------------------------+

    :type name: string
    :param name: ``'scf'`` || ``'df-mp2'`` || ``'ci5'`` || etc.

        First argument, usually unlabeled. Indicates the computational method
        to be applied to the system.

    :type molecule: :ref:`molecule <op_py_molecule>`
    :param molecule: ``h2o`` || etc.

        The target molecule, if not the last molecule defined.

    .. comment :type cast_up: :ref:`boolean <op_py_boolean>` or string
    .. comment :param cast_up: ``'on'`` || |dl| ``'off'`` |dr| || ``'3-21g'`` || ``'cc-pVDZ'`` || etc.

    .. comment     Indicates whether, to accelerate convergence for the scf portion of
    .. comment     the *name* calculation, a preliminary scf should be performed with a
    .. comment     small basis set (3-21G if a basis name is not supplied as keyword
    .. comment     value) followed by projection into the full target basis.

    .. comment .. deprecated:: Sept-2012
    .. comment    Use option |scf__basis_guess| instead.

    .. comment :type cast_up_df: :ref:`boolean <op_py_boolean>` or string
    .. comment :param cast_up_df: ``'on'`` || |dl| ``'off'`` |dr| || ``'cc-pVDZ-RI'`` || ``'aug-cc-pVDZ-JKFIT'`` || etc.

    .. comment     Indicates whether, when *cast_up* is active, to run the preliminary
    .. comment     scf in density-fitted mode or what fitting basis to employ (when
    .. comment     available for all elements, cc-pVDZ-RI is the default).

    .. comment .. deprecated:: Sept-2012
    .. comment    Use option |scf__df_basis_guess| instead.

    :type bypass_scf: :ref:`boolean <op_py_boolean>`
    :param bypass_scf: ``'on'`` || |dl| ``'off'`` |dr|

        Indicates whether, for *name* values built atop of scf calculations,
        the scf step is skipped. Suitable when special steps are taken to get
        the scf to converge in an explicit preceeding scf step.

    :examples:

    >>> # [1] Coupled-cluster singles and doubles calculation with psi code
    >>> energy('ccsd')

    >>> # [2] Charge-transfer SAPT calculation with scf projection from small into
    >>> #     requested basis, with specified projection fitting basis
    >>> set basis_guess true
    >>> set df_basis_guess jun-cc-pVDZ-JKFIT
    >>> energy('sapt0-ct')

    >>> # [3] Arbitrary-order MPn calculation
    >>> energy('mp4')

    >>> # [4] Converge scf as singlet, then run detci as triplet upon singlet reference
    >>> molecule H2 {\\n0 1\\nH\\nH 1 0.74\\n}
    >>> energy('scf')
    >>> H2.set_multiplicity(3)
    >>> energy('detci', bypass_scf=True)

    """
    lowername = name.lower()
    kwargs = p4util.kwargs_lower(kwargs)

    optstash = p4util.OptionsState(
        ['SCF', 'E_CONVERGENCE'],
        ['SCF', 'D_CONVERGENCE'],
        ['E_CONVERGENCE'])

    # Make sure the molecule the user provided is the active one
    if 'molecule' in kwargs:
        activate(kwargs['molecule'])
        del kwargs['molecule']
    molecule = psi4.get_active_molecule()
    molecule.update_geometry()

    # Allow specification of methods to arbitrary order
    lowername, level = parse_arbitrary_order(lowername)
    if level:
        kwargs['level'] = level

    try:
        # Set method-dependent scf convergence criteria
        if not psi4.has_option_changed('SCF', 'E_CONVERGENCE'):
            if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
                psi4.set_local_option('SCF', 'E_CONVERGENCE', 6)
            else:
                psi4.set_local_option('SCF', 'E_CONVERGENCE', 8)
        if not psi4.has_option_changed('SCF', 'D_CONVERGENCE'):
            if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
                psi4.set_local_option('SCF', 'D_CONVERGENCE', 6)
            else:
                psi4.set_local_option('SCF', 'D_CONVERGENCE', 8)

        # Set post-scf convergence criteria (global will cover all correlated modules)
        if not psi4.has_global_option_changed('E_CONVERGENCE'):
            if not procedures['energy'][lowername] == run_scf and not procedures['energy'][lowername] == run_dft:
                psi4.set_global_option('E_CONVERGENCE', 6)

        procedures['energy'][lowername](lowername, **kwargs)

    except KeyError:
        raise ValidationError('Energy method %s not available.' % (lowername))

    optstash.restore()
    return psi4.get_variable('CURRENT ENERGY')


def gradient(name, **kwargs):
    r"""Function complementary to optimize(). Carries out one gradient pass,
    deciding analytic or finite difference.

    """
    lowername = name.lower()
    kwargs = p4util.kwargs_lower(kwargs)
    dertype = 1

    optstash = p4util.OptionsState(
        ['SCF', 'E_CONVERGENCE'],
        ['SCF', 'D_CONVERGENCE'],
        ['E_CONVERGENCE'])

    # Order of precedence:
    #    1. Default for wavefunction
    #    2. Value obtained from kwargs, if user changed it
    #    3. If user provides a custom 'func' use that

    # Allow specification of methods to arbitrary order
    lowername, level = parse_arbitrary_order(lowername)
    if level:
        kwargs['level'] = level

    # 1. set the default to that of the provided name
    if lowername in procedures['gradient']:
        dertype = 1
    elif lowername in procedures['energy']:
        dertype = 0
        func = energy

    # 2. Check if the user passes dertype into this function
    if 'dertype' in kwargs:
        opt_dertype = kwargs['dertype']

        if der0th.match(str(opt_dertype)):
            dertype = 0
            func = energy
        elif der1st.match(str(opt_dertype)):
            dertype = 1
        else:
            raise ValidationError('Requested derivative level \'dertype\' %s not valid for helper function optimize.' % (opt_dertype))

    # 3. if the user provides a custom function THAT takes precendence
    if ('opt_func' in kwargs) or ('func' in kwargs):
        if ('func' in kwargs):
            kwargs['opt_func'] = kwargs['func']
            del kwargs['func']
        dertype = 0
        func = kwargs['opt_func']

    # Summary validation
    if (dertype == 1) and (lowername in procedures['gradient']):
        pass
    elif (dertype == 0) and (func is energy) and (lowername in procedures['energy']):
        pass
    elif (dertype == 0) and not(func is energy):
        pass
    else:
        raise ValidationError('Requested method \'name\' %s and derivative level \'dertype\' %s are not available.'
            % (lowername, dertype))

    # no analytic derivatives for scf_type cd
    if psi4.get_option('SCF', 'SCF_TYPE') == 'CD':
        if (dertype == 1):
            raise ValidationError('No analytic derivatives for SCF_TYPE CD.')

