/usr/share/psi/python/wrappers.py is in psi4-data 4.0~beta5+dfsg-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 | #
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#
"""Module with functions that call the four main :py:mod:`driver`
functions: :py:mod:`driver.energy`, :py:mod:`driver.optimize`,
:py:mod:`driver.response`, and :py:mod:`driver.frequency`.
"""
import re
import os
import math
import warnings
import pickle
import copy
import collections
import psi4
import p4const
import p4util
from driver import *
#from extend_Molecule import *
from molutil import *
from p4regex import *
# never import aliases into this file
# Function to make calls among wrappers(), energy(), optimize(), etc.
def call_function_in_1st_argument(funcarg, **largs):
r"""Function to make primary function call to energy(), opt(), etc.
with options dictionary *largs*.
Useful when *funcarg* to call is stored in variable.
"""
return funcarg(**largs)
def convert(p, symbol):
if symbol[p] == 'H':
d = 1.001
if symbol[p] == 'He':
d = 1.012
if symbol[p] == 'Li':
d = 0.825
if symbol[p] == 'Be':
d = 1.408
if symbol[p] == 'B':
d = 1.485
if symbol[p] == 'C':
d = 1.452
if symbol[p] == 'N':
d = 1.397
if symbol[p] == 'O':
d = 1.342
if symbol[p] == 'F':
d = 1.287
if symbol[p] == 'Ne':
d = 1.243
if symbol[p] == 'Na':
d = 1.144
if symbol[p] == 'Mg':
d = 1.364
if symbol[p] == 'Al':
d = 1.639
if symbol[p] == 'Si':
d = 1.716
if symbol[p] == 'P':
d = 1.705
if symbol[p] == 'S':
d = 1.683
if symbol[p] == 'Cl':
d = 1.639
if symbol[p] == 'Ar':
d = 1.595
return d / 1.5
#Automatically detect fragments and build a new molecule for fragment
#needing methods (SAPT0, etc...)
def auto_fragments(name, **kwargs):
r"""
Detects fragments if the user does not supply them.
Currently only used for the WebMO implementation of SAPT
usage: auto_fragments('')
"""
if 'molecule' in kwargs:
activate(kwargs['molecule'])
del kwargs['molecule']
molecule = psi4.get_active_molecule()
molecule.update_geometry()
geom = molecule.save_string_xyz()
numatoms = molecule.natom()
VdW = [1.2, 1.7, 1.5, 1.55, 1.52, 1.9, 1.85, 1.8]
symbol = range(numatoms)
X = [0.0] * numatoms
Y = [0.0] * numatoms
Z = [0.0] * numatoms
Queue = []
White = []
Black = []
F = geom.split('\n')
for f in range(0, numatoms):
A = F[f+1].split()
symbol[f] = A[0]
X[f] = float(A[1])
Y[f] = float(A[2])
Z[f] = float(A[3])
White.append(f)
Fragment = [[] for i in range(numatoms)] # stores fragments
start = 0 # starts with the first atom in the list
Queue.append(start)
White.remove(start)
frag = 0
while((len(White) > 0) or (len(Queue) > 0)): # Iterates to the next fragment
while(len(Queue) > 0): # BFS within a fragment
for u in Queue: # find all nearest Neighbors
# (still coloured white) to vertex u
for i in White:
Distance = math.sqrt((X[i] - X[u]) * (X[i] - X[u]) +
(Y[i] - Y[u]) * (Y[i] - Y[u]) +
(Z[i] - Z[u]) * (Z[i] - Z[u]))
if Distance < convert(u,symbol) + convert(i,symbol):
Queue.append(i) # if you find you, put it in the que
White.remove(i) # and remove it from the untouched list
Queue.remove(u) # remove focus from Queue
Black.append(u)
Fragment[frag].append(int(u + 1)) # add to group (adding 1 to start
# list at one instead of zero)
if(len(White) != 0): # cant move White->Queue if no more exist
Queue.append(White[0])
White.remove(White[0])
frag += 1
new_geom = """\n0 1\n"""
for i in Fragment[0]:
new_geom = new_geom + F[i].lstrip() + """\n"""
new_geom = new_geom + """--\n0 1\n"""
for j in Fragment[1]:
new_geom = new_geom + F[j].lstrip() + """\n"""
new_geom = new_geom + """units angstrom\n"""
new_mol = geometry(new_geom)
new_mol.print_out()
psi4.print_out("Exiting auto_fragments\n")
#######################
## Start of n_body ##
#######################
def n_body(name, **kwargs):
lowername = name.lower()
kwargs = p4util.kwargs_lower(kwargs)
# Wrap any positional arguments into kwargs (for intercalls among wrappers)
if not('name' in kwargs) and name:
kwargs['name'] = name.lower()
# Establish function to call
if not('n_body_func' in kwargs):
if ('func' in kwargs):
kwargs['n_body_func'] = kwargs['func']
del kwargs['func']
else:
kwargs['n_body_func'] = energy
func = kwargs['n_body_func']
if not func:
raise ValidationError('Function \'%s\' does not exist to be called by wrapper n_body.' % (func.__name__))
if (func is db):
raise ValidationError('Wrapper n_body is unhappy to be calling function \'%s\'.' % (func.__name__))
# Make sure the molecule the user provided is the active one
if 'molecule' in kwargs:
activate(kwargs['molecule'])
del kwargs['molecule']
molecule = psi4.get_active_molecule()
molecule.update_geometry()
psi4.set_global_option("BASIS", psi4.get_global_option("BASIS"))
# N-body run configuration
bsse = 'on'
if 'bsse' in kwargs:
bsse = kwargs['bsse']
max_n_body = molecule.nfragments()
if 'max_n_body' in kwargs:
max_n_body = kwargs['max_n_body']
do_total = False
if 'do_total' in kwargs:
do_total = kwargs['do_total']
external = None
external_indices = []
if 'external' in kwargs:
external = kwargs['external']
external_indices = [molecule.nfragments()]
if 'external_monomers' in kwargs:
external_indices = kwargs['external_monomers']
# Check input args
if not bsse == 'off' and not bsse == 'on' and not bsse == 'both':
raise ValidationError('n_body: bsse argument is one of on, off, or both')
if max_n_body < 1:
raise ValidationError('n_body: max_n_body must be at least 1')
if max_n_body > molecule.nfragments():
raise ValidationError('n_body: max_n_body must be <= to the number of fragments in the molecule')
# Set to save RI integrals for repeated full-basis computations
ri_ints_io = psi4.get_global_option('DF_INTS_IO')
# inquire if above at all applies to dfmp2 or just scf
psi4.set_global_option('DF_INTS_IO', 'SAVE')
psioh = psi4.IOManager.shared_object()
psioh.set_specific_retention(97, True)
# Tell 'em what you're gonna tell 'em
has_external = 'No'
if (external):
has_external = 'Yes'
psi4.print_out('\n')
psi4.print_out(' ==> N-Body Interaction Energy Analysis <==\n\n')
psi4.print_out(' BSSE Treatment: %s\n' % (bsse))
psi4.print_out(' Maximum N-Body Interactions: %d\n' % (max_n_body))
psi4.print_out(' Compute Total Energy: %s\n' % (do_total))
psi4.print_out(' External Field: %s\n' % (has_external))
if (external):
psi4.print_out(' External Field Monomers: ')
for k in external_indices:
psi4.print_out('%-3d ' % (k))
psi4.print_out('\n')
psi4.print_out('\n')
# Run the total molecule, if required
energies_full = {}
energies_mon = {}
N = molecule.nfragments()
Etotal = 0.0
if do_total or max_n_body == molecule.nfragments():
psi4.print_out(' => Total Cluster Energy <=\n')
# Full cluster always gets the external field
if (external):
psi4.set_global_option_python("EXTERN", external)
Etotal = call_function_in_1st_argument(func, **kwargs)
if (external):
psi4.set_global_option_python("EXTERN", None)
energies_full[N] = []
energies_full[N].append(Etotal)
energies_mon[N] = []
energies_mon[N].append(Etotal)
psi4.set_global_option('DF_INTS_IO', 'LOAD')
psi4.clean()
max_effective = max_n_body
if (max_effective == N):
max_effective = N - 1
# Build the combos for indexing purposes
Ns = []
if (max_n_body == N or do_total):
Ns.append(N)
for n in range(max_effective, 0, -1):
Ns.append(n)
combos = {}
for n in Ns:
combos[n] = []
# Loop through combinations in lexical order #
# initialize the reals list
reals = []
#setup first combination [3,2,1] lexical ordering
#fragments indexing is 1's based, bloody hell
for index in range(n, 0, -1):
reals.append(index)
#start loop through lexical promotion
counter = 0
while True:
counter = counter + 1
# Append the current combo
combos[n].append(copy.deepcopy(reals))
#reset rank
rank = 0
#look for lexical promotion opportunity
#i.e.: [4 2 1] has a promotion opportunity at
# index 1 to produce [4 3 1]
for k in range(n - 2, -1, -1):
if (reals[k] != reals[k + 1] + 1):
rank = k + 1
break
#do the promotion
reals[rank] = reals[rank] + 1
#demote the right portion of the register
val = 1
for k in range(n - 1, rank, -1):
reals[k] = val
val = val + 1
#boundary condition is promotion into
#[nfrag+1 nfrag-1 ...]
if (reals[0] > N):
break
# Hack for external
externNone = psi4.ExternalPotential()
# Run the clusters in the full basis
if bsse == 'on' or bsse == 'both':
for n in range(max_effective, 0, -1):
energies_full[n] = []
clusters = extract_clusters(molecule, True, n)
for k in range(len(clusters)):
activate(clusters[k])
# Do the external field for this cluster or not?
if (external):
do_extern = False
for mon in combos[n][k]:
if (mon in external_indices):
do_extern = True
break
if do_extern:
psi4.set_global_option_python("EXTERN", external)
psi4.print_out('\n => Cluster (N-Body %4d, Combination %4d) Energy (Full Basis) <=\n' % (n, k + 1))
energies_full[n].append(call_function_in_1st_argument(func, **kwargs))
# Turn the external field off
if (external):
psi4.set_global_option_python("EXTERN", externNone)
psi4.set_global_option('DF_INTS_IO', 'LOAD')
psi4.clean()
# Run the clusters in the minimal cluster bases
psi4.set_global_option('DF_INTS_IO', 'NONE')
if bsse == 'off' or bsse == 'both':
for n in range(max_effective, 0, -1):
energies_mon[n] = []
clusters = extract_clusters(molecule, False, n)
for k in range(len(clusters)):
activate(clusters[k])
# Do the external field for this cluster or not?
if (external):
do_extern = False
for mon in combos[n][k]:
if (mon in external_indices):
do_extern = True
break
if do_extern:
psi4.set_global_option_python("EXTERN", external)
psi4.print_out('\n => Cluster (N-Body %4d, Combination %4d) Energy (Cluster Basis) <=\n' % (n, k + 1))
energies_mon[n].append(call_function_in_1st_argument(func, **kwargs))
# Turn the external field off
if (external):
psi4.set_global_option_python("EXTERN", externNone)
psi4.clean()
# Report the energies
psi4.print_out('\n ==> N-Body Interaction Energy Analysis: Combination Definitions <==\n\n')
psi4.print_out(' %6s %6s | %-24s\n' % ("N-Body", "Combo", "Monomers"))
for n in Ns:
for k in range(len(combos[n])):
psi4.print_out(' %6d %6d | ' % (n, k + 1))
for l in combos[n][k]:
psi4.print_out('%-3d ' % (l))
psi4.print_out('\n')
psi4.print_out('\n')
psi4.print_out(' ==> N-Body Interaction Energy Analysis: Total Energies <==\n\n')
if bsse == 'on' or bsse == 'both':
psi4.print_out(' => Full Basis Set Results <=\n\n')
psi4.print_out(' %6s %6s %24s %24s\n' % ("N-Body", "Combo", "E [H]", "E [kcal mol^-1]"))
for n in Ns:
for k in range(len(energies_full[n])):
psi4.print_out(' %6d %6d %24.16E %24.16E\n' % (n, k + 1, energies_full[n][k],
p4const.psi_hartree2kcalmol * energies_full[n][k]))
psi4.print_out('\n')
if bsse == 'off' or bsse == 'both':
psi4.print_out(' => Cluster Basis Set Results <=\n\n')
psi4.print_out(' %6s %6s %24s %24s\n' % ("N-Body", "Combo", "E [H]", "E [kcal mol^-1]"))
for n in Ns:
for k in range(len(energies_mon[n])):
psi4.print_out(' %6d %6d %24.16E %24.16E\n' % (n, k + 1, energies_mon[n][k],
p4const.psi_hartree2kcalmol * energies_mon[n][k]))
psi4.print_out('\n')
if bsse == 'both':
psi4.print_out(' => BSSE Results <=\n\n')
psi4.print_out(' %6s %6s %24s %24s\n' % ("N-Body", "Combo", "Delta E [H]", "Delta E [kcal mol^-1]"))
for n in Ns:
for k in range(len(energies_mon[n])):
psi4.print_out(' %6d %6d %24.16E %24.16E\n' % (n, k + 1, energies_full[n][k] - energies_mon[n][k],
p4const.psi_hartree2kcalmol * (energies_full[n][k] - energies_mon[n][k])))
psi4.print_out('\n')
psi4.print_out(' ==> N-Body Interaction Energy Analysis: N-Body Energies <==\n\n')
if bsse == 'on' or bsse == 'both':
psi4.print_out(' => Full Basis Set Results <=\n\n')
psi4.print_out(' %6s %6s %24s %24s\n' % ("N-Body", "Combo", "E [H]", "E [kcal mol^-1]"))
energies_n_full = {}
for n in Ns:
if n == 1:
continue
En = 0.0
for k in range(len(energies_full[n])):
E = energies_full[n][k]
for l in range(len(combos[n][k])):
E -= energies_full[1][combos[n][k][l] - 1]
psi4.print_out(' %6d %6d %24.16E %24.16E\n' % (n, k + 1, E, p4const.psi_hartree2kcalmol * E))
En += E
energies_n_full[n] = En
for n in Ns:
if n == 1:
continue
nn = molecule.nfragments() - 2
kk = n - 2
energies_n_full[n] /= (math.factorial(nn) / (math.factorial(kk) * math.factorial(nn - kk)))
psi4.print_out(' %6d %6s %24.16E %24.16E\n' % (n, 'Total', energies_n_full[n],
p4const.psi_hartree2kcalmol * energies_n_full[n]))
psi4.print_out('\n')
if bsse == 'off' or bsse == 'both':
psi4.print_out(' => Cluster Basis Set Results <=\n\n')
psi4.print_out(' %6s %6s %24s %24s\n' % ("N-Body", "Combo", "E [H]", "E [kcal mol^-1]"))
energies_n_mon = {}
for n in Ns:
if n == 1:
continue
En = 0.0
for k in range(len(energies_mon[n])):
E = energies_mon[n][k]
for l in range(len(combos[n][k])):
E -= energies_mon[1][combos[n][k][l] - 1]
psi4.print_out(' %6d %6d %24.16E %24.16E\n' % (n, k + 1, E, p4const.psi_hartree2kcalmol * E))
En += E
energies_n_mon[n] = En
for n in Ns:
if n == 1:
continue
nn = molecule.nfragments() - 2
kk = n - 2
energies_n_mon[n] /= (math.factorial(nn) / (math.factorial(kk) * math.factorial(nn - kk)))
psi4.print_out(' %6d %6s %24.16E %24.16E\n' % (n, 'Total', energies_n_mon[n],
p4const.psi_hartree2kcalmol * energies_n_mon[n]))
psi4.print_out('\n')
if bsse == 'both':
psi4.print_out(' => BSSE Results <=\n\n')
psi4.print_out(' %6s %6s %24s %24s\n' % ("N-Body", "Combo", "Delta E [H]", "Delta E [kcal mol^-1]"))
energies_n_bsse = {}
for n in Ns:
if n == 1:
continue
En = 0.0
for k in range(len(energies_mon[n])):
E = energies_full[n][k] - energies_mon[n][k]
for l in range(len(combos[n][k])):
E -= energies_full[1][combos[n][k][l] - 1]
E += energies_mon[1][combos[n][k][l] - 1]
psi4.print_out(' %6d %6d %24.16E %24.16E\n' % (n, k + 1, E, p4const.psi_hartree2kcalmol * E))
En += E
energies_n_bsse[n] = En
for n in Ns:
if n == 1:
continue
nn = molecule.nfragments() - 2
kk = n - 2
energies_n_bsse[n] /= (math.factorial(nn) / (math.factorial(kk) * math.factorial(nn - kk)))
psi4.print_out(' %6d %6s %24.16E %24.16E\n' % (n, 'Total', energies_n_bsse[n],
p4const.psi_hartree2kcalmol * energies_n_bsse[n]))
psi4.print_out('\n')
psi4.print_out(' ==> N-Body Interaction Energy Analysis: Non-Additivities <==\n\n')
if bsse == 'on' or bsse == 'both':
energies_n_full[1] = 0.0
psi4.print_out(' => Full Basis Set Results <=\n\n')
psi4.print_out(' %6s %24s %24s\n' % ("N-Body", "E [H]", "E [kcal mol^-1]"))
for k in range(len(Ns)):
n = Ns[k]
if n == 1:
continue
E = energies_n_full[Ns[k]] - energies_n_full[Ns[k + 1]]
psi4.print_out(' %6s %24.16E %24.16E\n' % (n, E, p4const.psi_hartree2kcalmol * E))
psi4.print_out('\n')
if bsse == 'off' or bsse == 'both':
energies_n_mon[1] = 0.0
psi4.print_out(' => Cluster Basis Set Results <=\n\n')
psi4.print_out(' %6s %24s %24s\n' % ("N-Body", "E [H]", "E [kcal mol^-1]"))
for k in range(len(Ns)):
n = Ns[k]
if n == 1:
continue
E = energies_n_mon[Ns[k]] - energies_n_mon[Ns[k + 1]]
psi4.print_out(' %6s %24.16E %24.16E\n' % (n, E, p4const.psi_hartree2kcalmol * E))
psi4.print_out('\n')
if bsse == 'both':
energies_n_bsse[1] = 0.0
psi4.print_out(' => BSSE Results <=\n\n')
psi4.print_out(' %6s %24s %24s\n' % ("N-Body", "Delta E [H]", "Delta E [kcal mol^-1]"))
for k in range(len(Ns)):
n = Ns[k]
if n == 1:
continue
E = energies_n_bsse[Ns[k]] - energies_n_bsse[Ns[k + 1]]
psi4.print_out(' %6s %24.16E %24.16E\n' % (n, E, p4const.psi_hartree2kcalmol * E))
psi4.print_out('\n')
# Put everything back the way it was
psi4.set_global_option('DF_INTS_IO', ri_ints_io)
psioh.set_specific_retention(97, False)
psi4.clean()
activate(molecule)
if bsse == 'on' or bsse == 'both':
return energies_n_full[Ns[0]]
else:
return energies_n_mon[Ns[0]]
## Aliases ##
nbody = n_body
#####################
## End of n_body ##
#####################
###################
## Start of cp ##
###################
def cp(name, **kwargs):
r"""The cp function computes counterpoise-corrected two-body interaction energies
for complexes composed of arbitrary numbers of monomers.
