This file is indexed.

/usr/share/psi/python/wrappers.py is in psi4-data 4.0~beta5+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
#
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#

"""Module with functions that call the four main :py:mod:`driver`
functions: :py:mod:`driver.energy`, :py:mod:`driver.optimize`,
:py:mod:`driver.response`, and :py:mod:`driver.frequency`.

"""
import re
import os
import math
import warnings
import pickle
import copy
import collections
import psi4
import p4const
import p4util
from driver import *
#from extend_Molecule import *
from molutil import *
from p4regex import *
# never import aliases into this file


# Function to make calls among wrappers(), energy(), optimize(), etc.
def call_function_in_1st_argument(funcarg, **largs):
    r"""Function to make primary function call to energy(), opt(), etc.
    with options dictionary *largs*.
    Useful when *funcarg* to call is stored in variable.

    """
    return funcarg(**largs)

def convert(p, symbol):
    if symbol[p] == 'H':
      d = 1.001
    if symbol[p] == 'He':
      d = 1.012
    if symbol[p] == 'Li':
      d = 0.825
    if symbol[p] == 'Be':
      d = 1.408
    if symbol[p] == 'B':
      d = 1.485
    if symbol[p] == 'C':
      d = 1.452
    if symbol[p] == 'N':
      d = 1.397
    if symbol[p] == 'O':
      d = 1.342
    if symbol[p] == 'F':
      d = 1.287
    if symbol[p] == 'Ne':
      d = 1.243
    if symbol[p] == 'Na':
      d = 1.144
    if symbol[p] == 'Mg':
      d = 1.364
    if symbol[p] == 'Al':
      d = 1.639
    if symbol[p] == 'Si':
      d = 1.716
    if symbol[p] == 'P':
      d = 1.705
    if symbol[p] == 'S':
      d = 1.683
    if symbol[p] == 'Cl':
      d = 1.639
    if symbol[p] == 'Ar':
      d = 1.595

    return d / 1.5

#Automatically detect fragments and build a new molecule for fragment
#needing methods (SAPT0, etc...)
def auto_fragments(name, **kwargs):
    r"""
    Detects fragments if the user does not supply them.
    Currently only used for the WebMO implementation of SAPT

    usage: auto_fragments('')
    """
    if 'molecule' in kwargs:
        activate(kwargs['molecule'])
        del kwargs['molecule']
    molecule = psi4.get_active_molecule()
    molecule.update_geometry()

    geom = molecule.save_string_xyz()

    numatoms = molecule.natom()
    VdW = [1.2, 1.7, 1.5, 1.55, 1.52, 1.9, 1.85, 1.8]

    symbol = range(numatoms)
    X = [0.0] * numatoms
    Y = [0.0] * numatoms
    Z = [0.0] * numatoms

    Queue = []
    White = []
    Black = []
    F = geom.split('\n')
    for f in range(0, numatoms):
        A = F[f+1].split()
        symbol[f] = A[0]
        X[f] = float(A[1])
        Y[f] = float(A[2])
        Z[f] = float(A[3])
        White.append(f)
    Fragment = [[] for i in range(numatoms)]  # stores fragments

    start = 0  # starts with the first atom in the list
    Queue.append(start)
    White.remove(start)

    frag = 0

    while((len(White) > 0) or (len(Queue) > 0)):  # Iterates to the next fragment
        while(len(Queue) > 0):  # BFS within a fragment
            for u in Queue:  # find all nearest Neighbors
                             #   (still coloured white) to vertex u
                for i in White:
                    Distance = math.sqrt((X[i] - X[u]) * (X[i] - X[u]) +
                                         (Y[i] - Y[u]) * (Y[i] - Y[u]) +
                                         (Z[i] - Z[u]) * (Z[i] - Z[u]))
                    if Distance < convert(u,symbol) + convert(i,symbol):
                        Queue.append(i)  # if you find you, put it in the que
                        White.remove(i)  # and remove it from the untouched list
            Queue.remove(u)  # remove focus from Queue
            Black.append(u)
            Fragment[frag].append(int(u + 1))  # add to group (adding 1 to start
                                           #   list at one instead of zero)

        if(len(White) != 0):  # cant move White->Queue if no more exist
            Queue.append(White[0])
            White.remove(White[0])
        frag += 1

    new_geom = """\n0 1\n"""
    for i in Fragment[0]:
        new_geom = new_geom + F[i].lstrip() + """\n"""
    new_geom = new_geom + """--\n0 1\n"""
    for j in Fragment[1]:
        new_geom = new_geom + F[j].lstrip() + """\n"""
    new_geom = new_geom + """units angstrom\n"""

    new_mol = geometry(new_geom)
    new_mol.print_out()
    psi4.print_out("Exiting auto_fragments\n")