    # Make sure the molecule the user provided is the active one
    if ('molecule' in kwargs):
        activate(kwargs['molecule'])
        del kwargs['molecule']
    molecule = psi4.get_active_molecule()
    molecule.update_geometry()
    psi4.set_global_option('BASIS', psi4.get_global_option('BASIS'))

    # S/R: Mode of operation- whether finite difference opt run in one job or files farmed out
    opt_mode = 'continuous'
    if ('mode' in kwargs) and (dertype == 0):
        opt_mode = kwargs['mode']

    if (opt_mode.lower() == 'continuous'):
        pass
    elif (opt_mode.lower() == 'sow'):
        pass
    elif (opt_mode.lower() == 'reap'):
        if('linkage' in kwargs):
            opt_linkage = kwargs['linkage']
        else:
            raise ValidationError('Optimize execution mode \'reap\' requires a linkage option.')
    else:
        raise ValidationError('Optimize execution mode \'%s\' not valid.' % (opt_mode))

    # Set method-dependent scf convergence criteria (test on procedures['energy'] since that's guaranteed)
    if not psi4.has_option_changed('SCF', 'E_CONVERGENCE'):
        if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
            psi4.set_local_option('SCF', 'E_CONVERGENCE', 8)
        else:
            psi4.set_local_option('SCF', 'E_CONVERGENCE', 10)
    if not psi4.has_option_changed('SCF', 'D_CONVERGENCE'):
        if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
            psi4.set_local_option('SCF', 'D_CONVERGENCE', 8)
        else:
            psi4.set_local_option('SCF', 'D_CONVERGENCE', 10)

    # Set post-scf convergence criteria (global will cover all correlated modules)
    if not psi4.has_global_option_changed('E_CONVERGENCE'):
        if not procedures['energy'][lowername] == run_scf and not procedures['energy'][lowername] == run_dft:
            psi4.set_global_option('E_CONVERGENCE', 8)

    # Does dertype indicate an analytic procedure both exists and is wanted?
    if (dertype == 1):
        # Nothing to it but to do it. Gradient information is saved
        # into the current reference wavefunction
        procedures['gradient'][lowername](lowername, **kwargs)

        if 'mode' in kwargs and kwargs['mode'].lower() == 'sow':
            raise ValidationError('Optimize execution mode \'sow\' not valid for analytic gradient calculation.')
        psi4.wavefunction().energy()

        optstash.restore()
        return psi4.get_variable('CURRENT ENERGY')

    else:
        # If not, perform finite difference of energies

        opt_iter = 1
        if ('opt_iter' in kwargs):
            opt_iter = kwargs['opt_iter']

        if opt_iter == 1:
            print('Performing finite difference calculations')

        # Obtain list of displacements
        displacements = psi4.fd_geoms_1_0()
        ndisp = len(displacements)

        # This version is pretty dependent on the reference geometry being last (as it is now)
        print(' %d displacements needed ...' % (ndisp), end="")
        energies = []

        # S/R: Write instructions for sow/reap procedure to output file and reap input file
        if (opt_mode.lower() == 'sow'):
            instructionsO = """\n    The optimization sow/reap procedure has been selected through mode='sow'. In addition\n"""
            instructionsO += """    to this output file (which contains no quantum chemical calculations), this job\n"""
            instructionsO += """    has produced a number of input files (OPT-%s-*.in) for individual components\n""" % (str(opt_iter))
            instructionsO += """    and a single input file (OPT-master.in) with an optimize(mode='reap') command.\n"""
            instructionsO += """    These files may look very peculiar since they contain processed and pickled python\n"""
            instructionsO += """    rather than normal input. Follow the instructions in OPT-master.in to continue.\n\n"""
            instructionsO += """    Alternatively, a single-job execution of the gradient may be accessed through\n"""
            instructionsO += """    the optimization wrapper option mode='continuous'.\n\n"""
            psi4.print_out(instructionsO)

            instructionsM = """\n#    Follow the instructions below to carry out this optimization cycle.\n#\n"""
            instructionsM += """#    (1)  Run all of the OPT-%s-*.in input files on any variety of computer architecture.\n""" % (str(opt_iter))
            instructionsM += """#       The output file names must be as given below.\n#\n"""
            for rgt in range(ndisp):
                pre = 'OPT-' + str(opt_iter) + '-' + str(rgt + 1)
                instructionsM += """#             psi4 -i %-27s -o %-27s\n""" % (pre + '.in', pre + '.out')
            instructionsM += """#\n#    (2)  Gather all the resulting output files in a directory. Place input file\n"""
            instructionsM += """#         OPT-master.in into that directory and run it. The job will be minimal in\n"""
            instructionsM += """#         length and give summary results for the gradient step in its output file.\n#\n"""
            if opt_iter == 1:
                instructionsM += """#             psi4 -i %-27s -o %-27s\n#\n""" % ('OPT-master.in', 'OPT-master.out')
            else:
                instructionsM += """#             psi4 -a -i %-27s -o %-27s\n#\n""" % ('OPT-master.in', 'OPT-master.out')
            instructionsM += """#    After each optimization iteration, the OPT-master.in file is overwritten so return here\n"""
            instructionsM += """#    for new instructions. With the use of the psi4 -a flag, OPT-master.out is not\n"""
            instructionsM += """#    overwritten and so maintains a history of the job. To use the (binary) optimizer\n"""
            instructionsM += """#    data file to accelerate convergence, the OPT-master jobs must run on the same computer.\n\n"""

            fmaster = open('OPT-master.in', 'w')
            fmaster.write('# This is a psi4 input file auto-generated from the gradient() wrapper.\n\n')
            fmaster.write(p4util.format_molecule_for_input(molecule))
            fmaster.write(p4util.format_options_for_input())
            p4util.format_kwargs_for_input(fmaster, 2, **kwargs)
            fmaster.write("""%s('%s', **kwargs)\n\n""" % (optimize.__name__, lowername))
            fmaster.write(instructionsM)
            fmaster.close()

        for n, displacement in enumerate(displacements):
            rfile = 'OPT-%s-%s' % (opt_iter, n + 1)
            #rfile = 'OPT-fd-%s' % (n + 1)

            # Build string of title banner
            banners = ''
            banners += """psi4.print_out('\\n')\n"""
            banners += """p4util.banner(' Gradient %d Computation: Displacement %d ')\n""" % (opt_iter, n + 1)
            banners += """psi4.print_out('\\n')\n\n"""

            if (opt_mode.lower() == 'continuous'):
                # Print information to output.dat
                psi4.print_out('\n')
                p4util.banner('Loading displacement %d of %d' % (n + 1, ndisp))