:aliases: counterpoise_correct(), counterpoise_correction()
:returns: (*float*) Counterpoise-corrected interaction energy in Hartrees.
:PSI variables:
.. hlist::
:columns: 1
* :psivar:`CP-CORRECTED 2-BODY INTERACTION ENERGY <CP-CORRECTED2-BODYINTERACTIONENERGY>`
* :psivar:`UNCP-CORRECTED 2-BODY INTERACTION ENERGY <UNCP-CORRECTED2-BODYINTERACTIONENERGY>`
.. caution:: Some features are not yet implemented. Buy a developer a coffee.
- No values of func besides energy have been tested.
- Table print-out needs improving. Add some PSI variables.
:type name: string
:param name: ``'scf'`` || ``'ccsd(t)'`` || etc.
First argument, usually unlabeled. Indicates the computational method
to be applied to the molecule. May be any valid argument to
:py:func:`~driver.energy`; however, SAPT is not appropriate.
:type func: :ref:`function <op_py_function>`
:param func: |dl| ``energy`` |dr| || ``optimize`` || ``cbs``
Indicates the type of calculation to be performed on the molecule
and each of its monomers. The default performs a single-point
``energy('name')``, while ``optimize`` perfoms a geometry optimization
on each system, and ``cbs`` performs a compound single-point energy.
If a nested series of python functions is intended
(see :ref:`sec:intercalls`), use keyword ``cp_func`` instead of ``func``.
:type check_bsse: :ref:`boolean <op_py_boolean>`
:param check_bsse: ``'on'`` || |dl| ``'off'`` |dr|
Indicates whether to additionally compute un-counterpoise corrected
monomers and thus obtain an estimate for the basis set superposition error.
:type molecule: :ref:`molecule <op_py_molecule>`
:param molecule: ``h2o`` || etc.
The target molecule, if not the last molecule defined.
:examples:
>>> # [1] counterpoise-corrected mp2 interaction energy
>>> cp('df-mp2')
"""
lowername = name.lower()
kwargs = p4util.kwargs_lower(kwargs)
# Wrap any positional arguments into kwargs (for intercalls among wrappers)
if not('name' in kwargs) and name:
kwargs['name'] = name.lower()
# Establish function to call
if not('cp_func' in kwargs):
if ('func' in kwargs):
kwargs['cp_func'] = kwargs['func']
del kwargs['func']
else:
kwargs['cp_func'] = energy
func = kwargs['cp_func']
if not func:
raise ValidationError('Function \'%s\' does not exist to be called by wrapper counterpoise_correct.' % (func.__name__))
if (func is db):
raise ValidationError('Wrapper counterpoise_correct is unhappy to be calling function \'%s\'.' % (func.__name__))
if 'check_bsse' in kwargs and yes.match(str(kwargs['check_bsse'])):
check_bsse = True
else:
check_bsse = False
# Make sure the molecule the user provided is the active one
if 'molecule' in kwargs:
activate(kwargs['molecule'])
del kwargs['molecule']
molecule = psi4.get_active_molecule()
molecule.update_geometry()
psi4.set_global_option("BASIS", psi4.get_global_option("BASIS"))
df_ints_io = psi4.get_global_option('DF_INTS_IO')
# inquire if above at all applies to dfmp2 or just scf
psi4.set_global_option('DF_INTS_IO', 'SAVE')
psioh = psi4.IOManager.shared_object()
psioh.set_specific_retention(97, True)
activate(molecule)
molecule.update_geometry()
psi4.print_out("\n")
p4util.banner("CP Computation: Complex.\nFull Basis Set.")
psi4.print_out("\n")
e_dimer = call_function_in_1st_argument(func, **kwargs)
#e_dimer = energy(name, **kwargs)
psi4.clean()
psi4.set_global_option('DF_INTS_IO', 'LOAD')
# All monomers with ghosts
monomers = extract_clusters(molecule, True, 1)
e_monomer_full = []
cluster_n = 0
for cluster in monomers:
activate(cluster)
psi4.print_out("\n")
p4util.banner(("CP Computation: Monomer %d.\n Full Basis Set." % (cluster_n + 1)))
psi4.print_out("\n")
e_monomer_full.append(call_function_in_1st_argument(func, **kwargs))
#e_monomer_full.append(energy(name,**kwargs))
cluster_n = cluster_n + 1
psi4.clean()
psi4.set_global_option('DF_INTS_IO', 'NONE')
if (check_bsse):
# All monomers without ghosts
monomers = extract_clusters(molecule, False, 1)
e_monomer_bsse = []
cluster_n = 0
for cluster in monomers:
activate(cluster)
psi4.print_out("\n")
#cluster.print_to_output()
p4util.banner(("CP Computation: Monomer %d.\n Monomer Set." % (cluster_n + 1)))
psi4.print_out("\n")
e_monomer_bsse.append(call_function_in_1st_argument(func, **kwargs))
#e_monomer_bsse.append(energy(name,**kwargs))
cluster_n = cluster_n + 1
psi4.set_global_option('DF_INTS_IO', df_ints_io)
psioh.set_specific_retention(97, False)
activate(molecule)
if (check_bsse == False):
cp_table = p4util.Table(rows=["System:"], cols=["Energy (full):"])
cp_table["Complex"] = [e_dimer]
for cluster_n in range(0, len(monomers)):
key = "Monomer %d" % (cluster_n + 1)
cp_table[key] = [e_monomer_full[cluster_n]]
e_full = e_dimer
for cluster_n in range(0, len(monomers)):
e_full = e_full - e_monomer_full[cluster_n]
cp_table["Interaction"] = [e_full]
psi4.set_variable('CP-CORRECTED 2-BODY INTERACTION ENERGY', e_full)
else:
cp_table = Table(rows=["System:"], cols=["Energy (full):", "Energy (monomer):", "BSSE:"])
cp_table["Complex"] = [e_dimer, 0.0, 0.0]
for cluster_n in range(0, len(monomers)):
key = "Monomer %d" % (cluster_n + 1)
cp_table[key] = [e_monomer_full[cluster_n], e_monomer_bsse[cluster_n], \
e_monomer_full[cluster_n] - e_monomer_bsse[cluster_n]]
e_full = e_dimer
e_bsse = e_dimer
for cluster_n in range(0, len(monomers)):
e_full = e_full - e_monomer_full[cluster_n]
e_bsse = e_bsse - e_monomer_bsse[cluster_n]
cp_table["Totals:"] = [e_full, e_bsse, e_full - e_bsse]
psi4.set_variable('UNCP-CORRECTED 2-BODY INTERACTION ENERGY', e_full)
psi4.print_out("\n")
p4util.banner("CP Computation: Results.")
psi4.print_out("\n")
p4util.banner("Hartree", 2)
psi4.print_out("\n")
psi4.print_out(str(cp_table))
psi4.print_out("\n")
p4util.banner("kcal*mol^-1", 2)
psi4.print_out("\n")
cp_table.scale()
psi4.print_out(str(cp_table))
return e_full
## Aliases ##
counterpoise_correct = cp
counterpoise_correction = cp
#################
## End of cp ##
#################
#########################
## Start of Database ##
#########################
DB_RGT = {}
DB_RXN = {}
def database(name, db_name, **kwargs):
r"""Function to access the molecule objects and reference energies of
popular chemical databases.
:aliases: db()
:returns: (*float*) Mean absolute deviation of the database in kcal/mol
:PSI variables:
.. hlist::
:columns: 1
* :psivar:`db_name DATABASE MEAN SIGNED DEVIATION <db_nameDATABASEMEANSIGNEDDEVIATION>`
* :psivar:`db_name DATABASE MEAN ABSOLUTE DEVIATION <db_nameDATABASEMEANABSOLUTEDEVIATION>`
* :psivar:`db_name DATABASE ROOT-MEAN-SQUARE DEVIATION <db_nameDATABASEROOT-MEAN-SQUARESIGNEDDEVIATION>`
* Python dictionaries of results accessible as ``DB_RGT`` and ``DB_RXN``.
.. note:: It is very easy to make a database from a collection of xyz files
using the script :source:`lib/scripts/ixyz2database.pl`.
See :ref:`sec:createDatabase` for details.
.. caution:: Some features are not yet implemented. Buy a developer some coffee.
- In sow/reap mode, use only global options (e.g., the local option set by ``set scf scf_type df`` will not be respected).
.. note:: To access a database that is not embedded in a |PSIfour|
distribution, add the path to the directory containing the database
to the environment variable :envvar:`PYTHONPATH`.
:type name: string
:param name: ``'scf'`` || ``'sapt0'`` || ``'ccsd(t)'`` || etc.
First argument, usually unlabeled. Indicates the computational method
to be applied to the database. May be any valid argument to
:py:func:`~driver.energy`.
:type db_name: string
:param db_name: ``'BASIC'`` || ``'S22'`` || ``'HTBH'`` || etc.
Second argument, usually unlabeled. Indicates the requested database
name, matching (case insensitive) the name of a python file in
``psi4/lib/databases`` or :envvar:`PYTHONPATH`. Consult that
directory for available databases and literature citations.
:type func: :ref:`function <op_py_function>`
:param func: |dl| ``energy`` |dr| || ``optimize`` || ``cbs``
Indicates the type of calculation to be performed on each database
member. The default performs a single-point ``energy('name')``, while
``optimize`` perfoms a geometry optimization on each reagent, and
``cbs`` performs a compound single-point energy. If a nested series
of python functions is intended (see :ref:`sec:intercalls`), use
keyword ``db_func`` instead of ``func``.
:type mode: string
:param mode: |dl| ``'continuous'`` |dr| || ``'sow'`` || ``'reap'``
Indicates whether the calculations required to complete the
database are to be run in one file (``'continuous'``) or are to be
farmed out in an embarrassingly parallel fashion
(``'sow'``/``'reap'``). For the latter, run an initial job with
``'sow'`` and follow instructions in its output file.
:type cp: :ref:`boolean <op_py_boolean>`
:param cp: ``'on'`` || |dl| ``'off'`` |dr|
Indicates whether counterpoise correction is employed in computing
interaction energies. Use this option and NOT the :py:func:`~wrappers.cp`
function for BSSE correction in database(). Option available
(See :ref:`sec:availableDatabases`) only for databases of bimolecular complexes.
:type rlxd: :ref:`boolean <op_py_boolean>`
:param rlxd: ``'on'`` || |dl| ``'off'`` |dr|
Indicates whether correction for deformation energy is
employed in computing interaction energies. Option available
(See :ref:`sec:availableDatabases`) only for databases of bimolecular complexes
with non-frozen monomers, e.g., HBC6.
