/usr/share/psi/python/molutil.py is in psi4-data 4.0~beta5+dfsg-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 | #
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#
"""Module with utility functions that act on molecule objects."""
import os
import re
import subprocess
import socket
import shutil
import random
import math
import psi4
import p4const
import p4util
from p4regex import *
from dashparam import *
def extract_clusters(mol, ghost=True, cluster_size=0):
"""Function to return all subclusters of the molecule *mol* of
real size *cluster_size* and all other atoms ghosted if *ghost*
equals true, all other atoms discarded if *ghost* is false. If
*cluster_size* = 0, returns all possible combinations of cluster size.
"""
# How many levels of clusters are possible?
nfrag = mol.nfragments()
# Initialize the cluster array
clusters = []
# scope the arrays
reals = []
ghosts = []
# counter
counter = 0
# loop over all possible cluster sizes
for nreal in range(nfrag, 0, -1):
# if a specific cluster size size is requested, only do that
if (nreal != cluster_size and cluster_size > 0):
continue
# initialize the reals list
reals = []
# setup first combination [3,2,1] lexical ordering
# fragments indexing is 1's based, bloody hell
for index in range(nreal, 0, -1):
reals.append(index)
# start loop through lexical promotion
while True:
counter = counter + 1
# Generate cluster from last iteration
if (ghost):
ghosts = []
for g in range(nfrag, 0, -1):
if (g not in reals):
ghosts.append(g)
#print "Cluster #%d: %s reals, %s ghosts" % (counter,str(reals), str(ghosts))
clusters.append(mol.extract_subsets(reals, ghosts))
else:
#print "Cluster #%d: %s reals" % (counter,str(reals))
clusters.append(mol.extract_subsets(reals))
# reset rank
rank = 0
# look for lexical promotion opportunity
# i.e.: [4 2 1] has a promotion opportunity at
# index 1 to produce [4 3 1]
for k in range(nreal - 2, -1, -1):
if (reals[k] != reals[k + 1] + 1):
rank = k + 1
break
# do the promotion
reals[rank] = reals[rank] + 1
# demote the right portion of the register
val = 1
for k in range(nreal - 1, rank, -1):
reals[k] = val
val = val + 1
# boundary condition is promotion into
# [nfrag+1 nfrag-1 ...]
if (reals[0] > nfrag):
break
return clusters
def extract_cluster_indexing(mol, cluster_size=0):
"""Function to returns a LIST of all subclusters of the molecule *mol* of
real size *cluster_size*. If *cluster_size* = 0, returns all possible
combinations of cluster size.
"""
import copy
# How many levels of clusters are possible?
nfrag = mol.nfragments()
# Initialize the cluster array
clusters = []
# scope the arrays
reals = []
# counter
counter = 0
# loop over all possible cluster sizes
for nreal in range(nfrag, 0, -1):
# if a specific cluster size size is requested, only do that
if (nreal != cluster_size and cluster_size > 0):
continue
# initialize the reals list
reals = []
# setup first combination [3,2,1] lexical ordering
# fragments indexing is 1's based, bloody hell
for index in range(nreal, 0, -1):
reals.append(index)
# start loop through lexical promotion
while True:
counter = counter + 1
# Generate cluster from last iteration
clusters.append(copy.deepcopy(reals))
# reset rank
rank = 0
# look for lexical promotion opportunity
# i.e.: [4 2 1] has a promotion opportunity at
# index 1 to produce [4 3 1]
for k in range(nreal - 2, -1, -1):
if (reals[k] != reals[k + 1] + 1):
rank = k + 1
break
# do the promotion
reals[rank] = reals[rank] + 1
# demote the right portion of the register
val = 1
for k in range(nreal - 1, rank, -1):
reals[k] = val
val = val + 1
# boundary condition is promotion into
# [nfrag+1 nfrag-1 ...]
if (reals[0] > nfrag):
break
return clusters
def new_set_attr(self, name, value):
"""Function to redefine __setattr__ method of molecule class."""
fxn = object.__getattribute__(self, "is_variable")
isvar = fxn(name)
if isvar:
fxn = object.__getattribute__(self, "set_variable")
fxn(name, value)
return
object.__setattr__(self, name, value)
def new_get_attr(self, name):
"""Function to redefine __getattr__ method of molecule class."""
fxn = object.__getattribute__(self, "is_variable")
isvar = fxn(name)
if isvar:
fxn = object.__getattribute__(self, "get_variable")
return fxn(name)
return object.__getattribute__(self, name)
def BFS(self):
"""Perform a breadth-first search (BFS) on the real atoms
in molecule, returning an array of atom indices of fragments.
Relies upon van der Waals radii and so faulty for close
(esp. hydrogen-bonded) fragments. Original code from
Michael S. Marshall.