                # Print information to the screen
                print(' %d' % (n + 1), end="")
                if (n + 1) == ndisp:
                    print('\n', end="")

                # Load in displacement into the active molecule
                psi4.get_active_molecule().set_geometry(displacement)

                # Perform the energy calculation
                #E = func(lowername, **kwargs)
                func(lowername, **kwargs)
                E = psi4.get_variable('CURRENT ENERGY')
                #E = func(**kwargs)

                # Save the energy
                energies.append(E)

            # S/R: Write each displaced geometry to an input file
            elif (opt_mode.lower() == 'sow'):
                psi4.get_active_molecule().set_geometry(displacement)

                # S/R: Prepare molecule, options, and kwargs
                freagent = open('%s.in' % (rfile), 'w')
                freagent.write('# This is a psi4 input file auto-generated from the gradient() wrapper.\n\n')
                freagent.write(p4util.format_molecule_for_input(molecule))
                freagent.write(p4util.format_options_for_input())
                p4util.format_kwargs_for_input(freagent, **kwargs)

                # S/R: Prepare function call and energy save
                freagent.write("""electronic_energy = %s('%s', **kwargs)\n\n""" % (func.__name__, lowername))
                freagent.write("""psi4.print_out('\\nGRADIENT RESULT: computation %d for item %d """ % (os.getpid(), n + 1))
                freagent.write("""yields electronic energy %20.12f\\n' % (electronic_energy))\n\n""")
                freagent.close()

            # S/R: Read energy from each displaced geometry output file and save in energies array
            elif (opt_mode.lower() == 'reap'):
                exec(banners)
                psi4.set_variable('NUCLEAR REPULSION ENERGY', molecule.nuclear_repulsion_energy())
                energies.append(p4util.extract_sowreap_from_output(rfile, 'GRADIENT', n, opt_linkage, True))

        # S/R: Quit sow after writing files
        if (opt_mode.lower() == 'sow'):
            optstash.restore()
            return 0.0

        if (opt_mode.lower() == 'reap'):
            psi4.set_variable('CURRENT ENERGY', energies[-1])

        # Obtain the gradient
        psi4.fd_1_0(energies)
        # The last item in the list is the reference energy, return it
        optstash.restore()
        return energies[-1]


def property(name, **kwargs):
    r"""Function to compute various properties.

    :aliases: prop()

    :returns: none.

    .. caution:: Some features are not yet implemented. Buy a developer a coffee.

       - This function at present handles property functions only for CC methods.
         Consult the keywords sections for other modules for further property capabilities.

    +-------------------------+---------------------------------------------------------------------------------------+
    | name                    | calls method                                                                          |
    +=========================+=======================================================================================+
    | scf                     | Self-consistent field method(s)                                                       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | cc2                     | 2nd-order approximate CCSD                                                            |
    +-------------------------+---------------------------------------------------------------------------------------+
    | ccsd                    | coupled cluster singles and doubles (CCSD)                                            |
    +-------------------------+---------------------------------------------------------------------------------------+
    | df-mp2                  | MP2 with density fitting                                                              |
    +-------------------------+---------------------------------------------------------------------------------------+
    | eom-cc2                 | 2nd-order approximate EOM-CCSD                                                        |
    +-------------------------+---------------------------------------------------------------------------------------+
    | eom-ccsd                | equation-of-motion coupled cluster singles and doubles (EOM-CCSD)                     |
    +-------------------------+---------------------------------------------------------------------------------------+

    :type name: string
    :param name: ``'ccsd'`` || etc.

        First argument, usually unlabeled. Indicates the computational method
        to be applied to the system.

    :type properties: array of strings
    :param properties: |dl| ``[]`` |dr| || ``['rotation', 'polarizability', 'oscillator_strength', 'roa']`` || etc.

        Indicates which properties should be computed.

    :type molecule: :ref:`molecule <op_py_molecule>`
    :param molecule: ``h2o`` || etc.

        The target molecule, if not the last molecule defined.

    :examples:

    >>> # [1] Optical rotation calculation
    >>> property('cc2', properties=['rotation'])

    """
    lowername = name.lower()
    kwargs = p4util.kwargs_lower(kwargs)

    optstash = p4util.OptionsState(
        ['SCF', 'E_CONVERGENCE'],
        ['SCF', 'D_CONVERGENCE'],
        ['E_CONVERGENCE'])

    # Make sure the molecule the user provided is the active one
    if ('molecule' in kwargs):
        activate(kwargs['molecule'])
        del kwargs['molecule']
    molecule = psi4.get_active_molecule()
    molecule.update_geometry()
    #psi4.set_global_option('BASIS', psi4.get_global_option('BASIS'))

    # Allow specification of methods to arbitrary order
    lowername, level = parse_arbitrary_order(lowername)
    if level:
        kwargs['level'] = level

    try:
        # Set method-dependent scf convergence criteria (test on procedures['energy'] since that's guaranteed)
        #   SCF properties have been set as 6/5 so as to match those
        #       run normally through OEProp so subject to change
        if not psi4.has_option_changed('SCF', 'E_CONVERGENCE'):
            if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
                psi4.set_local_option('SCF', 'E_CONVERGENCE', 6)
            else:
                psi4.set_local_option('SCF', 'E_CONVERGENCE', 10)
        if not psi4.has_option_changed('SCF', 'D_CONVERGENCE'):
            if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
                psi4.set_local_option('SCF', 'D_CONVERGENCE', 6)
            else:
                psi4.set_local_option('SCF', 'D_CONVERGENCE', 10)

        # Set post-scf convergence criteria (global will cover all correlated modules)
        if not psi4.has_global_option_changed('E_CONVERGENCE'):
            if not procedures['energy'][lowername] == run_scf and not procedures['energy'][lowername] == run_dft:
                psi4.set_global_option('E_CONVERGENCE', 8)

        returnvalue = procedures['property'][lowername](lowername, **kwargs)

    except KeyError:
        raise ValidationError('Property method %s not available.' % (lowername))

    optstash.restore()
    return returnvalue


##  Aliases  ##
prop = property


def optimize(name, **kwargs):
    r"""Function to perform a geometry optimization.

    :aliases: opt()

    :returns: (*float*) Total electronic energy of optimized structure in Hartrees.

    :PSI variables:

    .. hlist::
       :columns: 1

       * :psivar:`CURRENT ENERGY <CURRENTENERGY>`

    .. note:: Analytic gradients area available for all methods in the table
        below. Optimizations with other methods in the energy table proceed
        by finite differences.