:type symm: :ref:`boolean <op_py_boolean>`
:param symm: |dl| ``'on'`` |dr| || ``'off'``
Indicates whether the native symmetry of the database reagents is
employed (``'on'``) or whether it is forced to :math:`C_1` symmetry
(``'off'``). Some computational methods (e.g., SAPT) require no
symmetry, and this will be set by database().
:type zpe: :ref:`boolean <op_py_boolean>`
:param zpe: ``'on'`` || |dl| ``'off'`` |dr|
Indicates whether zero-point-energy corrections are appended to
single-point energy values. Option valid only for certain
thermochemical databases. Disabled until Hessians ready.
:type benchmark: string
:param benchmark: |dl| ``'default'`` |dr| || ``'S22A'`` || etc.
Indicates whether a non-default set of reference energies, if
available (See :ref:`sec:availableDatabases`), are employed for the
calculation of error statistics.
:type tabulate: array of strings
:param tabulate: |dl| ``[]`` |dr| || ``['scf total energy', 'natom']`` || etc.
Indicates whether to form tables of variables other than the
primary requested energy. Available for any PSI variable.
:type subset: string or array of strings
:param subset:
Indicates a subset of the full database to run. This is a very
flexible option and can be used in three distinct ways, outlined
below. Note that two take a string and the last takes an array.
See `Available Databases`_ for available values.
* ``'small'`` || ``'large'`` || ``'equilibrium'``
Calls predefined subsets of the requested database, either
``'small'``, a few of the smallest database members,
``'large'``, the largest of the database members, or
``'equilibrium'``, the equilibrium geometries for a database
composed of dissociation curves.
* ``'BzBz_S'`` || ``'FaOOFaON'`` || ``'ArNe'`` || ``'HB'`` || etc.
For databases composed of dissociation curves, or otherwise
divided into subsets, individual curves and subsets can be
called by name. Consult the database python files for available
molecular systems (case insensitive).
* ``[1,2,5]`` || ``['1','2','5']`` || ``['BzMe-3.5', 'MeMe-5.0']`` || etc.
Specify a list of database members to run. Consult the
database python files for available molecular systems. This
is the only portion of database input that is case sensitive;
choices for this keyword must match the database python file.
:examples:
>>> # [1] Two-stage SCF calculation on short, equilibrium, and long helium dimer
>>> db('scf','RGC10',cast_up='sto-3g',subset=['HeHe-0.85','HeHe-1.0','HeHe-1.5'], tabulate=['scf total energy','natom'])
>>> # [2] Counterpoise-corrected interaction energies for three complexes in S22
>>> # Error statistics computed wrt an old benchmark, S22A
>>> database('df-mp2','S22',cp=1,subset=[16,17,8],benchmark='S22A')
>>> # [3] SAPT0 on the neon dimer dissociation curve
>>> db('sapt0',subset='NeNe',cp=0,symm=0,db_name='RGC10')
>>> # [4] Optimize system 1 in database S22, producing tables of scf and mp2 energy
>>> db('mp2','S22',db_func=optimize,subset=[1], tabulate=['mp2 total energy','current energy'])
>>> # [5] CCSD on the smallest systems of HTBH, a hydrogen-transfer database
>>> database('ccsd','HTBH',subset='small', tabulate=['ccsd total energy', 'mp2 total energy'])
"""
lowername = name.lower()
kwargs = p4util.kwargs_lower(kwargs)
# Wrap any positional arguments into kwargs (for intercalls among wrappers)
if not('name' in kwargs) and name:
kwargs['name'] = name.lower()
if not('db_name' in kwargs) and db_name:
kwargs['db_name'] = db_name
# Establish function to call
if not('db_func' in kwargs):
if ('func' in kwargs):
kwargs['db_func'] = kwargs['func']
del kwargs['func']
else:
kwargs['db_func'] = energy
func = kwargs['db_func']
if not func:
raise ValidationError('Function \'%s\' does not exist to be called by wrapper database.' % (func.__name__))
if (func is cp):
raise ValidationError('Wrapper database is unhappy to be calling function \'%s\'. Use the cp keyword within database instead.' % (func.__name__))
# Define path and load module for requested database
sys.path.append('%sdatabases' % (psi4.Process.environment["PSIDATADIR"]))
sys.path.append('%s/lib/databases' % psi4.psi_top_srcdir())
database = p4util.import_ignorecase(db_name)
if database is None:
psi4.print_out('\nPython module for database %s failed to load\n\n' % (db_name))
psi4.print_out('\nSearch path that was tried:\n')
psi4.print_out(", ".join(map(str, sys.path)))
raise ValidationError("Python module loading problem for database " + str(db_name))
else:
dbse = database.dbse
HRXN = database.HRXN
ACTV = database.ACTV
RXNM = database.RXNM
BIND = database.BIND
TAGL = database.TAGL
GEOS = database.GEOS
try:
DATA = database.DATA
except AttributeError:
DATA = {}
# Must collect (here) and set (below) basis sets after every new molecule activation
user_basis = psi4.get_global_option('BASIS')
user_df_basis_scf = psi4.get_global_option('DF_BASIS_SCF')
user_df_basis_mp2 = psi4.get_global_option('DF_BASIS_MP2')
user_df_basis_sapt = psi4.get_global_option('DF_BASIS_SAPT')
user_df_basis_elst = psi4.get_global_option('DF_BASIS_ELST')
user_writer_file_label = psi4.get_global_option('WRITER_FILE_LABEL')
b_user_reference = psi4.has_global_option_changed('REFERENCE')
user_reference = psi4.get_global_option('REFERENCE')
user_memory = psi4.get_memory()
user_molecule = psi4.get_active_molecule()
# Configuration based upon e_name & db_name options
# Force non-supramolecular if needed
if re.match(r'^sapt', lowername) or re.match(r'^.*sapt', lowername):
try:
database.ACTV_SA
except AttributeError:
raise ValidationError('Database %s not suitable for non-supramolecular calculation.' % (db_name))
else:
ACTV = database.ACTV_SA
# Force open-shell if needed
openshell_override = 0
if (user_reference == 'RHF') or (user_reference == 'RKS'):
try:
database.isOS
except AttributeError:
pass
else:
if yes.match(str(database.isOS)):
openshell_override = 1
psi4.print_out('\nSome reagents in database %s require an open-shell reference; will be reset to UHF/UKS as needed.\n' % (db_name))
# Configuration based upon database keyword options
# Option symmetry- whether symmetry treated normally or turned off (currently req'd for dfmp2 & dft)
db_symm = 'yes'
if 'symm' in kwargs:
db_symm = kwargs['symm']
symmetry_override = 0
if no.match(str(db_symm)):
symmetry_override = 1
elif yes.match(str(db_symm)):
pass
else:
raise ValidationError('Symmetry mode \'%s\' not valid.' % (db_symm))
# Option mode of operation- whether db run in one job or files farmed out
if not('db_mode' in kwargs):
if ('mode' in kwargs):
kwargs['db_mode'] = kwargs['mode']
del kwargs['mode']
else:
kwargs['db_mode'] = 'continuous'
db_mode = kwargs['db_mode']
if (db_mode.lower() == 'continuous'):
pass
elif (db_mode.lower() == 'sow'):
pass
elif (db_mode.lower() == 'reap'):
if 'linkage' in kwargs:
db_linkage = kwargs['linkage']
else:
raise ValidationError('Database execution mode \'reap\' requires a linkage option.')
else:
raise ValidationError('Database execution mode \'%s\' not valid.' % (db_mode))
# Option counterpoise- whether for interaction energy databases run in bsse-corrected or not
db_cp = 'no'
if 'cp' in kwargs:
db_cp = kwargs['cp']
if yes.match(str(db_cp)):
try:
database.ACTV_CP
except AttributeError:
raise ValidationError('Counterpoise correction mode \'yes\' invalid for database %s.' % (db_name))
else:
ACTV = database.ACTV_CP
elif no.match(str(db_cp)):
pass
else:
raise ValidationError('Counterpoise correction mode \'%s\' not valid.' % (db_cp))
# Option relaxed- whether for non-frozen-monomer interaction energy databases include deformation correction or not?
db_rlxd = 'no'
if 'rlxd' in kwargs:
db_rlxd = kwargs['rlxd']
if yes.match(str(db_rlxd)):
if yes.match(str(db_cp)):
try:
database.ACTV_CPRLX
database.RXNM_CPRLX
except AttributeError:
raise ValidationError('Deformation and counterpoise correction mode \'yes\' invalid for database %s.' % (db_name))
else:
ACTV = database.ACTV_CPRLX
RXNM = database.RXNM_CPRLX
elif no.match(str(db_cp)):
try:
database.ACTV_RLX
except AttributeError:
raise ValidationError('Deformation correction mode \'yes\' invalid for database %s.' % (db_name))
else:
ACTV = database.ACTV_RLX
elif no.match(str(db_rlxd)):
pass
else:
raise ValidationError('Deformation correction mode \'%s\' not valid.' % (db_rlxd))
# Option zero-point-correction- whether for thermochem databases jobs are corrected by zpe
db_zpe = 'no'
if 'zpe' in kwargs:
db_zpe = kwargs['zpe']
if yes.match(str(db_zpe)):
raise ValidationError('Zero-point-correction mode \'yes\' not yet implemented.')
elif no.match(str(db_zpe)):
pass
else:
raise ValidationError('Zero-point-correction \'mode\' %s not valid.' % (db_zpe))
# Option benchmark- whether error statistics computed wrt alternate reference energies
db_benchmark = 'default'
if 'benchmark' in kwargs:
db_benchmark = kwargs['benchmark']
if (db_benchmark.lower() == 'default'):
pass
else:
BIND = p4util.getattr_ignorecase(database, 'BIND_' + db_benchmark)
if BIND is None:
raise ValidationError('Special benchmark \'%s\' not available for database %s.' % (db_benchmark, db_name))
# Option tabulate- whether tables of variables other than primary energy method are formed
db_tabulate = []
if 'tabulate' in kwargs:
db_tabulate = kwargs['tabulate']
# Option subset- whether all of the database or just a portion is run
db_subset = HRXN
if 'subset' in kwargs:
db_subset = kwargs['subset']
if isinstance(db_subset, basestring):
if (db_subset.lower() == 'small'):
try:
database.HRXN_SM
except AttributeError:
raise ValidationError('Special subset \'small\' not available for database %s.' % (db_name))
else:
HRXN = database.HRXN_SM
elif (db_subset.lower() == 'large'):
try:
database.HRXN_LG
except AttributeError:
raise ValidationError('Special subset \'large\' not available for database %s.' % (db_name))
else:
HRXN = database.HRXN_LG
elif (db_subset.lower() == 'equilibrium'):
try:
database.HRXN_EQ
except AttributeError:
raise ValidationError('Special subset \'equilibrium\' not available for database %s.' % (db_name))
else:
HRXN = database.HRXN_EQ
else:
HRXN = p4util.getattr_ignorecase(database, db_subset)
if HRXN is None:
HRXN = p4util.getattr_ignorecase(database, 'HRXN_' + db_subset)
if HRXN is None:
raise ValidationError('Special subset \'%s\' not available for database %s.' % (db_subset, db_name))
else:
temp = []
for rxn in db_subset:
if rxn in HRXN:
temp.append(rxn)
else:
raise ValidationError('Subset element \'%s\' not a member of database %s.' % (str(rxn), db_name))
HRXN = temp
temp = []
for rxn in HRXN:
temp.append(ACTV['%s-%s' % (dbse, rxn)])
HSYS = p4util.drop_duplicates(sum(temp, []))
# Sow all the necessary reagent computations
psi4.print_out("\n\n")
p4util.banner(("Database %s Computation" % (db_name)))
psi4.print_out("\n")
# write index of calcs to output file
if (db_mode.lower() == 'continuous'):
instructions = """\n The database single-job procedure has been selected through mode='continuous'.\n"""
instructions += """ Calculations for the reagents will proceed in the order below and will be followed\n"""
instructions += """ by summary results for the database.\n\n"""
for rgt in HSYS:
instructions += """ %-s\n""" % (rgt)
instructions += """\n Alternatively, a farming-out of the database calculations may be accessed through\n"""
instructions += """ the database wrapper option mode='sow'/'reap'.\n\n"""
psi4.print_out(instructions)
# write sow/reap instructions and index of calcs to output file and reap input file
if (db_mode.lower() == 'sow'):
instructions = """\n The database sow/reap procedure has been selected through mode='sow'. In addition\n"""
instructions += """ to this output file (which contains no quantum chemical calculations), this job\n"""
instructions += """ has produced a number of input files (%s-*.in) for individual database members\n""" % (dbse)
instructions += """ and a single input file (%s-master.in) with a database(mode='reap') command.\n""" % (dbse)
instructions += """ The former may look very peculiar since processed and pickled python rather than\n"""
instructions += """ raw input is written. Follow the instructions below to continue.\n\n"""
instructions += """ (1) Run all of the %s-*.in input files on any variety of computer architecture.\n""" % (dbse)
instructions += """ The output file names must be as given below.\n\n"""
for rgt in HSYS:
instructions += """ psi4 -i %-27s -o %-27s\n""" % (rgt + '.in', rgt + '.out')
instructions += """\n (2) Gather all the resulting output files in a directory. Place input file\n"""
instructions += """ %s-master.in into that directory and run it. The job will be trivial in\n""" % (dbse)
instructions += """ length and give summary results for the database in its output file.\n\n"""
instructions += """ psi4 -i %-27s -o %-27s\n\n""" % (dbse + '-master.in', dbse + '-master.out')
instructions += """ Alternatively, a single-job execution of the database may be accessed through\n"""
instructions += """ the database wrapper option mode='continuous'.\n\n"""
psi4.print_out(instructions)