"""
vdW_diameter = {
'H': 1.001 / 1.5,
'HE': 1.012 / 1.5,
'LI': 0.825 / 1.5,
'BE': 1.408 / 1.5,
'B': 1.485 / 1.5,
'C': 1.452 / 1.5,
'N': 1.397 / 1.5,
'O': 1.342 / 1.5,
'F': 1.287 / 1.5,
'NE': 1.243 / 1.5,
'NA': 1.144 / 1.5,
'MG': 1.364 / 1.5,
'AL': 1.639 / 1.5,
'SI': 1.716 / 1.5,
'P': 1.705 / 1.5,
'S': 1.683 / 1.5,
'CL': 1.639 / 1.5,
'AR': 1.595 / 1.5}
Queue = []
White = range(self.natom()) # untouched
Black = [] # touched and all edges discovered
Fragment = [] # stores fragments
start = 0 # starts with the first atom in the list
Queue.append(start)
White.remove(start)
# Simply start with the first atom, do a BFS when done, go to any
# untouched atom and start again iterate until all atoms belong
# to a fragment group
while len(White) > 0 or len(Queue) > 0: # Iterates to the next fragment
Fragment.append([])
while len(Queue) > 0: # BFS within a fragment
for u in Queue: # find all (still white) nearest neighbors to vertex u
for i in White:
dist = p4const.psi_bohr2angstroms * math.sqrt((self.x(i) - self.x(u)) ** 2 + \
(self.y(i) - self.y(u)) ** 2 + (self.z(i) - self.z(u)) ** 2)
if dist < vdW_diameter[self.symbol(u)] + vdW_diameter[self.symbol(i)]:
Queue.append(i) # if you find you, put in the queue
White.remove(i) # and remove it from the untouched list
Queue.remove(u) # remove focus from Queue
Black.append(u)
Fragment[-1].append(int(u)) # add to group (0-indexed)
Fragment[-1].sort() # preserve original atom ordering
if len(White) != 0: # can't move White -> Queue if no more exist
Queue.append(White[0])
White.remove(White[0])
return Fragment
def run_dftd3(self, func=None, dashlvl=None, dashparam=None, dertype=None):
"""Function to call Grimme's dftd3 program (http://toc.uni-muenster.de/DFTD3/)
to compute the -D correction of level *dashlvl* using parameters for
the functional *func*. The dictionary *dashparam* can be used to supply
a full set of dispersion parameters in the absense of *func* or to supply
individual overrides in the presence of *func*. Returns energy if *dertype* is 0,
gradient if *dertype* is 1, else tuple of energy and gradient if *dertype*
unspecified. The dftd3 executable must be independently compiled and found in
:envvar:`PATH`.
"""
# Validate arguments
if self is None:
self = psi4.get_active_molecule()
dashlvl = dashlvl.lower()
dashlvl = dash_alias['-' + dashlvl][1:] if ('-' + dashlvl) in dash_alias.keys() else dashlvl
if dashlvl not in dashcoeff.keys():
raise ValidationError("""-D correction level %s is not available. Choose among %s.""" % (dashlvl, dashcoeff.keys()))
if dertype is None:
dertype = -1
elif der0th.match(str(dertype)):
dertype = 0
elif der1st.match(str(dertype)):
dertype = 1
elif der2nd.match(str(dertype)):
raise ValidationError('Requested derivative level \'dertype\' %s not valid for run_dftd3.' % (dertype))
else:
raise ValidationError('Requested derivative level \'dertype\' %s not valid for run_dftd3.' % (dertype))
if func is None:
if dashparam is None:
# defunct case
raise ValidationError("""Parameters for -D correction missing. Provide a func or a dashparam kwarg.""")