    .. _`table:grad_gen`:

    +-------------------------+---------------------------------------------------------------------------------------+
    | name                    | calls method                                                                          |
    +=========================+=======================================================================================+
    | scf                     | Hartree--Fock (HF) or density functional theory (DFT) :ref:`[manual] <sec:scf>`       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | dcft                    | density cumulant functional theory :ref:`[manual] <sec:dcft>`                         |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mp2                     | 2nd-order Moller-Plesset perturbation theory (MP2) :ref:`[manual] <sec:dfmp2>`        |
    +-------------------------+---------------------------------------------------------------------------------------+
    | df-mp2                  | MP2 with density fitting :ref:`[manual] <sec:dfmp2>`                                  |
    +-------------------------+---------------------------------------------------------------------------------------+
    | conv-mp2                | conventional MP2 (non-density-fitting) :ref:`[manual] <sec:convocc>`                  |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mp2.5                   | MP2.5 :ref:`[manual] <sec:convocc>`                                                   |
    +-------------------------+---------------------------------------------------------------------------------------+
    | mp3                     | third-order MP perturbation theory :ref:`[manual] <sec:convocc>`                      |
    +-------------------------+---------------------------------------------------------------------------------------+
    | omp2                    | orbital-optimized second-order MP perturbation theory :ref:`[manual] <sec:occ>`       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | omp2.5                  | orbital-optimized MP2.5 :ref:`[manual] <sec:occ>`                                     |
    +-------------------------+---------------------------------------------------------------------------------------+
    | omp3                    | orbital-optimized third-order MP perturbation theory :ref:`[manual] <sec:occ>`        |
    +-------------------------+---------------------------------------------------------------------------------------+
    | ocepa                   | orbital-optimized coupled electron pair approximation :ref:`[manual] <sec:occ>`       |
    +-------------------------+---------------------------------------------------------------------------------------+
    | cepa0                   | coupled electron pair approximation(0) :ref:`[manual] <sec:convocc>`                  |
    +-------------------------+---------------------------------------------------------------------------------------+
    | ccsd                    | coupled cluster singles and doubles (CCSD) :ref:`[manual] <sec:cc>`                   |
    +-------------------------+---------------------------------------------------------------------------------------+
    | ccsd(t)                 | CCSD with perturbative triples (CCSD(T)) :ref:`[manual] <sec:cc>`                     |
    +-------------------------+---------------------------------------------------------------------------------------+
    | eom-ccsd                | equation of motion (EOM) CCSD :ref:`[manual] <sec:eomcc>`                             |
    +-------------------------+---------------------------------------------------------------------------------------+

    .. include:: autodoc_dft_opt.rst

    .. warning:: Optimizations where the molecule is specified in Z-matrix format
       with dummy atoms will result in the geometry being converted to a Cartesian representation.

    :type name: string
    :param name: ``'scf'`` || ``'df-mp2'`` || ``'ci5'`` || etc.

        First argument, usually unlabeled. Indicates the computational method
        to be applied to the database. May be any valid argument to
        :py:func:`~driver.energy`.

    :type func: :ref:`function <op_py_function>`
    :param func: |dl| ``gradient`` |dr| || ``energy`` || ``cbs``

        Indicates the type of calculation to be performed on the molecule.
        The default dertype accesses ``'gradient'`` or ``'energy'``, while
        ``'cbs'`` performs a multistage finite difference calculation.
        If a nested series of python functions is intended (see :ref:`sec:intercalls`),
        use keyword ``opt_func`` instead of ``func``.

    :type mode: string
    :param mode: |dl| ``'continuous'`` |dr| || ``'sow'`` || ``'reap'``

        For a finite difference of energies optimization, indicates whether
        the calculations required to complete the
        optimization are to be run in one file (``'continuous'``) or are to be
        farmed out in an embarrassingly parallel fashion
        (``'sow'``/``'reap'``).  For the latter, run an initial job with
        ``'sow'`` and follow instructions in its output file.

    :type dertype: :ref:`dertype <op_py_dertype>`
    :param dertype: ``'gradient'`` || ``'energy'``

        Indicates whether analytic (if available) or finite difference
        optimization is to be performed.

    :type molecule: :ref:`molecule <op_py_molecule>`
    :param molecule: ``h2o`` || etc.

        The target molecule, if not the last molecule defined.

    :examples:

    >>> # [1] Analytic scf optimization
    >>> optimize('scf')

    >>> # [2] Finite difference mp5 optimization
    >>> opt('mp5')

    >>> # [3] Forced finite difference ccsd optimization
    >>> optimize('ccsd', dertype=1)

    """
    lowername = name.lower()
    kwargs = p4util.kwargs_lower(kwargs)

    full_hess_every = psi4.get_local_option('OPTKING', 'FULL_HESS_EVERY')
    steps_since_last_hessian = 0

    # are we in sow/reap mode?
    isSowReap = False
    if ('mode' in kwargs) and (kwargs['mode'].lower() == 'sow'):
        isSowReap = True
    if ('mode' in kwargs) and (kwargs['mode'].lower() == 'reap'):
        isSowReap = True
    optstash = p4util.OptionsState(
        ['SCF', 'GUESS'])

    n = 1
    if ('opt_iter' in kwargs):
        n = kwargs['opt_iter']

    psi4.get_active_molecule().update_geometry()
    mol = psi4.get_active_molecule()
    mol.update_geometry()
    initial_sym = mol.schoenflies_symbol()
    while n <= psi4.get_global_option('GEOM_MAXITER'):
        mol = psi4.get_active_molecule()
        mol.update_geometry()
        current_sym = mol.schoenflies_symbol()
        if initial_sym != current_sym:
            raise Exception("Point group changed!  You should restart using " +\
                            "the last geometry in the output, after carefully " +\
                            "making sure all symmetry-dependent information in " +\
                            "the input, such as DOCC, is correct.")
        kwargs['opt_iter'] = n

        # Use orbitals from previous iteration as a guess
        if (n > 1) and (not isSowReap):
            psi4.set_local_option('SCF', 'GUESS', 'READ')

        # Compute the gradient
        thisenergy = gradient(name, **kwargs)

        # S/R: Quit after getting new displacements or if forming gradient fails
        if ('mode' in kwargs) and (kwargs['mode'].lower() == 'sow'):
            return 0.0
        if ('mode' in kwargs) and (kwargs['mode'].lower() == 'reap') and (thisenergy == 0.0):
            return 0.0

        # S/R: Move opt data file from last pass into namespace for this pass
        if ('mode' in kwargs) and (kwargs['mode'].lower() == 'reap') and (n != 0):
            psi4.IOManager.shared_object().set_specific_retention(1, True)
            psi4.IOManager.shared_object().set_specific_path(1, './')
            if 'opt_datafile' in kwargs:
                restartfile = kwargs.pop('opt_datafile')
                if(psi4.me() == 0):
                    shutil.copy(restartfile, p4util.get_psifile(1))