fmaster = open('%s-master.in' % (dbse), 'w')
fmaster.write('# This is a psi4 input file auto-generated from the database() wrapper.\n\n')
fmaster.write("database('%s', '%s', mode='reap', cp='%s', rlxd='%s', zpe='%s', benchmark='%s', linkage=%d, subset=%s, tabulate=%s)\n\n" %
(name, db_name, db_cp, db_rlxd, db_zpe, db_benchmark, os.getpid(), HRXN, db_tabulate))
fmaster.close()
# Loop through chemical systems
ERGT = {}
ERXN = {}
VRGT = {}
VRXN = {}
for rgt in HSYS:
VRGT[rgt] = {}
# extra definition of molecule so that logic in building commands string has something to act on
exec(p4util.format_molecule_for_input(GEOS[rgt]))
molecule = psi4.get_active_molecule()
# build string of title banner
banners = ''
banners += """psi4.print_out('\\n')\n"""
banners += """p4util.banner(' Database %s Computation: Reagent %s \\n %s')\n""" % (db_name, rgt, TAGL[rgt])
banners += """psi4.print_out('\\n')\n\n"""
# build string of lines that defines contribution of rgt to each rxn
actives = ''
actives += """psi4.print_out(' Database Contributions Map:\\n %s\\n')\n""" % ('-' * 75)
for rxn in HRXN:
db_rxn = dbse + '-' + str(rxn)
if rgt in ACTV[db_rxn]:
actives += """psi4.print_out(' reagent %s contributes by %.4f to reaction %s\\n')\n""" \
% (rgt, RXNM[db_rxn][rgt], db_rxn)
actives += """psi4.print_out('\\n')\n\n"""
# build string of commands for options from the input file TODO: handle local options too
commands = ''
commands += """\npsi4.set_memory(%s)\n\n""" % (user_memory)
for chgdopt in psi4.get_global_option_list():
if psi4.has_global_option_changed(chgdopt):
chgdoptval = psi4.get_global_option(chgdopt)
#chgdoptval = psi4.get_option(chgdopt)
if isinstance(chgdoptval, basestring):
commands += """psi4.set_global_option('%s', '%s')\n""" % (chgdopt, chgdoptval)
elif isinstance(chgdoptval, int) or isinstance(chgdoptval, float):
commands += """psi4.set_global_option('%s', %s)\n""" % (chgdopt, chgdoptval)
else:
raise ValidationError('Option \'%s\' is not of a type (string, int, float, bool) that can be processed by database wrapper.' % (chgdopt))
# build string of molecule and commands that are dependent on the database
commands += '\n'
commands += """psi4.set_global_option('BASIS', '%s')\n""" % (user_basis)
if not((user_df_basis_scf == "") or (user_df_basis_scf == 'NONE')):
commands += """psi4.set_global_option('DF_BASIS_SCF', '%s')\n""" % (user_df_basis_scf)
if not((user_df_basis_mp2 == "") or (user_df_basis_mp2 == 'NONE')):
commands += """psi4.set_global_option('DF_BASIS_MP2', '%s')\n""" % (user_df_basis_mp2)
if not((user_df_basis_sapt == "") or (user_df_basis_sapt == 'NONE')):
commands += """psi4.set_global_option('DF_BASIS_SAPT', '%s')\n""" % (user_df_basis_sapt)
if not((user_df_basis_elst == "") or (user_df_basis_elst == 'NONE')):
commands += """psi4.set_global_option('DF_BASIS_ELST', '%s')\n""" % (user_df_basis_elst)
commands += """molecule = psi4.get_active_molecule()\n"""
commands += """molecule.update_geometry()\n"""
if symmetry_override:
commands += """molecule.reset_point_group('c1')\n"""
commands += """molecule.fix_orientation(1)\n"""
commands += """molecule.update_geometry()\n"""
if (openshell_override) and (molecule.multiplicity() != 1):
if user_reference == 'RHF':
commands += """psi4.set_global_option('REFERENCE', 'UHF')\n"""
elif user_reference == 'RKS':
commands += """psi4.set_global_option('REFERENCE', 'UKS')\n"""
commands += """psi4.set_global_option('WRITER_FILE_LABEL', '%s')\n""" % \
(user_writer_file_label + ('' if user_writer_file_label == '' else '-') + rgt)
# all modes need to step through the reagents but all for different purposes
# continuous: defines necessary commands, executes energy(method) call, and collects results into dictionary
# sow: opens individual reagent input file, writes the necessary commands, and writes energy(method) call
# reap: opens individual reagent output file, collects results into a dictionary
if (db_mode.lower() == 'continuous'):
exec(banners)
exec(p4util.format_molecule_for_input(GEOS[rgt]))
exec(commands)
#print 'MOLECULE LIVES %23s %8s %4d %4d %4s' % (rgt, psi4.get_global_option('REFERENCE'),
# molecule.molecular_charge(), molecule.multiplicity(), molecule.schoenflies_symbol())
psi4.set_variable('NATOM', molecule.natom())
psi4.set_variable('NUCLEAR REPULSION ENERGY', molecule.nuclear_repulsion_energy())
if re.match(r'^verify', lowername):
compare_values(DATA['NUCLEAR REPULSION ENERGY'][rgt], psi4.get_variable('NUCLEAR REPULSION ENERGY'),
4, '%s %.4f' % (rgt, psi4.get_variable('NUCLEAR REPULSION ENERGY')))
ERGT[rgt] = 7.0
else:
ERGT[rgt] = call_function_in_1st_argument(func, **kwargs)
#print ERGT[rgt]
psi4.print_variables()
exec(actives)
for envv in db_tabulate:
VRGT[rgt][envv.upper()] = psi4.get_variable(envv)
psi4.set_global_option("REFERENCE", user_reference)
psi4.clean()
elif (db_mode.lower() == 'sow'):
freagent = open('%s.in' % (rgt), 'w')
freagent.write('# This is a psi4 input file auto-generated from the database() wrapper.\n\n')
freagent.write(banners)
freagent.write(p4util.format_molecule_for_input(GEOS[rgt]))
freagent.write(commands)
freagent.write('''\npickle_kw = ("""''')
pickle.dump(kwargs, freagent)
freagent.write('''""")\n''')
freagent.write("""\nkwargs = pickle.loads(pickle_kw)\n""")
freagent.write("""electronic_energy = %s(**kwargs)\n\n""" % (func.__name__))
freagent.write("""psi4.print_variables()\n""")
freagent.write("""psi4.print_out('\\nDATABASE RESULT: computation %d for reagent %s """
% (os.getpid(), rgt))
freagent.write("""yields electronic energy %20.12f\\n' % (electronic_energy))\n\n""")
freagent.write("""psi4.set_variable('NATOM', molecule.natom())\n""")
for envv in db_tabulate:
freagent.write("""psi4.print_out('DATABASE RESULT: computation %d for reagent %s """
% (os.getpid(), rgt))
freagent.write("""yields variable value %20.12f for variable %s\\n' % (psi4.get_variable(""")
freagent.write("""'%s'), '%s'))\n""" % (envv.upper(), envv.upper()))
freagent.close()
elif (db_mode.lower() == 'reap'):
ERGT[rgt] = 0.0
for envv in db_tabulate:
VRGT[rgt][envv.upper()] = 0.0
exec(banners)
exec(actives)
try:
freagent = open('%s.out' % (rgt), 'r')
except IOError:
psi4.print_out('Warning: Output file \'%s.out\' not found.\n' % (rgt))
psi4.print_out(' Database summary will have 0.0 and **** in its place.\n')
else:
while 1:
line = freagent.readline()
if not line:
if ERGT[rgt] == 0.0:
psi4.print_out('Warning: Output file \'%s.out\' has no DATABASE RESULT line.\n' % (rgt))
psi4.print_out(' Database summary will have 0.0 and **** in its place.\n')
break
s = line.split()
if (len(s) != 0) and (s[0:3] == ['DATABASE', 'RESULT:', 'computation']):
if int(s[3]) != db_linkage:
raise ValidationError('Output file \'%s.out\' has linkage %s incompatible with master.in linkage %s.'
% (rgt, str(s[3]), str(db_linkage)))
if s[6] != rgt:
raise ValidationError('Output file \'%s.out\' has nominal affiliation %s incompatible with reagent %s.'
% (rgt, s[6], rgt))
if (s[8:10] == ['electronic', 'energy']):
ERGT[rgt] = float(s[10])
psi4.print_out('DATABASE RESULT: electronic energy = %20.12f\n' % (ERGT[rgt]))
elif (s[8:10] == ['variable', 'value']):
for envv in db_tabulate:
envv = envv.upper()
if (s[13:] == envv.split()):
VRGT[rgt][envv] = float(s[10])
psi4.print_out('DATABASE RESULT: variable %s value = %20.12f\n' % (envv, VRGT[rgt][envv]))
freagent.close()
# end sow after writing files
if (db_mode.lower() == 'sow'):
return 0.0
# Reap all the necessary reaction computations
psi4.print_out("\n")
p4util.banner(("Database %s Results" % (db_name)))
psi4.print_out("\n")
maxactv = []
for rxn in HRXN:
maxactv.append(len(ACTV[dbse + '-' + str(rxn)]))
maxrgt = max(maxactv)
table_delimit = '-' * (54 + 20 * maxrgt)
tables = ''
# find any reactions that are incomplete
FAIL = collections.defaultdict(int)
for rxn in HRXN:
db_rxn = dbse + '-' + str(rxn)
for i in range(len(ACTV[db_rxn])):
if abs(ERGT[ACTV[db_rxn][i]]) < 1.0e-12:
FAIL[rxn] = 1
# tabulate requested process::environment variables
tables += """ For each VARIABLE requested by tabulate, a 'Reaction Value' will be formed from\n"""
tables += """ 'Reagent' values according to weightings 'Wt', as for the REQUESTED ENERGY below.\n"""
tables += """ Depending on the nature of the variable, this may or may not make any physical sense.\n"""
for rxn in HRXN:
db_rxn = dbse + '-' + str(rxn)
VRXN[db_rxn] = {}
for envv in db_tabulate:
envv = envv.upper()
tables += """\n ==> %s <==\n\n""" % (envv.title())
tables += tblhead(maxrgt, table_delimit, 2)
for rxn in HRXN:
db_rxn = dbse + '-' + str(rxn)
if FAIL[rxn]:
tables += """\n%23s %8s %8s %8s""" % (db_rxn, '', '****', '')
for i in range(len(ACTV[db_rxn])):
tables += """ %16.8f %2.0f""" % (VRGT[ACTV[db_rxn][i]][envv], RXNM[db_rxn][ACTV[db_rxn][i]])
else:
VRXN[db_rxn][envv] = 0.0
for i in range(len(ACTV[db_rxn])):
VRXN[db_rxn][envv] += VRGT[ACTV[db_rxn][i]][envv] * RXNM[db_rxn][ACTV[db_rxn][i]]
tables += """\n%23s %16.8f """ % (db_rxn, VRXN[db_rxn][envv])
for i in range(len(ACTV[db_rxn])):
tables += """ %16.8f %2.0f""" % (VRGT[ACTV[db_rxn][i]][envv], RXNM[db_rxn][ACTV[db_rxn][i]])
tables += """\n %s\n""" % (table_delimit)
# tabulate primary requested energy variable with statistics
count_rxn = 0
minDerror = 100000.0
maxDerror = 0.0
MSDerror = 0.0
MADerror = 0.0
RMSDerror = 0.0
tables += """\n ==> %s <==\n\n""" % ('Requested Energy')
tables += tblhead(maxrgt, table_delimit, 1)
for rxn in HRXN:
db_rxn = dbse + '-' + str(rxn)
if FAIL[rxn]:
tables += """\n%23s %8.4f %8s %8s""" % (db_rxn, BIND[db_rxn], '****', '****')
for i in range(len(ACTV[db_rxn])):
tables += """ %16.8f %2.0f""" % (ERGT[ACTV[db_rxn][i]], RXNM[db_rxn][ACTV[db_rxn][i]])
else:
ERXN[db_rxn] = 0.0
for i in range(len(ACTV[db_rxn])):
ERXN[db_rxn] += ERGT[ACTV[db_rxn][i]] * RXNM[db_rxn][ACTV[db_rxn][i]]
error = p4const.psi_hartree2kcalmol * ERXN[db_rxn] - BIND[db_rxn]
tables += """\n%23s %8.4f %8.4f %8.4f""" % (db_rxn, BIND[db_rxn], p4const.psi_hartree2kcalmol * ERXN[db_rxn], error)
for i in range(len(ACTV[db_rxn])):
tables += """ %16.8f %2.0f""" % (ERGT[ACTV[db_rxn][i]], RXNM[db_rxn][ACTV[db_rxn][i]])
if abs(error) < abs(minDerror):
minDerror = error
if abs(error) > abs(maxDerror):
maxDerror = error
MSDerror += error
MADerror += abs(error)
RMSDerror += error * error
count_rxn += 1
tables += """\n %s\n""" % (table_delimit)
if count_rxn:
MSDerror /= float(count_rxn)
MADerror /= float(count_rxn)
RMSDerror = math.sqrt(RMSDerror / float(count_rxn))
tables += """%23s %19s %8.4f\n""" % ('Minimal Dev', '', minDerror)
tables += """%23s %19s %8.4f\n""" % ('Maximal Dev', '', maxDerror)
tables += """%23s %19s %8.4f\n""" % ('Mean Signed Dev', '', MSDerror)
tables += """%23s %19s %8.4f\n""" % ('Mean Absolute Dev', '', MADerror)
tables += """%23s %19s %8.4f\n""" % ('RMS Dev', '', RMSDerror)
tables += """ %s\n""" % (table_delimit)
psi4.set_variable('%s DATABASE MEAN SIGNED DEVIATION' % (db_name), MSDerror)
psi4.set_variable('%s DATABASE MEAN ABSOLUTE DEVIATION' % (db_name), MADerror)
psi4.set_variable('%s DATABASE ROOT-MEAN-SQUARE DEVIATION' % (db_name), RMSDerror)
#print tables
psi4.print_out(tables)
finalenergy = MADerror
else:
finalenergy = 0.0
# restore molecule and options
activate(user_molecule)
user_molecule.update_geometry()
psi4.set_global_option("BASIS", user_basis)
psi4.set_global_option("REFERENCE", user_reference)
if not b_user_reference:
psi4.revoke_global_option_changed('REFERENCE')
psi4.set_global_option('WRITER_FILE_LABEL', user_writer_file_label)
DB_RGT.clear()
DB_RGT.update(VRGT)
DB_RXN.clear()
DB_RXN.update(VRXN)
return finalenergy
def tblhead(tbl_maxrgt, tbl_delimit, ttype):
r"""Function that prints the header for the changable-width results tables in db().
*tbl_maxrgt* is the number of reagent columns the table must plan for. *tbl_delimit*
is a string of dashes of the correct length to set off the table. *ttype* is 1 for
tables comparing the computed values to the reference or 2 for simple tabulation
and sum of the computed values.
"""
tbl_str = ''
tbl_str += """ %s""" % (tbl_delimit)
if ttype == 1:
tbl_str += """\n%23s %19s %8s""" % ('Reaction', 'Reaction Energy', 'Error')
elif ttype == 2:
tbl_str += """\n%23s %19s %6s""" % ('Reaction', 'Reaction Value', '')
for i in range(tbl_maxrgt):
tbl_str += """%20s""" % ('Reagent ' + str(i + 1))
if ttype == 1:
tbl_str += """\n%23s %8s %8s %8s""" % ('', 'Ref', 'Calc', '[kcal/mol]')
elif ttype == 2:
tbl_str += """\n%54s""" % ('')
for i in range(tbl_maxrgt):
if ttype == 1:
tbl_str += """%20s""" % ('[H] Wt')
elif ttype == 2:
tbl_str += """%20s""" % ('Value Wt')
tbl_str += """\n %s""" % (tbl_delimit)
return tbl_str
## Aliases ##
db = database
#######################
## End of Database ##
#######################
###################################
## Start of Complete Basis Set ##
###################################
def complete_basis_set(name, **kwargs):
r"""Function to define a multistage energy method from combinations of
basis set extrapolations and delta corrections and condense the
components into a minimum number of calculations.