else:
# case where all param read from dashparam dict (which must have all correct keys)
func = 'custom'
dashcoeff[dashlvl][func] = {}
dashparam = dict((k.lower(), v) for k, v in dashparam.iteritems())
for key in dashcoeff[dashlvl]['b3lyp'].keys():
if key in dashparam.keys():
dashcoeff[dashlvl][func][key] = dashparam[key]
else:
raise ValidationError("""Parameter %s is missing from dashparam dict %s.""" % (key, dashparam))
else:
func = func.lower()
if func not in dashcoeff[dashlvl].keys():
raise ValidationError("""Functional %s is not available for -D level %s.""" % (func, dashlvl))
if dashparam is None:
# (normal) case where all param taken from dashcoeff above
pass
else:
# case where items in dashparam dict can override param taken from dashcoeff above
dashparam = dict((k.lower(), v) for k, v in dashparam.iteritems())
for key in dashcoeff[dashlvl]['b3lyp'].keys():
if key in dashparam.keys():
dashcoeff[dashlvl][func][key] = dashparam[key]
# Move ~/.dftd3par.<hostname> out of the way so it won't interfere
defaultfile = os.path.expanduser('~') + '/.dftd3par.' + socket.gethostname()
defmoved = False
if os.path.isfile(defaultfile):
os.rename(defaultfile, defaultfile + '_hide')
defmoved = True
# Setup unique scratch directory and move in
current_directory = os.getcwd()
psioh = psi4.IOManager.shared_object()
psio = psi4.IO.shared_object()
os.chdir(psioh.get_default_path())
dftd3_tmpdir = 'psi.' + str(os.getpid()) + '.' + psio.get_default_namespace() + \
'.dftd3.' + str(random.randint(0, 99999))
if os.path.exists(dftd3_tmpdir) is False:
os.mkdir(dftd3_tmpdir)
os.chdir(dftd3_tmpdir)
# Write dftd3_parameters file that governs dispersion calc
paramfile = './dftd3_parameters'
pfile = open(paramfile, 'w')
pfile.write(dash_server(func, dashlvl, 'dftd3'))
pfile.close()
# Write dftd3_geometry file that supplies geometry to dispersion calc
geomfile = './dftd3_geometry.xyz'
gfile = open(geomfile, 'w')
numAtoms = self.natom()
geom = self.save_string_xyz()
reals = []
for line in geom.splitlines():
if line.split()[0] == 'Gh':
numAtoms -= 1
else:
reals.append(line)
gfile.write(str(numAtoms)+'\n')
for line in reals:
gfile.write(line.strip()+'\n')
gfile.close()
# Call dftd3 program
try:
dashout = subprocess.Popen(['dftd3', geomfile, '-grad'], stdout=subprocess.PIPE)
except OSError:
raise ValidationError('Program dftd3 not found in path.')
out, err = dashout.communicate()
# Parse output (could go further and break into E6, E8, E10 and Cn coeff)
success = False
for line in out.splitlines():
if re.match(' Edisp /kcal,au', line):
sline = line.split()
dashd = float(sline[3])
if re.match(' normal termination of dftd3', line):
success = True
if not success:
raise ValidationError('Program dftd3 did not complete successfully.')
# Parse grad output
derivfile = './dftd3_gradient'
dfile = open(derivfile, 'r')
dashdderiv = []
i = 0
for line in geom.splitlines():
if i == 0:
i += 1
else:
if line.split()[0] == 'Gh':
dashdderiv.append([0.0, 0.0, 0.0])
else:
temp = dfile.readline()
dashdderiv.append([float(x.replace('D', 'E')) for x in temp.split()])
dfile.close()
if len(dashdderiv) != self.natom():
raise ValidationError('Program dftd3 gradient file has %d atoms- %d expected.' % \
(len(dashdderiv), self.natom()))
psi_dashdderiv = psi4.Matrix(self.natom(), 3)
psi_dashdderiv.set(dashdderiv)
# Print program output to file if verbose
verbose = psi4.get_option('SCF', 'PRINT')
if verbose >= 3:
psi4.print_out('\n ==> DFTD3 Output <==\n')
psi4.print_out(out)
dfile = open(derivfile, 'r')
psi4.print_out(dfile.read().replace('D', 'E'))
dfile.close()
psi4.print_out('\n')
# Clean up files and remove scratch directory
os.unlink(paramfile)
os.unlink(geomfile)
os.unlink(derivfile)
if defmoved is True:
os.rename(defaultfile + '_hide', defaultfile)
os.chdir('..')
try:
shutil.rmtree(dftd3_tmpdir)
except OSError as e:
ValidationError('Unable to remove dftd3 temporary directory %s' % e, file=sys.stderr)
os.chdir(current_directory)
# return -D & d(-D)/dx
psi4.set_variable('DISPERSION CORRECTION ENERGY', dashd)
if dertype == -1:
return dashd, dashdderiv
elif dertype == 0:
return dashd
elif dertype == 1:
return psi_dashdderiv
def dynamic_variable_bind(cls):
"""Function to dynamically add extra members to
the psi4.Molecule class.
"""
cls.__setattr__ = new_set_attr
cls.__getattr__ = new_get_attr
cls.BFS = BFS
cls.run_dftd3 = run_dftd3
dynamic_variable_bind(psi4.Molecule) # pass class type, not class instance
#
# Define geometry to be used by PSI4.
# The molecule created by this will be set in options.
#
# geometry("
# O 1.0 0.0 0.0
# H 0.0 1.0 0.0
# H 0.0 0.0 0.0
#
def geometry(geom, name="default"):
"""Function to create a molecule object of name *name*
from the geometry in string *geom*.
"""
molecule = psi4.Molecule.create_molecule_from_string(geom)
molecule.set_name(name)
activate(molecule)
return molecule
def activate(mol):
"""Function to set molecule object *mol* as the current active molecule."""
psi4.set_active_molecule(mol)
#psi4.IO.set_default_namespace(mol.get_name())
|