        # compute Hessian as requested; frequency wipes out gradient so stash it
        if ((full_hess_every > -1) and (n == 1)) or (steps_since_last_hessian + 1 == full_hess_every):
            G = psi4.get_gradient()
            psi4.IOManager.shared_object().set_specific_retention(1, True)
            psi4.IOManager.shared_object().set_specific_path(1, './')
            frequencies(name, **kwargs)
            steps_since_last_hessian = 0
            psi4.set_gradient(G)
            psi4.set_global_option('CART_HESS_READ', True)
        elif ((full_hess_every == -1) and (psi4.get_global_option('CART_HESS_READ')) and (n == 1)):
            pass
            # Do nothing; user said to read existing hessian once
        else:
            psi4.set_global_option('CART_HESS_READ', False)
            steps_since_last_hessian += 1

        # print 'cart_hess_read', psi4.get_global_option('CART_HESS_READ')
        # Take step
        if psi4.optking() == psi4.PsiReturnType.EndLoop:
            print('Optimizer: Optimization complete!')
            psi4.print_out('\n    Final optimized geometry and variables:\n')
            psi4.get_active_molecule().print_in_input_format()
            # Check if user wants to see the intcos; if so, don't delete them.
            if (psi4.get_option('OPTKING', 'INTCOS_GENERATE_EXIT') == False):
                psi4.opt_clean()
            psi4.clean()

            # S/R: Clean up opt input file
            if ('mode' in kwargs) and (kwargs['mode'].lower() == 'reap'):
                fmaster = open('OPT-master.in', 'w')
                fmaster.write('# This is a psi4 input file auto-generated from the gradient() wrapper.\n\n')
                fmaster.write('# Optimization complete!\n\n')
                fmaster.close()

            optstash.restore()
            return thisenergy
        psi4.print_out('\n    Structure for next step:\n')
        psi4.get_active_molecule().print_in_input_format()

        # S/R: Preserve opt data file for next pass and switch modes to get new displacements
        if ('mode' in kwargs) and (kwargs['mode'].lower() == 'reap'):
            kwargs['opt_datafile'] = p4util.get_psifile(1)
            kwargs['mode'] = 'sow'

        n += 1

    psi4.print_out('\tOptimizer: Did not converge!')

    optstash.restore()
    return 0.0

##  Aliases  ##
opt = optimize


def parse_arbitrary_order(name):
    r"""Function to parse name string into a method family like CI or MRCC and specific
    level information like 4 for CISDTQ or MRCCSDTQ.

    """
    namelower = name.lower()

    # matches 'mrccsdt(q)'
    if namelower.startswith('mrcc'):
        # grabs 'sdt(q)'
        ccfullname = namelower[4:]

        # A negative order indicates perturbative method
        methods = {
            'sd'          : { 'method' : 1, 'order' :  2, 'fullname' : 'CCSD'         },
            'sdt'         : { 'method' : 1, 'order' :  3, 'fullname' : 'CCSDT'        },
            'sdtq'        : { 'method' : 1, 'order' :  4, 'fullname' : 'CCSDTQ'       },
            'sdtqp'       : { 'method' : 1, 'order' :  5, 'fullname' : 'CCSDTQP'      },
            'sdtqph'      : { 'method' : 1, 'order' :  6, 'fullname' : 'CCSDTQPH'     },
            'sd(t)'       : { 'method' : 3, 'order' : -3, 'fullname' : 'CCSD(T)'      },
            'sdt(q)'      : { 'method' : 3, 'order' : -4, 'fullname' : 'CCSDT(Q)'     },
            'sdtq(p)'     : { 'method' : 3, 'order' : -5, 'fullname' : 'CCSDTQ(P)'    },
            'sdtqp(h)'    : { 'method' : 3, 'order' : -6, 'fullname' : 'CCSDTQP(H)'   },
            'sd(t)_l'     : { 'method' : 4, 'order' : -3, 'fullname' : 'CCSD(T)_L'    },
            'sdt(q)_l'    : { 'method' : 4, 'order' : -4, 'fullname' : 'CCSDT(Q)_L'   },
            'sdtq(p)_l'   : { 'method' : 4, 'order' : -5, 'fullname' : 'CCSDTQ(P)_L'  },
            'sdtqp(h)_l'  : { 'method' : 4, 'order' : -6, 'fullname' : 'CCSDTQP(H)_L' },
            'sdt-1a'      : { 'method' : 5, 'order' :  3, 'fullname' : 'CCSDT-1a'     },
            'sdtq-1a'     : { 'method' : 5, 'order' :  4, 'fullname' : 'CCSDTQ-1a'    },
            'sdtqp-1a'    : { 'method' : 5, 'order' :  5, 'fullname' : 'CCSDTQP-1a'   },
            'sdtqph-1a'   : { 'method' : 5, 'order' :  6, 'fullname' : 'CCSDTQPH-1a'  },
            'sdt-1b'      : { 'method' : 6, 'order' :  3, 'fullname' : 'CCSDT-1b'     },
            'sdtq-1b'     : { 'method' : 6, 'order' :  4, 'fullname' : 'CCSDTQ-1b'    },
            'sdtqp-1b'    : { 'method' : 6, 'order' :  5, 'fullname' : 'CCSDTQP-1b'   },
            'sdtqph-1b'   : { 'method' : 6, 'order' :  6, 'fullname' : 'CCSDTQPH-1b'  },
            '2'           : { 'method' : 7, 'order' :  2, 'fullname' : 'CC2'          },
            '3'           : { 'method' : 7, 'order' :  3, 'fullname' : 'CC3'          },
            '4'           : { 'method' : 7, 'order' :  4, 'fullname' : 'CC4'          },
            '5'           : { 'method' : 7, 'order' :  5, 'fullname' : 'CC5'          },
            '6'           : { 'method' : 7, 'order' :  6, 'fullname' : 'CC6'          },
            'sdt-3'       : { 'method' : 8, 'order' :  3, 'fullname' : 'CCSDT-3'      },
            'sdtq-3'      : { 'method' : 8, 'order' :  4, 'fullname' : 'CCSDTQ-3'     },
            'sdtqp-3'     : { 'method' : 8, 'order' :  5, 'fullname' : 'CCSDTQP-3'    },
            'sdtqph-3'    : { 'method' : 8, 'order' :  6, 'fullname' : 'CCSDTQPH-3'   }
        }

        # looks for 'sdt(q)' in dictionary
        if ccfullname in methods:
            return 'mrcc', methods[ccfullname]
        else:
            raise ValidationError('MRCC method \'%s\' invalid.' % (namelower))

    elif re.match(r'^[a-z]+\d+$', namelower):
        decompose = re.compile(r'^([a-z]+)(\d+)$').match(namelower)
        namestump = decompose.group(1)
        namelevel = int(decompose.group(2))

        if (namestump == 'mp') or (namestump == 'zapt') or (namestump == 'ci'):
            # Let 'mp2' and 'mp3' pass through as themselves to occ module
            if (namestump == 'mp') and ((namelevel == 2) or (namelevel == 3)):
                return namelower, None
            # Let 'mp4' be redirected to fnocc module if rhf
            elif (namestump == 'mp') and (namelevel == 4):
                if psi4.get_option('SCF', 'REFERENCE') == 'RHF':
                    return 'fnocc-mp', 4
                else:
                    return 'detci-mp', 4
            # Otherwise return method and order
            else:
                return namestump, namelevel
        else:
            return namelower, None
    else:
        return namelower, None


def hessian(name, **kwargs):
    r"""Function complementary to :py:func:`~frequency`. Computes force
    constants, deciding analytic, finite difference of gradients, or
    finite difference of energies.