:aliases: cbs()
:returns: (*float*) -- Total electronic energy in Hartrees
:PSI variables:
.. hlist::
:columns: 1
* :psivar:`CBS TOTAL ENERGY <CBSTOTALENERGY>`
* :psivar:`CBS REFERENCE ENERGY <CBSREFERENCEENERGY>`
* :psivar:`CBS CORRELATION ENERGY <CBSCORRELATIONENERGY>`
* :psivar:`CURRENT ENERGY <CURRENTENERGY>`
* :psivar:`CURRENT REFERENCE ENERGY <CURRENTREFERENCEENERGY>`
* :psivar:`CURRENT CORRELATION ENERGY <CURRENTCORRELATIONENERGY>`
.. caution:: Some features are not yet implemented. Buy a developer a coffee.
- Not all methods hooked in through PSI variables, configuration interaction and arbitrary order MP in particular.
- No scheme defaults for given basis zeta number, so scheme must be specified explicitly.
- No way to tell function to boost fitting basis size for all calculations.
- No way to extrapolate def2 family basis sets
- Need to add more extrapolation schemes
As represented in the equation below, a CBS energy method is defined in several
sequential stages (scf, corl, delta, delta2, delta3, delta4, delta5) covering treatment
of the reference total energy, the correlation energy, a delta correction to the
correlation energy, and a second delta correction, etc.. Each is activated by its
stage_wfn keyword and is only allowed if all preceding stages are active.
.. include:: cbs_eqn.rst
* Energy Methods
The presence of a stage_wfn keyword is the indicator to incorporate
(and check for stage_basis and stage_scheme keywords) and compute
that stage in defining the CBS energy.
The cbs() function requires, at a minimum, ``name='scf'`` and ``scf_basis``
keywords to be specified for reference-step only jobs and ``name`` and
``corl_basis`` keywords for correlated jobs.
The following energy methods have been set up for cbs().
.. hlist::
:columns: 5
* scf
* mp2
* mp2.5
* mp3
* mp4(sdq)
* mp4
* omp2
* omp3
* ocepa
* cepa0
* cepa(0)
* cepa(1)
* cepa(3)
* acpf
* aqcc
* qcisd
* cc2
* ccsd
* fno-df-ccsd
* bccd
* cc3
* qcisd(t)
* ccsd(t)
* fno-df-ccsd(t)
* bccd(t)
* cisd
* cisdt
* cisdtq
* ci\ *n*
* fci
* mrccsd
* mrccsd(t)
* mrccsdt
* mrccsdt(q)
:type name: string
:param name: ``'scf'`` || ``'ccsd'`` || etc.
First argument, usually unlabeled. Indicates the computational method
for the correlation energy, unless only reference step to be performed,
in which case should be ``'scf'``. Overruled if stage_wfn keywords supplied.
:type corl_wfn: string
:param corl_wfn: ``'mp2'`` || ``'ccsd(t)'`` || etc.
Indicates the energy method for which the correlation energy is to be
obtained. Can also be specified with ``name`` or as the unlabeled
first argument to the function.
:type delta_wfn: string
:param delta_wfn: ``'ccsd'`` || ``'ccsd(t)'`` || etc.
Indicates the (superior) energy method for which a delta correction
to the correlation energy is to be obtained.
:type delta_wfn_lesser: string
:param delta_wfn_lesser: |dl| ``'mp2'`` |dr| || ``'ccsd'`` || etc.
Indicates the inferior energy method for which a delta correction
to the correlation energy is to be obtained.
:type delta2_wfn: string
:param delta2_wfn: ``'ccsd'`` || ``'ccsd(t)'`` || etc.
Indicates the (superior) energy method for which a second delta correction
to the correlation energy is to be obtained.
:type delta2_wfn_lesser: string
:param delta2_wfn_lesser: |dl| ``'mp2'`` |dr| || ``'ccsd(t)'`` || etc.
Indicates the inferior energy method for which a second delta correction
to the correlation energy is to be obtained.
:type delta3_wfn: string
:param delta3_wfn: ``'ccsd'`` || ``'ccsd(t)'`` || etc.
Indicates the (superior) energy method for which a third delta correction
to the correlation energy is to be obtained.
:type delta3_wfn_lesser: string
:param delta3_wfn_lesser: |dl| ``'mp2'`` |dr| || ``'ccsd(t)'`` || etc.
Indicates the inferior energy method for which a third delta correction
to the correlation energy is to be obtained.
:type delta4_wfn: string
:param delta4_wfn: ``'ccsd'`` || ``'ccsd(t)'`` || etc.
Indicates the (superior) energy method for which a fourth delta correction
to the correlation energy is to be obtained.
:type delta4_wfn_lesser: string
:param delta4_wfn_lesser: |dl| ``'mp2'`` |dr| || ``'ccsd(t)'`` || etc.
Indicates the inferior energy method for which a fourth delta correction
to the correlation energy is to be obtained.
:type delta5_wfn: string
:param delta5_wfn: ``'ccsd'`` || ``'ccsd(t)'`` || etc.
Indicates the (superior) energy method for which a fifth delta correction
to the correlation energy is to be obtained.
:type delta5_wfn_lesser: string
:param delta5_wfn_lesser: |dl| ``'mp2'`` |dr| || ``'ccsd(t)'`` || etc.
Indicates the inferior energy method for which a fifth delta correction
to the correlation energy is to be obtained.
* Basis Sets
Currently, the basis set set through ``set`` commands have no influence
on a cbs calculation.
:type scf_basis: :ref:`basis string <apdx:basisElement>`
:param scf_basis: |dl| ``corl_basis`` |dr| || ``'cc-pV[TQ]Z'`` || ``'jun-cc-pv[tq5]z'`` || ``'6-31G*'`` || etc.
Indicates the sequence of basis sets employed for the reference energy.
If any correlation method is specified, ``scf_basis`` can default
to ``corl_basis``.
:type corl_basis: :ref:`basis string <apdx:basisElement>`
:param corl_basis: ``'cc-pV[TQ]Z'`` || ``'jun-cc-pv[tq5]z'`` || ``'6-31G*'`` || etc.
Indicates the sequence of basis sets employed for the correlation energy.
:type delta_basis: :ref:`basis string <apdx:basisElement>`
:param delta_basis: ``'cc-pV[TQ]Z'`` || ``'jun-cc-pv[tq5]z'`` || ``'6-31G*'`` || etc.
Indicates the sequence of basis sets employed for the delta correction
to the correlation energy.
:type delta2_basis: :ref:`basis string <apdx:basisElement>`
:param delta2_basis: ``'cc-pV[TQ]Z'`` || ``'jun-cc-pv[tq5]z'`` || ``'6-31G*'`` || etc.
Indicates the sequence of basis sets employed for the second delta correction
to the correlation energy.
:type delta3_basis: :ref:`basis string <apdx:basisElement>`
:param delta3_basis: ``'cc-pV[TQ]Z'`` || ``'jun-cc-pv[tq5]z'`` || ``'6-31G*'`` || etc.
Indicates the sequence of basis sets employed for the third delta correction
to the correlation energy.
:type delta4_basis: :ref:`basis string <apdx:basisElement>`
:param delta4_basis: ``'cc-pV[TQ]Z'`` || ``'jun-cc-pv[tq5]z'`` || ``'6-31G*'`` || etc.
Indicates the sequence of basis sets employed for the fourth delta correction
to the correlation energy.
:type delta5_basis: :ref:`basis string <apdx:basisElement>`
:param delta5_basis: ``'cc-pV[TQ]Z'`` || ``'jun-cc-pv[tq5]z'`` || ``'6-31G*'`` || etc.
Indicates the sequence of basis sets employed for the fifth delta correction
to the correlation energy.
* Schemes
Transformations of the energy through basis set extrapolation for each
stage of the CBS definition. A complaint is generated if number of basis
sets in stage_basis does not exactly satisfy requirements of stage_scheme.
An exception is the default, ``'highest_1'``, which uses the best basis
set available. See `Extrapolation Schemes`_ for all available schemes.
:type scf_scheme: function
:param scf_scheme: |dl| ``highest_1`` |dr| || ``scf_xtpl_helgaker_3`` || etc.
Indicates the basis set extrapolation scheme to be applied to the reference energy.
:type corl_scheme: function
:param corl_scheme: |dl| ``highest_1`` |dr| || ``corl_xtpl_helgaker_2`` || etc.
Indicates the basis set extrapolation scheme to be applied to the correlation energy.
:type delta_scheme: function
:param delta_scheme: |dl| ``highest_1`` |dr| || ``corl_xtpl_helgaker_2`` || etc.
Indicates the basis set extrapolation scheme to be applied to the delta correction
to the correlation energy.
:type delta2_scheme: function
:param delta2_scheme: |dl| ``highest_1`` |dr| || ``corl_xtpl_helgaker_2`` || etc.
Indicates the basis set extrapolation scheme to be applied to the second delta correction
to the correlation energy.
:type delta3_scheme: function
:param delta3_scheme: |dl| ``highest_1`` |dr| || ``corl_xtpl_helgaker_2`` || etc.
Indicates the basis set extrapolation scheme to be applied to the third delta correction
to the correlation energy.
:type delta4_scheme: function
:param delta4_scheme: |dl| ``highest_1`` |dr| || ``corl_xtpl_helgaker_2`` || etc.
Indicates the basis set extrapolation scheme to be applied to the fourth delta correction
to the correlation energy.
:type delta5_scheme: function
:param delta5_scheme: |dl| ``highest_1`` |dr| || ``corl_xtpl_helgaker_2`` || etc.
Indicates the basis set extrapolation scheme to be applied to the fifth delta correction
to the correlation energy.
:type molecule: :ref:`molecule <op_py_molecule>`
:param molecule: ``h2o`` || etc.
The target molecule, if not the last molecule defined.
:examples:
>>> # [1] replicates with cbs() the simple model chemistry scf/cc-pVDZ: set basis cc-pVDZ energy('scf')
>>> cbs('scf', scf_basis='cc-pVDZ')
>>> # [2] replicates with cbs() the simple model chemistry mp2/jun-cc-pVDZ: set basis jun-cc-pVDZ energy('mp2')
>>> cbs('mp2', corl_basis='jun-cc-pVDZ')
>>> # [3] DTQ-zeta extrapolated scf reference energy
>>> cbs('scf', scf_basis='cc-pV[DTQ]Z', scf_scheme=scf_xtpl_helgaker_3)
>>> # [4] DT-zeta extrapolated mp2 correlation energy atop a T-zeta reference
>>> cbs('mp2', corl_basis='cc-pv[dt]z', corl_scheme=corl_xtpl_helgaker_2)
>>> # [5] a DT-zeta extrapolated coupled-cluster correction atop a TQ-zeta extrapolated mp2 correlation energy atop a Q-zeta reference
>>> cbs('mp2', corl_basis='aug-cc-pv[tq]z', corl_scheme=corl_xtpl_helgaker_2, delta_wfn='ccsd(t)', delta_basis='aug-cc-pv[dt]z', delta_scheme=corl_xtpl_helgaker_2)
>>> # [6] a D-zeta ccsd(t) correction atop a DT-zeta extrapolated ccsd cluster correction atop a TQ-zeta extrapolated mp2 correlation energy atop a Q-zeta reference
>>> cbs('mp2', corl_basis='aug-cc-pv[tq]z', corl_scheme=corl_xtpl_helgaker_2, delta_wfn='ccsd', delta_basis='aug-cc-pv[dt]z', delta_scheme=corl_xtpl_helgaker_2, delta2_wfn='ccsd(t)', delta2_wfn_lesser='ccsd', delta2_basis='aug-cc-pvdz')
>>> # [7] cbs() coupled with database()
>>> database('mp2', 'BASIC', subset=['h2o','nh3'], symm='on', func=cbs, corl_basis='cc-pV[tq]z', corl_scheme=corl_xtpl_helgaker_2, delta_wfn='ccsd(t)', delta_basis='sto-3g')
>>> # [8] cbs() coupled with optimize()
>>> optimize('mp2', corl_basis='cc-pV[DT]Z', corl_scheme=corl_xtpl_helgaker_2, func=cbs)
"""
lowername = name.lower()
kwargs = p4util.kwargs_lower(kwargs)
# Wrap any positional arguments into kwargs (for intercalls among wrappers)
if not('name' in kwargs) and name:
kwargs['name'] = name.lower()
# Establish function to call (only energy makes sense for cbs)
if not('cbs_func' in kwargs):
if ('func' in kwargs):
kwargs['cbs_func'] = kwargs['func']
del kwargs['func']
else:
kwargs['cbs_func'] = energy
func = kwargs['cbs_func']
if not func:
raise ValidationError('Function \'%s\' does not exist to be called by wrapper complete_basis_set.' % (func.__name__))
if not(func is energy):
raise ValidationError('Wrapper complete_basis_set is unhappy to be calling function \'%s\' instead of \'energy\'.' % (func.__name__))
# Define some quantum chemical knowledge, namely what methods are subsumed in others
VARH = {}
VARH['scf'] = { 'scftot': 'SCF TOTAL ENERGY'}
VARH['oldmp2'] = { 'scftot': 'SCF TOTAL ENERGY',
'oldmp2corl': 'MP2 CORRELATION ENERGY'}
VARH['mp2'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY'}
VARH['mp2.5'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'mp2.5corl': 'MP2.5 CORRELATION ENERGY',
'mp3corl': 'MP3 CORRELATION ENERGY'}
VARH['mp3'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'mp2.5corl': 'MP2.5 CORRELATION ENERGY',
'mp3corl': 'MP3 CORRELATION ENERGY'}
VARH['mp4(sdq)'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'mp2.5corl': 'MP2.5 CORRELATION ENERGY',
'mp3corl': 'MP3 CORRELATION ENERGY',
'mp4(sdq)corl': 'MP4(SDQ) CORRELATION ENERGY'}
VARH['mp4'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'mp2.5corl': 'MP2.5 CORRELATION ENERGY',
'mp3corl': 'MP3 CORRELATION ENERGY',
'mp4(sdq)corl': 'MP4(SDQ) CORRELATION ENERGY',
'mp4corl': 'MP4(SDTQ) CORRELATION ENERGY'}
VARH['omp2'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'omp2corl': 'OMP2 CORRELATION ENERGY'}
VARH['omp3'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'mp3corl': 'MP3 CORRELATION ENERGY',