    """
    lowername = name.lower()
    kwargs = p4util.kwargs_lower(kwargs)
    dertype = 2

    optstash = p4util.OptionsState(
        ['SCF', 'E_CONVERGENCE'],
        ['SCF', 'D_CONVERGENCE'],
        ['E_CONVERGENCE'])

    # Order of precedence:
    #    1. Default for wavefunction
    #    2. Value obtained from kwargs, if user changed it
    #    3. If user provides a custom 'func' use that

    # Allow specification of methods to arbitrary order
    lowername, level = parse_arbitrary_order(lowername)
    if level:
        kwargs['level'] = level

    # 1. set the default to that of the provided name
    if lowername in procedures['hessian']:
        dertype = 2
    elif lowername in procedures['gradient']:
        dertype = 1
        func = gradient
    elif lowername in procedures['energy']:
        dertype = 0
        func = energy

    # 2. Check if the user passes dertype into this function
    if 'dertype' in kwargs:
        freq_dertype = kwargs['dertype']

        if der0th.match(str(freq_dertype)):
            dertype = 0
            func = energy
        elif der1st.match(str(freq_dertype)):
            dertype = 1
            func = gradient
        elif der2nd.match(str(freq_dertype)):
            dertype = 2
        else:
            raise ValidationError('Requested derivative level \'dertype\' %s not valid for helper function frequency.' % (freq_dertype))

    # 3. if the user provides a custom function THAT takes precedence
    if ('freq_func' in kwargs) or ('func' in kwargs):
        if ('func' in kwargs):
            kwargs['freq_func'] = kwargs['func']
            del kwargs['func']
        dertype = 0
        func = kwargs['freq_func']

    # Summary validation
    if (dertype == 2) and (lowername in procedures['hessian']):
        pass
    elif (dertype == 1) and (func is gradient) and (lowername in procedures['gradient']):
        pass
    elif (dertype == 1) and not(func is gradient):
        pass
    elif (dertype == 0) and (func is energy) and (lowername in procedures['energy']):
        pass
    elif (dertype == 0) and not(func is energy):
        pass
    else:
        raise ValidationError('Requested method \'name\' %s and derivative level \'dertype\' %s are not available.'
            % (lowername, dertype))

    # Make sure the molecule the user provided is the active one
    if ('molecule' in kwargs):
        activate(kwargs['molecule'])
        del kwargs['molecule']
    molecule = psi4.get_active_molecule()
    molecule.update_geometry()
    psi4.set_global_option('BASIS', psi4.get_global_option('BASIS'))

    # S/R: Mode of operation- whether finite difference opt run in one job or files farmed out
    freq_mode = 'continuous'
    if ('mode' in kwargs) and ((dertype == 0) or (dertype == 1)):
        freq_mode = kwargs['mode']

    if (freq_mode.lower() == 'continuous'):
        pass
    elif (freq_mode.lower() == 'sow'):
        pass
    elif (freq_mode.lower() == 'reap'):
        if('linkage' in kwargs):
            freq_linkage = kwargs['linkage']
        else:
            raise ValidationError('Frequency execution mode \'reap\' requires a linkage option.')
    else:
        raise ValidationError('Frequency execution mode \'%s\' not valid.' % (freq_mode))

    # Set method-dependent scf convergence criteria (test on procedures['energy'] since that's guaranteed)
    if not psi4.has_option_changed('SCF', 'E_CONVERGENCE'):
        if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
            psi4.set_local_option('SCF', 'E_CONVERGENCE', 8)
        else:
            psi4.set_local_option('SCF', 'E_CONVERGENCE', 10)
    if not psi4.has_option_changed('SCF', 'D_CONVERGENCE'):
        if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
            psi4.set_local_option('SCF', 'D_CONVERGENCE', 8)
        else:
            psi4.set_local_option('SCF', 'D_CONVERGENCE', 10)

    # Set post-scf convergence criteria (global will cover all correlated modules)
    if not psi4.has_global_option_changed('E_CONVERGENCE'):
        if not procedures['energy'][lowername] == run_scf and not procedures['energy'][lowername] == run_dft:
            psi4.set_global_option('E_CONVERGENCE', 8)

    # Select certain irreps
    if 'irrep' in kwargs:
        irrep = parse_cotton_irreps(kwargs['irrep']) - 1  # externally, A1 irrep is 1, internally 0
    else:
        irrep = -1  # -1 implies do all irreps

    # Does an analytic procedure exist for the requested method?
    if (dertype == 2):
        # We have the desired method. Do it.
        procedures['hessian'][lowername](lowername, **kwargs)
        optstash.restore()

        if 'mode' in kwargs and kwargs['mode'].lower() == 'sow':
            raise ValidationError('Frequency execution mode \'sow\' not valid for analytic frequency calculation.')

        # TODO: check that current energy's being set to the right figure when this code is actually used
        psi4.set_variable('CURRENT ENERGY', psi4.wavefunction().energy())

        # TODO: return hessian matrix

    elif (dertype == 1):
        # Ok, we're doing frequencies by gradients
        print('Performing finite difference by gradient calculations')

        func = procedures['gradient'][lowername]

        if 'mode' in kwargs and kwargs['mode'].lower() == 'sow':
            raise ValidationError('Frequency execution mode \'sow\' not yet implemented for finite difference of analytic gradient calculation.')

        # Obtain list of displacements
        displacements = psi4.fd_geoms_freq_1(irrep)

        molecule.reinterpret_coordentry(False)
        molecule.fix_orientation(True)
        # Make a note of the undisplaced molecule's symmetry
        psi4.set_parent_symmetry(molecule.schoenflies_symbol())

        ndisp = len(displacements)
        print(' %d displacements needed.' % ndisp)

        #print displacements to output.dat
        #for n, displacement in enumerate(displacements):
        #  displacement.print_out();

        gradients = []
        for n, displacement in enumerate(displacements):
            # Print information to output.dat
            psi4.print_out('\n')
            p4util.banner('Loading displacement %d of %d' % (n + 1, ndisp))

            # Print information to the screen
            print(' %d' % (n + 1), end="")
            if (n + 1) == ndisp:
                print('\n', end="")
            sys.stdout.flush()

            # Load in displacement into the active molecule (xyz coordinates only)
            molecule.set_geometry(displacement)

            # Perform the gradient calculation
            func(lowername, **kwargs)

            # Save the gradient
            G = psi4.get_gradient()
            gradients.append(G)

            # clean may be necessary when changing irreps of displacements
            psi4.clean()

        psi4.fd_freq_1(gradients, irrep)

        print(' Computation complete.')

        # Clear the "parent" symmetry now
        psi4.set_parent_symmetry("")

        # TODO: These need to be restored to the user specified setting
        psi4.get_active_molecule().fix_orientation(False)
        # But not this one, it always goes back to True
        psi4.get_active_molecule().reinterpret_coordentry(True)

        optstash.restore()
        # TODO: add return statement of hessian matrix
        # TODO: set current energy to un-displaced energy

    else:
        # If not, perform finite difference of energies
        print('Performing finite difference calculations by energies')

        # Set method-dependent scf convergence criteria (test on procedures['energy'] since that's guaranteed)
        optstash.restore()
        if not psi4.has_option_changed('SCF', 'E_CONVERGENCE'):
            if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
                psi4.set_local_option('SCF', 'E_CONVERGENCE', 10)
            else:
                psi4.set_local_option('SCF', 'E_CONVERGENCE', 11)
        if not psi4.has_option_changed('SCF', 'D_CONVERGENCE'):
            if procedures['energy'][lowername] == run_scf or procedures['energy'][lowername] == run_dft:
                psi4.set_local_option('SCF', 'D_CONVERGENCE', 10)
            else:
                psi4.set_local_option('SCF', 'D_CONVERGENCE', 11)

        # Set post-scf convergence criteria (global will cover all correlated modules)
        if not psi4.has_global_option_changed('E_CONVERGENCE'):
            if not procedures['energy'][lowername] == run_scf and not procedures['energy'][lowername] == run_dft:
                psi4.set_global_option('E_CONVERGENCE', 10)

        # Obtain list of displacements
        displacements = psi4.fd_geoms_freq_0(irrep)
        molecule.fix_orientation(True)
        molecule.reinterpret_coordentry(False)
        # Make a note of the undisplaced molecule's symmetry
        psi4.set_parent_symmetry(molecule.schoenflies_symbol())

        ndisp = len(displacements)

        # This version is pretty dependent on the reference geometry being last (as it is now)
        print(' %d displacements needed.' % ndisp)
        energies = []

        # S/R: Write instructions for sow/reap procedure to output file and reap input file
        if (freq_mode.lower() == 'sow'):
            instructionsO = """\n#    The frequency sow/reap procedure has been selected through mode='sow'. In addition\n"""
            instructionsO += """#    to this output file (which contains no quantum chemical calculations), this job\n"""
            instructionsO += """#    has produced a number of input files (FREQ-*.in) for individual components\n"""
            instructionsO += """#    and a single input file (FREQ-master.in) with a frequency(mode='reap') command.\n"""
            instructionsO += """#    These files may look very peculiar since they contain processed and pickled python\n"""
            instructionsO += """#    rather than normal input. Follow the instructions below (repeated in FREQ-master.in)\n"""
            instructionsO += """#    to continue.\n#\n"""
            instructionsO += """#    Alternatively, a single-job execution of the hessian may be accessed through\n"""
            instructionsO += """#    the frequency wrapper option mode='continuous'.\n#\n"""
            psi4.print_out(instructionsO)

            instructionsM = """\n#    Follow the instructions below to carry out this frequency computation.\n#\n"""
            instructionsM += """#    (1)  Run all of the FREQ-*.in input files on any variety of computer architecture.\n"""
            instructionsM += """#       The output file names must be as given below (these are the defaults when executed\n"""
            instructionsM += """#       as `psi4 FREQ-1.in`, etc.).\n#\n"""
            for rgt in range(ndisp):
                pre = 'FREQ-' + str(rgt + 1)
                instructionsM += """#             psi4 -i %-27s -o %-27s\n""" % (pre + '.in', pre + '.out')
            instructionsM += """#\n#    (2)  Gather all the resulting output files in a directory. Place input file\n"""
            instructionsM += """#         FREQ-master.in into that directory and run it. The job will be minimal in\n"""
            instructionsM += """#         length and give summary results for the frequency computation in its output file.\n#\n"""
            instructionsM += """#             psi4 -i %-27s -o %-27s\n#\n\n""" % ('FREQ-master.in', 'FREQ-master.out')

            fmaster = open('FREQ-master.in', 'w')
            fmaster.write('# This is a psi4 input file auto-generated from the hessian() wrapper.\n\n')
            fmaster.write(p4util.format_molecule_for_input(molecule))
            fmaster.write(p4util.format_options_for_input())
            p4util.format_kwargs_for_input(fmaster, 2, **kwargs)
            fmaster.write("""%s('%s', **kwargs)\n\n""" % (frequency.__name__, lowername))
            fmaster.write(instructionsM)
            fmaster.close()
            psi4.print_out(instructionsM)

        for n, displacement in enumerate(displacements):
            rfile = 'FREQ-%s' % (n + 1)

            # Build string of title banner
            banners = ''
            banners += """psi4.print_out('\\n')\n"""
            banners += """p4util.banner(' Hessian Computation: Energy Displacement %d ')\n""" % (n + 1)
            banners += """psi4.print_out('\\n')\n\n"""

            if (freq_mode.lower() == 'continuous'):
                # Print information to output.dat
                psi4.print_out('\n')
                p4util.banner('Loading displacement %d of %d' % (n + 1, ndisp))

                # Print information to the screen
                print(' %d' % (n + 1), end="")
                if (n + 1) == ndisp:
                    print('\n', end='')
                sys.stdout.flush()

                # Load in displacement into the active molecule
                molecule.set_geometry(displacement)

                # Perform the energy calculation
                func(lowername, **kwargs)

                # Save the energy
                energies.append(psi4.get_variable('CURRENT ENERGY'))

                # clean may be necessary when changing irreps of displacements
                psi4.clean()

            # S/R: Write each displaced geometry to an input file
            elif (freq_mode.lower() == 'sow'):
                molecule.set_geometry(displacement)