'omp3corl': 'OMP3 CORRELATION ENERGY'}
VARH['ocepa'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'ocepacorl': 'OCEPA(0) CORRELATION ENERGY'}
VARH['cepa0'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'cepa0corl': 'CEPA(0) CORRELATION ENERGY'}
VARH['cepa(0)'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'cepa(0)corl': 'CEPA(0) CORRELATION ENERGY'}
VARH['cepa(1)'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'cepa(1)corl': 'CEPA(1) CORRELATION ENERGY'}
VARH['cepa(3)'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'cepa(3)corl': 'CEPA(3) CORRELATION ENERGY'}
VARH['acpf'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'acpfcorl': 'ACPF CORRELATION ENERGY'}
VARH['aqcc'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'aqcccorl': 'AQCC CORRELATION ENERGY'}
VARH['qcisd'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'mp2.5corl': 'MP2.5 CORRELATION ENERGY',
'mp3corl': 'MP3 CORRELATION ENERGY',
'mp4(sdq)corl': 'MP4(SDQ) CORRELATION ENERGY',
'qcisdcorl': 'QCISD CORRELATION ENERGY'}
VARH['cc2'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'cc2corl': 'CC2 CORRELATION ENERGY'}
VARH['ccsd'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'ccsdcorl': 'CCSD CORRELATION ENERGY'}
VARH['bccd'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'bccdcorl': 'CCSD CORRELATION ENERGY'}
VARH['cc3'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'cc3corl': 'CC3 CORRELATION ENERGY'}
VARH['fno-df-ccsd'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'fno-df-ccsdcorl': 'CCSD CORRELATION ENERGY'}
VARH['fno-df-ccsd(t)'] = {'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'ccsdcorl': 'CCSD CORRELATION ENERGY',
'fno-df-ccsd(t)corl': 'CCSD(T) CORRELATION ENERGY'}
VARH['qcisd(t)'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'mp2.5corl': 'MP2.5 CORRELATION ENERGY',
'mp3corl': 'MP3 CORRELATION ENERGY',
'mp4(sdq)corl': 'MP4(SDQ) CORRELATION ENERGY',
'qcisdcorl': 'QCISD CORRELATION ENERGY',
'qcisd(t)corl': 'QCISD(T) CORRELATION ENERGY'}
VARH['ccsd(t)'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'ccsdcorl': 'CCSD CORRELATION ENERGY',
'ccsd(t)corl': 'CCSD(T) CORRELATION ENERGY'}
VARH['bccd(t)'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'ccsdcorl': 'CCSD CORRELATION ENERGY',
'bccd(t)corl': 'CCSD(T) CORRELATION ENERGY'}
VARH['cisd'] = { 'scftot': 'SCF TOTAL ENERGY',
'cisdcorl': 'CISD CORRELATION ENERGY'}
VARH['cisdt'] = { 'scftot': 'SCF TOTAL ENERGY',
'cisdtcorl': 'CISDT CORRELATION ENERGY'}
VARH['cisdtq'] = { 'scftot': 'SCF TOTAL ENERGY',
'cisdtqcorl': 'CISDTQ CORRELATION ENERGY'}
VARH['fci'] = { 'scftot': 'SCF TOTAL ENERGY',
'fcicorl': 'FCI CORRELATION ENERGY'}
VARH['mrccsd'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'mrccsdcorl': 'CCSD CORRELATION ENERGY'}
VARH['mrccsd(t)'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'mrccsdcorl': 'CCSD CORRELATION ENERGY',
'mrccsd(t)corl': 'CCSD(T) CORRELATION ENERGY'}
VARH['mrccsdt'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'mrccsdtcorl': 'CCSDT CORRELATION ENERGY'}
VARH['mrccsdt(q)'] = { 'scftot': 'SCF TOTAL ENERGY',
'mp2corl': 'MP2 CORRELATION ENERGY',
'mrccsdtcorl': 'CCSDT CORRELATION ENERGY',
'mrccsdt(q)corl': 'CCSDT(Q) CORRELATION ENERGY'}
for cilevel in range(2, 99):
VARH['ci%s' % (str(cilevel))] = {
'scftot': 'SCF TOTAL ENERGY',
'ci%scorl' % (str(cilevel)): 'CI CORRELATION ENERGY'}
finalenergy = 0.0
do_scf = 1
do_corl = 0
do_delta = 0
do_delta2 = 0
do_delta3 = 0
do_delta4 = 0
do_delta5 = 0
# Must collect (here) and set (below) basis sets after every new molecule activation
b_user_basis = psi4.has_global_option_changed('BASIS')
user_basis = psi4.get_global_option('BASIS')
#user_df_basis_scf = psi4.get_option('DF_BASIS_SCF')
#user_df_basis_mp2 = psi4.get_option('DF_BASIS_MP2')
#user_df_basis_cc = psi4.get_option('DF_BASIS_CC')
#user_df_basis_sapt = psi4.get_option('DF_BASIS_SAPT')
#user_df_basis_elst = psi4.get_option('DF_BASIS_ELST')
b_user_wfn = psi4.has_global_option_changed('WFN')
user_wfn = psi4.get_global_option('WFN')
user_writer_file_label = psi4.get_global_option('WRITER_FILE_LABEL')
# Make sure the molecule the user provided is the active one
if 'molecule' in kwargs:
activate(kwargs['molecule'])
del kwargs['molecule']
molecule = psi4.get_active_molecule()
molecule.update_geometry()
psi4.set_global_option("BASIS", psi4.get_global_option("BASIS"))
# Establish method for correlation energy
if 'name' in kwargs:
if (lowername == 'scf') or (lowername == 'df-scf'):
pass
else:
do_corl = 1
cbs_corl_wfn = kwargs['name'].lower()
if 'corl_wfn' in kwargs:
do_corl = 1
cbs_corl_wfn = kwargs['corl_wfn'].lower()
if do_corl:
if not (cbs_corl_wfn in VARH.keys()):
raise ValidationError('Requested CORL method \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_corl_wfn))
# Establish method for delta correction energy
if 'delta_wfn' in kwargs:
do_delta = 1
cbs_delta_wfn = kwargs['delta_wfn'].lower()
if not (cbs_delta_wfn in VARH.keys()):
raise ValidationError('Requested DELTA method \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta_wfn))
if 'delta_wfn_lesser' in kwargs:
cbs_delta_wfn_lesser = kwargs['delta_wfn_lesser'].lower()
else:
cbs_delta_wfn_lesser = 'mp2'
if not (cbs_delta_wfn_lesser in VARH.keys()):
raise ValidationError('Requested DELTA method lesser \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta_wfn_lesser))
# Establish method for second delta correction energy
if 'delta2_wfn' in kwargs:
do_delta2 = 1
cbs_delta2_wfn = kwargs['delta2_wfn'].lower()
if not (cbs_delta2_wfn in VARH.keys()):
raise ValidationError('Requested DELTA2 method \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta2_wfn))
if 'delta2_wfn_lesser' in kwargs:
cbs_delta2_wfn_lesser = kwargs['delta2_wfn_lesser'].lower()
else:
cbs_delta2_wfn_lesser = 'mp2'
if not (cbs_delta2_wfn_lesser in VARH.keys()):
raise ValidationError('Requested DELTA2 method lesser \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta2_wfn_lesser))
# Establish method for third delta correction energy
if 'delta3_wfn' in kwargs:
do_delta3 = 1
cbs_delta3_wfn = kwargs['delta3_wfn'].lower()
if not (cbs_delta3_wfn in VARH.keys()):
raise ValidationError('Requested DELTA3 method \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta3_wfn))
if 'delta3_wfn_lesser' in kwargs:
cbs_delta3_wfn_lesser = kwargs['delta3_wfn_lesser'].lower()
else:
cbs_delta3_wfn_lesser = 'mp2'
if not (cbs_delta3_wfn_lesser in VARH.keys()):
raise ValidationError('Requested DELTA3 method lesser \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta3_wfn_lesser))
# Establish method for fourth delta correction energy
if 'delta4_wfn' in kwargs:
do_delta4 = 1
cbs_delta4_wfn = kwargs['delta4_wfn'].lower()
if not (cbs_delta4_wfn in VARH.keys()):
raise ValidationError('Requested DELTA4 method \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta4_wfn))
if 'delta4_wfn_lesser' in kwargs:
cbs_delta4_wfn_lesser = kwargs['delta4_wfn_lesser'].lower()
else:
cbs_delta4_wfn_lesser = 'mp2'
if not (cbs_delta4_wfn_lesser in VARH.keys()):
raise ValidationError('Requested DELTA4 method lesser \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta4_wfn_lesser))
# Establish method for fifth delta correction energy
if 'delta5_wfn' in kwargs:
do_delta5 = 1
cbs_delta5_wfn = kwargs['delta5_wfn'].lower()
if not (cbs_delta5_wfn in VARH.keys()):
raise ValidationError('Requested DELTA5 method \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta5_wfn))
if 'delta5_wfn_lesser' in kwargs:
cbs_delta5_wfn_lesser = kwargs['delta5_wfn_lesser'].lower()
else:
cbs_delta5_wfn_lesser = 'mp2'
if not (cbs_delta5_wfn_lesser in VARH.keys()):
raise ValidationError('Requested DELTA5 method lesser \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta5_wfn_lesser))
# Check that user isn't skipping steps in scf + corl + delta + delta2 sequence
if do_scf and not do_corl and not do_delta and not do_delta2 and not do_delta3 and not do_delta4 and not do_delta5:
pass
elif do_scf and do_corl and not do_delta and not do_delta2 and not do_delta3 and not do_delta4 and not do_delta5:
pass
elif do_scf and do_corl and do_delta and not do_delta2 and not do_delta3 and not do_delta4 and not do_delta5:
pass
elif do_scf and do_corl and do_delta and do_delta2 and not do_delta3 and not do_delta4 and not do_delta5:
pass
elif do_scf and do_corl and do_delta and do_delta2 and do_delta3 and not do_delta4 and not do_delta5:
pass
elif do_scf and do_corl and do_delta and do_delta2 and do_delta3 and do_delta4 and not do_delta5:
pass
elif do_scf and do_corl and do_delta and do_delta2 and do_delta3 and do_delta4 and do_delta5:
pass
else:
raise ValidationError('Requested scf (%s) + corl (%s) + delta (%s) + delta2 (%s) + delta3 (%s) + delta4 (%s) + delta5 (%s) not valid. These steps are cummulative.' %
(do_scf, do_corl, do_delta, do_delta2, do_delta3, do_delta4, do_delta5))
# Establish list of valid basis sets for correlation energy
if do_corl:
if 'corl_basis' in kwargs:
BSTC, ZETC = validate_bracketed_basis(kwargs['corl_basis'].lower())
else:
raise ValidationError('CORL basis sets through keyword \'%s\' are required.' % ('corl_basis'))
# Establish list of valid basis sets for scf energy
if 'scf_basis' in kwargs:
BSTR, ZETR = validate_bracketed_basis(kwargs['scf_basis'].lower())
else:
if do_corl:
BSTR = BSTC[:]
ZETR = ZETC[:]
else:
raise ValidationError('SCF basis sets through keyword \'%s\' are required. Or perhaps you forgot the \'%s\'.' % ('scf_basis', 'corl_wfn'))
# Establish list of valid basis sets for delta correction energy
if do_delta:
if 'delta_basis' in kwargs:
BSTD, ZETD = validate_bracketed_basis(kwargs['delta_basis'].lower())
else:
raise ValidationError('DELTA basis sets through keyword \'%s\' are required.' % ('delta_basis'))
# Establish list of valid basis sets for second delta correction energy
if do_delta2:
if 'delta2_basis' in kwargs:
BSTD2, ZETD2 = validate_bracketed_basis(kwargs['delta2_basis'].lower())
else:
raise ValidationError('DELTA2 basis sets through keyword \'%s\' are required.' % ('delta2_basis'))
# Establish list of valid basis sets for third delta correction energy
if do_delta3:
if 'delta3_basis' in kwargs:
BSTD3, ZETD3 = validate_bracketed_basis(kwargs['delta3_basis'].lower())
else:
raise ValidationError('DELTA3 basis sets through keyword \'%s\' are required.' % ('delta3_basis'))
# Establish list of valid basis sets for fourth delta correction energy
if do_delta4:
if 'delta4_basis' in kwargs:
BSTD4, ZETD4 = validate_bracketed_basis(kwargs['delta4_basis'].lower())
else:
raise ValidationError('DELTA4 basis sets through keyword \'%s\' are required.' % ('delta4_basis'))
# Establish list of valid basis sets for fifth delta correction energy
if do_delta5:
if 'delta5_basis' in kwargs:
BSTD5, ZETD5 = validate_bracketed_basis(kwargs['delta5_basis'].lower())
else:
raise ValidationError('DELTA5 basis sets through keyword \'%s\' are required.' % ('delta5_basis'))
# Establish treatment for scf energy (validity check useless since python will catch it long before here)
cbs_scf_scheme = highest_1
if 'scf_scheme' in kwargs:
cbs_scf_scheme = kwargs['scf_scheme']
# Establish treatment for correlation energy
cbs_corl_scheme = highest_1
if 'corl_scheme' in kwargs:
cbs_corl_scheme = kwargs['corl_scheme']
# Establish treatment for delta correction energy
cbs_delta_scheme = highest_1
if 'delta_scheme' in kwargs:
cbs_delta_scheme = kwargs['delta_scheme']
# Establish treatment for delta2 correction energy
cbs_delta2_scheme = highest_1
if 'delta2_scheme' in kwargs:
cbs_delta2_scheme = kwargs['delta2_scheme']
# Establish treatment for delta3 correction energy
cbs_delta3_scheme = highest_1
if 'delta3_scheme' in kwargs:
cbs_delta3_scheme = kwargs['delta3_scheme']
# Establish treatment for delta4 correction energy
cbs_delta4_scheme = highest_1
if 'delta4_scheme' in kwargs:
cbs_delta4_scheme = kwargs['delta4_scheme']
# Establish treatment for delta5 correction energy
cbs_delta5_scheme = highest_1
if 'delta5_scheme' in kwargs:
cbs_delta5_scheme = kwargs['delta5_scheme']
# Build string of title banner
cbsbanners = ''
cbsbanners += """psi4.print_out('\\n')\n"""
cbsbanners += """p4util.banner(' CBS Setup ')\n"""
cbsbanners += """psi4.print_out('\\n')\n\n"""
exec(cbsbanners)
# Call schemes for each portion of total energy to 'place orders' for calculations needed
d_fields = ['d_stage', 'd_scheme', 'd_basis', 'd_wfn', 'd_need', 'd_coef', 'd_energy']
f_fields = ['f_wfn', 'f_portion', 'f_basis', 'f_zeta', 'f_energy']
GRAND_NEED = []
MODELCHEM = []
bstring = ''
if do_scf:
NEED = call_function_in_1st_argument(cbs_scf_scheme,
mode='requisition', basisname=BSTR, basiszeta=ZETR, wfnname='scf')
GRAND_NEED.append(dict(zip(d_fields, ['scf', cbs_scf_scheme, reconstitute_bracketed_basis(NEED), 'scf', NEED, +1, 0.0])))
if do_corl:
NEED = call_function_in_1st_argument(cbs_corl_scheme,
mode='requisition', basisname=BSTC, basiszeta=ZETC, wfnname=cbs_corl_wfn)
GRAND_NEED.append(dict(zip(d_fields, ['corl', cbs_corl_scheme, reconstitute_bracketed_basis(NEED), cbs_corl_wfn, NEED, +1, 0.0])))
if do_delta:
NEED = call_function_in_1st_argument(cbs_delta_scheme,
mode='requisition', basisname=BSTD, basiszeta=ZETD, wfnname=cbs_delta_wfn)
GRAND_NEED.append(dict(zip(d_fields, ['delta', cbs_delta_scheme, reconstitute_bracketed_basis(NEED), cbs_delta_wfn, NEED, +1, 0.0])))
NEED = call_function_in_1st_argument(cbs_delta_scheme,
mode='requisition', basisname=BSTD, basiszeta=ZETD, wfnname=cbs_delta_wfn_lesser)
GRAND_NEED.append(dict(zip(d_fields, ['delta', cbs_delta_scheme, reconstitute_bracketed_basis(NEED), cbs_delta_wfn_lesser, NEED, -1, 0.0])))
if do_delta2:
NEED = call_function_in_1st_argument(cbs_delta2_scheme,
mode='requisition', basisname=BSTD2, basiszeta=ZETD2, wfnname=cbs_delta2_wfn)
GRAND_NEED.append(dict(zip(d_fields, ['delta2', cbs_delta2_scheme, reconstitute_bracketed_basis(NEED), cbs_delta2_wfn, NEED, +1, 0.0])))
NEED = call_function_in_1st_argument(cbs_delta2_scheme,
mode='requisition', basisname=BSTD2, basiszeta=ZETD2, wfnname=cbs_delta2_wfn_lesser)
GRAND_NEED.append(dict(zip(d_fields, ['delta2', cbs_delta2_scheme, reconstitute_bracketed_basis(NEED), cbs_delta2_wfn_lesser, NEED, -1, 0.0])))
if do_delta3:
NEED = call_function_in_1st_argument(cbs_delta3_scheme,
mode='requisition', basisname=BSTD3, basiszeta=ZETD3, wfnname=cbs_delta3_wfn)
GRAND_NEED.append(dict(zip(d_fields, ['delta3', cbs_delta3_scheme, reconstitute_bracketed_basis(NEED), cbs_delta3_wfn, NEED, +1, 0.0])))
NEED = call_function_in_1st_argument(cbs_delta3_scheme,
mode='requisition', basisname=BSTD3, basiszeta=ZETD3, wfnname=cbs_delta3_wfn_lesser)
GRAND_NEED.append(dict(zip(d_fields, ['delta3', cbs_delta3_scheme, reconstitute_bracketed_basis(NEED), cbs_delta3_wfn_lesser, NEED, -1, 0.0])))
if do_delta4:
NEED = call_function_in_1st_argument(cbs_delta4_scheme,
mode='requisition', basisname=BSTD4, basiszeta=ZETD4, wfnname=cbs_delta4_wfn)
GRAND_NEED.append(dict(zip(d_fields, ['delta4', cbs_delta4_scheme, reconstitute_bracketed_basis(NEED), cbs_delta4_wfn, NEED, +1, 0.0])))
NEED = call_function_in_1st_argument(cbs_delta4_scheme,
mode='requisition', basisname=BSTD4, basiszeta=ZETD4, wfnname=cbs_delta4_wfn_lesser)
GRAND_NEED.append(dict(zip(d_fields, ['delta4', cbs_delta4_scheme, reconstitute_bracketed_basis(NEED), cbs_delta4_wfn_lesser, NEED, -1, 0.0])))
if do_delta5:
NEED = call_function_in_1st_argument(cbs_delta5_scheme,
mode='requisition', basisname=BSTD5, basiszeta=ZETD5, wfnname=cbs_delta5_wfn)
GRAND_NEED.append(dict(zip(d_fields, ['delta5', cbs_delta5_scheme, reconstitute_bracketed_basis(NEED), cbs_delta5_wfn, NEED, +1, 0.0])))
NEED = call_function_in_1st_argument(cbs_delta5_scheme,
mode='requisition', basisname=BSTD5, basiszeta=ZETD5, wfnname=cbs_delta5_wfn_lesser)
GRAND_NEED.append(dict(zip(d_fields, ['delta5', cbs_delta5_scheme, reconstitute_bracketed_basis(NEED), cbs_delta5_wfn_lesser, NEED, -1, 0.0])))
for stage in GRAND_NEED:
for lvl in stage['d_need'].items():
MODELCHEM.append(lvl[1])
# Apply chemical reasoning to choose the minimum computations to run
JOBS = MODELCHEM[:]
instructions = ''
instructions += """ Naive listing of computations required.\n"""
for mc in JOBS:
instructions += """ %12s / %-24s for %s\n""" % (mc['f_wfn'], mc['f_basis'], VARH[mc['f_wfn']][mc['f_wfn'] + mc['f_portion']])
# Remove duplicate modelchem portion listings
for indx_mc, mc in enumerate(MODELCHEM):
dups = -1
for indx_job, job in enumerate(JOBS):
if (job['f_wfn'] == mc['f_wfn']) and (job['f_basis'] == mc['f_basis']):
dups += 1
if (dups >= 1):
del JOBS[indx_job]
# Remove chemically subsumed modelchem portion listings
for indx_mc, mc in enumerate(MODELCHEM):
for menial in VARH[mc['f_wfn']]:
for indx_job, job in enumerate(JOBS):
if (menial == job['f_wfn'] + job['f_portion']) and (mc['f_basis'] == job['f_basis']) and not (mc['f_wfn'] == job['f_wfn']):
del JOBS[indx_job]
instructions += """\n Enlightened listing of computations required.\n"""
for mc in JOBS:
instructions += """ %12s / %-24s for %s\n""" % (mc['f_wfn'], mc['f_basis'], VARH[mc['f_wfn']][mc['f_wfn'] + mc['f_portion']])
# Expand listings to all that will be obtained
JOBS_EXT = []
for indx_job, job in enumerate(JOBS):
for menial in VARH[job['f_wfn']]:
temp_wfn, temp_portion = split_menial(menial)
JOBS_EXT.append(dict(zip(f_fields, [temp_wfn, temp_portion, job['f_basis'], job['f_zeta'], 0.0])))
#instructions += """\n Full listing of computations to be obtained (required and bonus).\n"""
#for mc in JOBS_EXT:
# instructions += """ %12s / %-24s for %s\n""" % (mc['f_wfn'], mc['f_basis'], VARH[mc['f_wfn']][mc['f_wfn']+mc['f_portion']])
psi4.print_out(instructions)
psioh = psi4.IOManager.shared_object()
psioh.set_specific_retention(p4const.PSIF_SCF_MOS, True)
# Run necessary computations
for mc in JOBS:
kwargs['name'] = mc['f_wfn']
# Build string of title banner
cbsbanners = ''
cbsbanners += """psi4.print_out('\\n')\n"""
cbsbanners += """p4util.banner(' CBS Computation: %s / %s ')\n""" % (mc['f_wfn'].upper(), mc['f_basis'].upper())
cbsbanners += """psi4.print_out('\\n')\n\n"""
exec(cbsbanners)
# Build string of molecule and commands that are dependent on the database
commands = '\n'
commands += """\npsi4.set_global_option('BASIS', '%s')\n""" % (mc['f_basis'])
commands += """psi4.set_global_option('WRITER_FILE_LABEL', '%s')\n""" % \
(user_writer_file_label + ('' if user_writer_file_label == '' else '-') + mc['f_wfn'].lower() + '-' + mc['f_basis'].lower())
exec(commands)
# Make energy() call
mc['f_energy'] = call_function_in_1st_argument(func, **kwargs)
# Fill in energies for subsumed methods
for menial in VARH[mc['f_wfn']]:
temp_wfn, temp_portion = split_menial(menial)
for job in JOBS_EXT:
if (temp_wfn == job['f_wfn']) and (temp_portion == job['f_portion']) and (mc['f_basis'] == job['f_basis']):
job['f_energy'] = psi4.get_variable(VARH[temp_wfn][menial])
psi4.clean()
psioh.set_specific_retention(p4const.PSIF_SCF_MOS, False)
# Build string of title banner
cbsbanners = ''
cbsbanners += """psi4.print_out('\\n')\n"""
cbsbanners += """p4util.banner(' CBS Results ')\n"""
cbsbanners += """psi4.print_out('\\n')\n\n"""
exec(cbsbanners)
# Insert obtained energies into the array that stores the cbs stages
for stage in GRAND_NEED:
for lvl in stage['d_need'].items():
MODELCHEM.append(lvl[1])
for job in JOBS_EXT:
if ((lvl[1]['f_wfn'] == job['f_wfn']) and (lvl[1]['f_portion'] == job['f_portion']) and
(lvl[1]['f_basis'] == job['f_basis'])):
lvl[1]['f_energy'] = job['f_energy']
for stage in GRAND_NEED:
stage['d_energy'] = call_function_in_1st_argument(stage['d_scheme'], needname=stage['d_need'], mode='evaluate')
finalenergy += stage['d_energy'] * stage['d_coef']
# Build string of results table
table_delimit = ' ' + '-' * 105 + '\n'
tables = ''
tables += """\n ==> %s <==\n\n""" % ('Components')
tables += table_delimit
tables += """ %6s %20s %1s %-26s %3s %16s %-s\n""" % ('', 'Method', '/', 'Basis', 'Rqd', 'Energy [H]', 'Variable')
tables += table_delimit
for job in JOBS_EXT:
star = ''
for mc in MODELCHEM:
if (job['f_wfn'] == mc['f_wfn']) and (job['f_basis'] == mc['f_basis']):
star = '*'
tables += """ %6s %20s %1s %-27s %2s %16.8f %-s\n""" % ('', job['f_wfn'],
'/', job['f_basis'], star, job['f_energy'], VARH[job['f_wfn']][job['f_wfn'] + job['f_portion']])
tables += table_delimit
tables += """\n ==> %s <==\n\n""" % ('Stages')
tables += table_delimit
tables += """ %6s %20s %1s %-27s %2s %16s %-s\n""" % ('Stage', 'Method', '/', 'Basis', 'Wt', 'Energy [H]', 'Scheme')
tables += table_delimit
for stage in GRAND_NEED:
tables += """ %6s %20s %1s %-27s %2d %16.8f %-s\n""" % (stage['d_stage'], stage['d_wfn'],
'/', stage['d_basis'], stage['d_coef'], stage['d_energy'], stage['d_scheme'].__name__)
tables += table_delimit
tables += """\n ==> %s <==\n\n""" % ('CBS')
tables += table_delimit
tables += """ %6s %20s %1s %-27s %2s %16s %-s\n""" % ('Stage', 'Method', '/', 'Basis', '', 'Energy [H]', 'Scheme')
tables += table_delimit
if do_scf:
tables += """ %6s %20s %1s %-27s %2s %16.8f %-s\n""" % (GRAND_NEED[0]['d_stage'], GRAND_NEED[0]['d_wfn'],
'/', GRAND_NEED[0]['d_basis'], '', GRAND_NEED[0]['d_energy'], GRAND_NEED[0]['d_scheme'].__name__)
if do_corl:
tables += """ %6s %20s %1s %-27s %2s %16.8f %-s\n""" % (GRAND_NEED[1]['d_stage'], GRAND_NEED[1]['d_wfn'],
'/', GRAND_NEED[1]['d_basis'], '', GRAND_NEED[1]['d_energy'], GRAND_NEED[1]['d_scheme'].__name__)
if do_delta:
tables += """ %6s %20s %1s %-27s %2s %16.8f %-s\n""" % (GRAND_NEED[2]['d_stage'], GRAND_NEED[2]['d_wfn'] + ' - ' + GRAND_NEED[3]['d_wfn'],
'/', GRAND_NEED[2]['d_basis'], '', GRAND_NEED[2]['d_energy'] - GRAND_NEED[3]['d_energy'], GRAND_NEED[2]['d_scheme'].__name__)
if do_delta2:
tables += """ %6s %20s %1s %-27s %2s %16.8f %-s\n""" % (GRAND_NEED[4]['d_stage'], GRAND_NEED[4]['d_wfn'] + ' - ' + GRAND_NEED[5]['d_wfn'],
'/', GRAND_NEED[4]['d_basis'], '', GRAND_NEED[4]['d_energy'] - GRAND_NEED[5]['d_energy'], GRAND_NEED[4]['d_scheme'].__name__)
if do_delta3:
tables += """ %6s %20s %1s %-27s %2s %16.8f %-s\n""" % (GRAND_NEED[6]['d_stage'], GRAND_NEED[6]['d_wfn'] + ' - ' + GRAND_NEED[7]['d_wfn'],
'/', GRAND_NEED[6]['d_basis'], '', GRAND_NEED[6]['d_energy'] - GRAND_NEED[7]['d_energy'], GRAND_NEED[6]['d_scheme'].__name__)
if do_delta4:
tables += """ %6s %20s %1s %-27s %2s %16.8f %-s\n""" % (GRAND_NEED[8]['d_stage'], GRAND_NEED[8]['d_wfn'] + ' - ' + GRAND_NEED[9]['d_wfn'],
'/', GRAND_NEED[8]['d_basis'], '', GRAND_NEED[8]['d_energy'] - GRAND_NEED[9]['d_energy'], GRAND_NEED[8]['d_scheme'].__name__)
if do_delta5:
tables += """ %6s %20s %1s %-27s %2s %16.8f %-s\n""" % (GRAND_NEED[10]['d_stage'], GRAND_NEED[10]['d_wfn'] + ' - ' + GRAND_NEED[11]['d_wfn'],
'/', GRAND_NEED[10]['d_basis'], '', GRAND_NEED[10]['d_energy'] - GRAND_NEED[11]['d_energy'], GRAND_NEED[10]['d_scheme'].__name__)
tables += """ %6s %20s %1s %-27s %2s %16.8f %-s\n""" % ('total', 'CBS', '', '', '', finalenergy, '')
tables += table_delimit
#print tables
psi4.print_out(tables)
# Restore molecule and options
#psi4.set_local_option('SCF', "WFN", user_wfn) # TODO refuses to set global option WFN - rejects SCF as option
psi4.set_global_option('BASIS', user_basis)
psi4.set_global_option('WFN', user_wfn)
if not b_user_wfn:
psi4.revoke_global_option_changed('WFN')
psi4.set_global_option('WRITER_FILE_LABEL', user_writer_file_label)
psi4.set_variable('CBS REFERENCE ENERGY', GRAND_NEED[0]['d_energy'])
psi4.set_variable('CBS CORRELATION ENERGY', finalenergy - GRAND_NEED[0]['d_energy'])
psi4.set_variable('CBS TOTAL ENERGY', finalenergy)
psi4.set_variable('CURRENT REFERENCE ENERGY', GRAND_NEED[0]['d_energy'])
psi4.set_variable('CURRENT CORRELATION ENERGY', finalenergy - GRAND_NEED[0]['d_energy'])
psi4.set_variable('CURRENT ENERGY', finalenergy)
return finalenergy
# Transform and validate basis sets from 'cc-pV[Q5]Z' into [cc-pVQZ, cc-pV5Z] and [4, 5]
def validate_bracketed_basis(basisstring):
r"""Function to transform and validate basis sets for cbs(). A basis set with no
paired square brackets is passed through with zeta level 0 (e.g., '6-31+G(d,p)'
is returned as [6-31+G(d,p)] and [0]). A basis set with square brackets is
checked for sensible sequence and Dunning-ness and returned as separate basis
sets (e.g., 'cc-pV[Q5]Z' is returned as [cc-pVQZ, cc-pV5Z] and [4, 5]). Note
that this function has no communication with the basis set library to check
if the basis actually exists. Used by :py:func:`~wrappers.complete_basis_set`.