                # S/R: Prepare molecule, options, and kwargs
                freagent = open('%s.in' % (rfile), 'w')
                freagent.write('# This is a psi4 input file auto-generated from the gradient() wrapper.\n\n')
                freagent.write(p4util.format_molecule_for_input(molecule))
                freagent.write(p4util.format_options_for_input())
                p4util.format_kwargs_for_input(freagent, **kwargs)

                # S/R: Prepare function call and energy save
                freagent.write("""electronic_energy = %s('%s', **kwargs)\n\n""" % (func.__name__, lowername))
                freagent.write("""psi4.print_out('\\nHESSIAN RESULT: computation %d for item %d """ % (os.getpid(), n + 1))
                freagent.write("""yields electronic energy %20.12f\\n' % (electronic_energy))\n\n""")
                freagent.close()

            # S/R: Read energy from each displaced geometry output file and save in energies array
            elif (freq_mode.lower() == 'reap'):
                exec(banners)
                psi4.set_variable('NUCLEAR REPULSION ENERGY', molecule.nuclear_repulsion_energy())
                energies.append(p4util.extract_sowreap_from_output(rfile, 'HESSIAN', n, freq_linkage, True))

        # S/R: Quit sow after writing files
        if (freq_mode.lower() == 'sow'):
            optstash.restore()
            return None

        # Obtain the gradient. This function stores the gradient in the wavefunction.
        psi4.fd_freq_0(energies, irrep)

        print(' Computation complete.')

        # Clear the "parent" symmetry now
        psi4.set_parent_symmetry("")

        # TODO: These need to be restored to the user specified setting
        psi4.get_active_molecule().fix_orientation(False)
        # But not this one, it always goes back to True
        psi4.get_active_molecule().reinterpret_coordentry(True)

        # Clear the "parent" symmetry now
        psi4.set_parent_symmetry("")

        # The last item in the list is the reference energy, return it
        optstash.restore()
        psi4.set_variable('CURRENT ENERGY', energies[-1])

        #TODO: return hessian matrix


def frequency(name, **kwargs):
    r"""Function to compute harmonic vibrational frequencies.

    :aliases: frequencies(), freq()

    :returns: (*float*) Total electronic energy in Hartrees.

    .. note:: Analytic hessians are not available. Frequencies will proceed through
        finite differences according to availability of gradients or energies.

    .. caution:: Some features are not yet implemented. Buy a developer a coffee.

       - Implement sow/reap mode for finite difference of gradients. Presently only for findif of energies.

    .. _`table:freq_gen`:

    :type name: string
    :param name: ``'scf'`` || ``'df-mp2'`` || ``'ci5'`` || etc.

        First argument, usually unlabeled. Indicates the computational method
        to be applied to the system.

    :type dertype: :ref:`dertype <op_py_dertype>`
    :param dertype: |dl| ``'hessian'`` |dr| || ``'gradient'`` || ``'energy'``

        Indicates whether analytic (if available- they're not), finite
        difference of gradients (if available) or finite difference of
        energies is to be performed.

    :type mode: string
    :param mode: |dl| ``'continuous'`` |dr| || ``'sow'`` || ``'reap'``

        For a finite difference of energies or gradients frequency, indicates
        whether the calculations required to complet the frequency are to be run
        in one file (``'continuous'``) or are to be farmed out in an
        embarrassingly parallel fashion (``'sow'``/``'reap'``)/ For the latter,
        run an initial job with ``'sow'`` and follow instructions in its output file.

    :type irrep: int or string
    :param irrep: |dl| ``-1`` |dr| || ``1`` || ``'b2'`` || ``'App'`` || etc.

        Indicates which symmetry block (:ref:`Cotton <table:irrepOrdering>` ordering) of vibrational
        frequencies to be computed. ``1``, ``'1'``, or ``'a1'`` represents
        :math:`a_1`, requesting only the totally symmetric modes.
        ``-1`` indicates a full frequency calculation.

    :type molecule: :ref:`molecule <op_py_molecule>`
    :param molecule: ``h2o`` || etc.

        The target molecule, if not the last molecule defined.

    :examples:

    >>> # [1] <example description>
    >>> <example python command>

    >>> # [2] Frequency calculation for b2 modes through finite difference of gradients
    >>> frequencies('scf', dertype=1, irrep=4)

    """
    lowername = name.lower()
    kwargs = p4util.kwargs_lower(kwargs)

    # Compute the hessian
    hessian(name, **kwargs)

    if not (('mode' in kwargs) and (kwargs['mode'].lower() == 'sow')):
        # call thermo module
        psi4.thermo()

    #TODO add return current energy once satisfied that's set to energy at eq, not a findif
    return psi4.get_variable('CURRENT ENERGY')


##  Aliases  ##
frequencies = frequency
freq = frequency


def molden(filename):
    """Function to write wavefunction information in molden
    format to *filename*

    """
    m = psi4.MoldenWriter(psi4.wavefunction())
    m.write(filename)


def parse_cotton_irreps(irrep):
    r"""Function to return validated Cotton ordering index from string or integer
    irreducible representation *irrep*.

    """
    cotton = {
        'c1': {
            'a': 1,
            '1': 1
        },
        'ci': {
            'ag': 1,
            'au': 2,
            '1':  1,
            '2':  2
        },
        'c2': {
            'a': 1,
            'b': 2,
            '1': 1,
            '2': 2
        },
        'cs': {
            'ap':  1,
            'app': 2,
            '1':   1,
            '2':   2
        },
        'd2': {
            'a':  1,
            'b1': 2,
            'b2': 3,
            'b3': 4,
            '1':  1,
            '2':  2,
            '3':  3,
            '4':  4
        },
        'c2v': {
            'a1': 1,
            'a2': 2,
            'b1': 3,
            'b2': 4,
            '1':  1,
            '2':  2,
            '3':  3,
            '4':  4
        },
        'c2h': {
            'ag': 1,
            'bg': 2,
            'au': 3,
            'bu': 4,
            '1':  1,
            '2':  2,
            '3':  3,
            '4':  4,
        },
        'd2h': {
            'ag':  1,
            'b1g': 2,
            'b2g': 3,
            'b3g': 4,
            'au':  5,
            'b1u': 6,
            'b2u': 7,
            'b3u': 8,
            '1':   1,
            '2':   2,
            '3':   3,
            '4':   4,
            '5':   5,
            '6':   6,
            '7':   7,
            '8':   8
        }
    }

    point_group = psi4.get_active_molecule().schoenflies_symbol().lower()
    irreducible_representation = str(irrep).lower()

    try:
        return cotton[point_group][irreducible_representation]
    except KeyError:
        raise ValidationError("Irrep \'%s\' not valid for point group \'%s\'." % (str(irrep), point_group))