"""
ZETA = ['d', 't', 'q', '5', '6']
BSET = []
ZSET = []
if re.match(r'.*cc-.*\[.*\].*z$', basisstring, flags=re.IGNORECASE):
basispattern = re.compile(r'^(.*)\[(.*)\](.*)$')
basisname = basispattern.match(basisstring)
for b in basisname.group(2):
if b not in ZETA:
raise ValidationError('Basis set \'%s\' has invalid zeta level \'%s\'.' % (basisstring, b))
if len(ZSET) != 0:
if (int(ZSET[len(ZSET) - 1]) - ZETA.index(b)) != 1:
raise ValidationError('Basis set \'%s\' has out-of-order zeta level \'%s\'.' % (basisstring, b))
BSET.append(basisname.group(1) + b + basisname.group(3))
if b == 'd':
b = '2'
if b == 't':
b = '3'
if b == 'q':
b = '4'
ZSET.append(int(b))
elif re.match(r'.*\[.*\].*$', basisstring, flags=re.IGNORECASE):
raise ValidationError('Basis set surrounding series indicator [] in \'%s\' is invalid.' % (basisstring))
else:
BSET.append(basisstring)
ZSET.append(0)
return [BSET, ZSET]
# Reform string basis set descriptor from basis set strings, 'cc-pv[q5]z' from [cc-pvqz, cc-pv5z]
def reconstitute_bracketed_basis(needarray):
r"""Function to reform a bracketed basis set string from a sequential series
of basis sets (e.g, form 'cc-pv[q5]z' from array [cc-pvqz, cc-pv5z]). The
basis set array is extracted from the *f_basis* field of a *NEED* dictionary in
:py:func:`~wrappers.complete_basis_set`. Result is used to print a nicely
formatted basis set string in the results table.
"""
ZETA = {'d': 2, 't': 3, 'q': 4, '5': 5, '6': 6}
ZSET = [''] * len(ZETA)
BSET = []
for lvl in needarray.items():
BSET.append(lvl[1]['f_basis'])
if (len(BSET) == 1):
basisstring = BSET[0]
else:
indx = 0
while indx < len(BSET[0]):
if (BSET[0][indx] != BSET[1][indx]):
zetaindx = indx
indx += 1
for basis in BSET:
ZSET[ZETA[basis[zetaindx]] - 2] = basis[zetaindx]
pre = BSET[0][:zetaindx]
post = BSET[0][zetaindx + 1:]
basisstring = pre + '[' + ''.join(ZSET) + ']' + post
return basisstring
def highest_1(**largs):
r"""Scheme for total or correlation energies with a single basis or the highest
zeta-level among an array of bases. Used by :py:func:`~wrappers.complete_basis_set`.
.. math:: E_{total}^X = E_{total}^X
"""
energypiece = 0.0
functionname = sys._getframe().f_code.co_name
f_fields = ['f_wfn', 'f_portion', 'f_basis', 'f_zeta', 'f_energy']
[mode, NEED, wfnname, BSET, ZSET] = validate_scheme_args(functionname, **largs)
if (mode == 'requisition'):
# Impose restrictions on zeta sequence
if (len(ZSET) == 0):
raise ValidationError('Call to \'%s\' not valid with \'%s\' basis sets.' % (functionname, len(ZSET)))
# Return array that logs the requisite jobs
if (wfnname == 'scf'):
portion = 'tot'
else:
portion = 'corl'
NEED = {'HI': dict(zip(f_fields, [wfnname, portion, BSET[len(ZSET) - 1], ZSET[len(ZSET) - 1], 0.0]))}
return NEED
elif (mode == 'evaluate'):
# Extract required energies and zeta integers from array
# Compute extrapolated energy
energypiece = NEED['HI']['f_energy']
# Output string with extrapolation parameters
cbsscheme = ''
cbsscheme += """\n ==> %s <==\n\n""" % (functionname)
if (NEED['HI']['f_wfn'] == 'scf'):
cbsscheme += """ HI-zeta (%s) Total Energy: %16.8f\n""" % (str(NEED['HI']['f_zeta']), energypiece)
else:
cbsscheme += """ HI-zeta (%s) Correlation Energy: %16.8f\n""" % (str(NEED['HI']['f_zeta']), energypiece)
psi4.print_out(cbsscheme)
return energypiece
# Solution equation in LaTeX: $E_{corl}^{\infty} = \frac{E_{corl}^{X} X^3 - E_{corl}^{X-1} (X-1)^3}{X^3 - (X-1)^3}$
# Solution equation in LaTeX: $\beta = \frac{E_{corl}^{X} - E_{corl}^{X-1}}{X^{-3} - (X-1)^{-3}}$
def corl_xtpl_helgaker_2(**largs):
r"""Extrapolation scheme for correlation energies with two adjacent zeta-level bases.
Used by :py:func:`~wrappers.complete_basis_set`.
.. math:: E_{corl}^X = E_{corl}^{\infty} + \beta X^{-3}
"""
energypiece = 0.0
functionname = sys._getframe().f_code.co_name
f_fields = ['f_wfn', 'f_portion', 'f_basis', 'f_zeta', 'f_energy']
[mode, NEED, wfnname, BSET, ZSET] = validate_scheme_args(functionname, **largs)
if (mode == 'requisition'):
# Impose restrictions on zeta sequence
if (len(ZSET) != 2):
raise ValidationError('Call to \'%s\' not valid with \'%s\' basis sets.' % (functionname, len(ZSET)))
# Return array that logs the requisite jobs
NEED = {'HI': dict(zip(f_fields, [wfnname, 'corl', BSET[1], ZSET[1], 0.0])),
'LO': dict(zip(f_fields, [wfnname, 'corl', BSET[0], ZSET[0], 0.0]))}
return NEED
elif (mode == 'evaluate'):
# Extract required energies and zeta integers from array
eHI = NEED['HI']['f_energy']
zHI = NEED['HI']['f_zeta']
eLO = NEED['LO']['f_energy']
zLO = NEED['LO']['f_zeta']
# Compute extrapolated energy
energypiece = (eHI * zHI ** 3 - eLO * zLO ** 3) / (zHI ** 3 - zLO ** 3)
beta = (eHI - eLO) / (zHI ** (-3) - zLO ** (-3))
# Output string with extrapolation parameters
cbsscheme = ''
cbsscheme += """\n ==> %s <==\n\n""" % (functionname)
cbsscheme += """ LO-zeta (%s) Correlation Energy: %16.8f\n""" % (str(zLO), eLO)
cbsscheme += """ HI-zeta (%s) Correlation Energy: %16.8f\n""" % (str(zHI), eHI)
cbsscheme += """ Extrapolated Correlation Energy: %16.8f\n""" % (energypiece)
cbsscheme += """ Beta (coefficient) Value: %16.8f\n""" % (beta)
psi4.print_out(cbsscheme)
return energypiece
def scf_xtpl_helgaker_3(**largs):
r"""Extrapolation scheme for reference energies with three adjacent zeta-level bases.
Used by :py:func:`~wrappers.complete_basis_set`.
.. math:: E_{total}^X = E_{total}^{\infty} + \beta e^{-\alpha X}
"""
energypiece = 0.0
functionname = sys._getframe().f_code.co_name
f_fields = ['f_wfn', 'f_portion', 'f_basis', 'f_zeta', 'f_energy']
[mode, NEED, wfnname, BSET, ZSET] = validate_scheme_args(functionname, **largs)
if (mode == 'requisition'):
# Impose restrictions on zeta sequence
if (len(ZSET) != 3):
raise ValidationError('Call to \'%s\' not valid with \'%s\' basis sets.' % (functionname, len(ZSET)))
# Return array that logs the requisite jobs
NEED = {'HI': dict(zip(f_fields, [wfnname, 'tot', BSET[2], ZSET[2], 0.0])),
'MD': dict(zip(f_fields, [wfnname, 'tot', BSET[1], ZSET[1], 0.0])),
'LO': dict(zip(f_fields, [wfnname, 'tot', BSET[0], ZSET[0], 0.0]))}
return NEED
elif (mode == 'evaluate'):
# Extract required energies and zeta integers from array
eHI = NEED['HI']['f_energy']
eMD = NEED['MD']['f_energy']
eLO = NEED['LO']['f_energy']
zHI = NEED['HI']['f_zeta']
zMD = NEED['MD']['f_zeta']
zLO = NEED['LO']['f_zeta']
# Compute extrapolated energy
ratio = (eHI - eMD) / (eMD - eLO)
alpha = -1 * math.log(ratio)
beta = (eHI - eMD) / (math.exp(-1 * alpha * zMD) * (ratio - 1))
energypiece = eHI - beta * math.exp(-1 * alpha * zHI)
# Output string with extrapolation parameters
cbsscheme = ''
cbsscheme += """\n ==> %s <==\n\n""" % (functionname)
cbsscheme += """ LO-zeta (%s) Correlation Energy: %16.8f\n""" % (str(zLO), eLO)
cbsscheme += """ MD-zeta (%s) Correlation Energy: %16.8f\n""" % (str(zMD), eMD)
cbsscheme += """ HI-zeta (%s) Correlation Energy: %16.8f\n""" % (str(zHI), eHI)
cbsscheme += """ Extrapolated Correlation Energy: %16.8f\n""" % (energypiece)
cbsscheme += """ Alpha (exponent) Value: %16.8f\n""" % (alpha)
cbsscheme += """ Beta (coefficient) Value: %16.8f\n""" % (beta)
psi4.print_out(cbsscheme)
return energypiece
def scf_xtpl_helgaker_2(**largs):
r"""Extrapolation scheme for reference energies with two adjacent zeta-level bases.
Used by :py:func:`~wrappers.complete_basis_set`.
.. math:: E_{total}^X = E_{total}^{\infty} + \beta e^{-\alpha X}, \alpha = 1.63
"""
energypiece = 0.0
functionname = sys._getframe().f_code.co_name
f_fields = ['f_wfn', 'f_portion', 'f_basis', 'f_zeta', 'f_energy']
[mode, NEED, wfnname, BSET, ZSET] = validate_scheme_args(functionname, **largs)
if (mode == 'requisition'):
# Impose restrictions on zeta sequence
if (len(ZSET) != 2):
raise ValidationError('Call to \'%s\' not valid with \'%s\' basis sets.' % (functionname, len(ZSET)))
# Return array that logs the requisite jobs
NEED = {'HI': dict(zip(f_fields, [wfnname, 'tot', BSET[1], ZSET[1], 0.0])),
'LO': dict(zip(f_fields, [wfnname, 'tot', BSET[0], ZSET[0], 0.0]))}
return NEED
elif (mode == 'evaluate'):
# Extract required energies and zeta integers from array
eHI = NEED['HI']['f_energy']
eLO = NEED['LO']['f_energy']
zHI = NEED['HI']['f_zeta']
zLO = NEED['LO']['f_zeta']
# LAB TODO add ability to pass alternate parameter values in
# Return extrapolated energy
alpha = 1.63
beta = (eHI - eLO) / (math.exp(-1 * alpha * zLO) * (math.exp(-1 * alpha) - 1))
energypiece = eHI - beta * math.exp(-1 * alpha * zHI)
# Output string with extrapolation parameters
cbsscheme = ''
cbsscheme += """\n ==> %s <==\n\n""" % (functionname)
cbsscheme += """ LO-zeta (%s) Correlation Energy: %16.8f\n""" % (str(zLO), eLO)
cbsscheme += """ HI-zeta (%s) Correlation Energy: %16.8f\n""" % (str(zHI), eHI)
cbsscheme += """ Extrapolated Correlation Energy: %16.8f\n""" % (energypiece)
cbsscheme += """ Alpha (exponent) Value: %16.8f\n""" % (alpha)
cbsscheme += """ Beta (coefficient) Value: %16.8f\n""" % (beta)
psi4.print_out(cbsscheme)
return energypiece
def validate_scheme_args(functionname, **largs):
r"""Function called by each extrapolation scheme in :py:func:`~wrappers.complete_basis_set`.
Checks that all the input arguments are present and suitable so that
the scheme function can focus on defining the extrapolation.
"""
mode = ''
NEED = []
wfnname = ''
BSET = []
ZSET = []
# Mode where function fills out a form NEED with the computations needed to fulfill its call
if (largs['mode'].lower() == 'requisition'):
mode = largs['mode'].lower()
if 'wfnname' in largs:
wfnname = largs['wfnname']
else:
raise ValidationError('Call to \'%s\' has keyword \'wfnname\' missing.' % (functionname))
if re.match(r'scf_.*$', functionname) and (wfnname != 'scf'):
raise ValidationError('Call to \'%s\' is intended for scf portion of calculation.' % (functionname))
if re.match(r'corl_.*$', functionname) and (wfnname == 'scf'):
raise ValidationError('Call to \'%s\' is not intended for scf portion of calculation.' % (functionname))
if 'basisname' in largs:
BSET = largs['basisname']
else:
raise ValidationError('Call to \'%s\' has keyword \'basisname\' missing.' % (functionname))
if 'basiszeta' in largs:
ZSET = largs['basiszeta']
else:
raise ValidationError('Call to \'%s\' has keyword \'basiszeta\' missing.' % (functionname))
# Mode where function reads the now-filled-in energies from that same form and performs the sp, xtpl, delta, etc.
elif (largs['mode'].lower() == 'evaluate'):
mode = largs['mode'].lower()
if 'needname' in largs:
NEED = largs['needname']
else:
raise ValidationError('Call to \'%s\' has keyword \'needname\' missing.' % (functionname))
else:
raise ValidationError('Call to \'%s\' has keyword \'mode\' missing or invalid.' % (functionname))
return [mode, NEED, wfnname, BSET, ZSET]
def split_menial(menial):
r"""Function used by :py:func:`~wrappers.complete_basis_set` to separate
*menial* 'scftot' into [scf, tot] and 'mp2corl' into [mp2, corl].
"""
PTYP = ['tot', 'corl']
for temp in PTYP:
if menial.endswith(temp):
temp_wfn = menial[:-len(temp)]
temp_portion = temp
return [temp_wfn, temp_portion]
# Quickly normalize the types for both python 2 and 3
try:
unicode = unicode
except NameError:
# 'unicode' is undefined, must be Python 3
str = str
unicode = str
bytes = bytes
basestring = (str,bytes)
else:
# 'unicode' exists, must be Python 2
str = str
unicode = unicode
bytes = str
basestring = basestring
## Aliases ##
cbs = complete_basis_set
#################################
## End of Complete Basis Set ##
#################################
|