#######################
##  Start of n_body  ##
#######################

def n_body(name, **kwargs):
    lowername = name.lower()
    kwargs = p4util.kwargs_lower(kwargs)

    # Wrap any positional arguments into kwargs (for intercalls among wrappers)
    if not('name' in kwargs) and name:
        kwargs['name'] = name.lower()

    # Establish function to call
    if not('n_body_func' in kwargs):
        if ('func' in kwargs):
            kwargs['n_body_func'] = kwargs['func']
            del kwargs['func']
        else:
            kwargs['n_body_func'] = energy
    func = kwargs['n_body_func']
    if not func:
        raise ValidationError('Function \'%s\' does not exist to be called by wrapper n_body.' % (func.__name__))
    if (func is db):
        raise ValidationError('Wrapper n_body is unhappy to be calling function \'%s\'.' % (func.__name__))

    # Make sure the molecule the user provided is the active one
    if 'molecule' in kwargs:
        activate(kwargs['molecule'])
        del kwargs['molecule']
    molecule = psi4.get_active_molecule()
    molecule.update_geometry()
    psi4.set_global_option("BASIS", psi4.get_global_option("BASIS"))

    # N-body run configuration
    bsse = 'on'
    if 'bsse' in kwargs:
        bsse = kwargs['bsse']

    max_n_body = molecule.nfragments()
    if 'max_n_body' in kwargs:
        max_n_body = kwargs['max_n_body']

    do_total = False
    if 'do_total' in kwargs:
        do_total = kwargs['do_total']

    external = None
    external_indices = []
    if 'external' in kwargs:
        external = kwargs['external']
        external_indices = [molecule.nfragments()]
        if 'external_monomers' in kwargs:
            external_indices = kwargs['external_monomers']

    # Check input args
    if not bsse == 'off' and not bsse == 'on' and not bsse == 'both':
        raise ValidationError('n_body: bsse argument is one of on, off, or both')
    if max_n_body < 1:
        raise ValidationError('n_body: max_n_body must be at least 1')
    if max_n_body > molecule.nfragments():
        raise ValidationError('n_body: max_n_body must be <= to the number of fragments in the molecule')

    # Set to save RI integrals for repeated full-basis computations
    ri_ints_io = psi4.get_global_option('DF_INTS_IO')
    # inquire if above at all applies to dfmp2 or just scf
    psi4.set_global_option('DF_INTS_IO', 'SAVE')
    psioh = psi4.IOManager.shared_object()
    psioh.set_specific_retention(97, True)

    # Tell 'em what you're gonna tell 'em
    has_external = 'No'
    if (external):
        has_external = 'Yes'
    psi4.print_out('\n')
    psi4.print_out('    ==> N-Body Interaction Energy Analysis <==\n\n')
    psi4.print_out('        BSSE Treatment:              %s\n' % (bsse))
    psi4.print_out('        Maximum N-Body Interactions: %d\n' % (max_n_body))
    psi4.print_out('        Compute Total Energy:        %s\n' % (do_total))
    psi4.print_out('        External Field:              %s\n' % (has_external))
    if (external):
        psi4.print_out('        External Field Monomers:     ')
        for k in external_indices:
            psi4.print_out('%-3d ' % (k))
        psi4.print_out('\n')
    psi4.print_out('\n')

    # Run the total molecule, if required
    energies_full = {}
    energies_mon = {}
    N = molecule.nfragments()
    Etotal = 0.0
    if do_total or max_n_body == molecule.nfragments():
        psi4.print_out('    => Total Cluster Energy <=\n')
        # Full cluster always gets the external field
        if (external):
            psi4.set_global_option_python("EXTERN", external)
        Etotal = call_function_in_1st_argument(func, **kwargs)
        if (external):
            psi4.set_global_option_python("EXTERN", None)
        energies_full[N] = []
        energies_full[N].append(Etotal)
        energies_mon[N] = []
        energies_mon[N].append(Etotal)
        psi4.set_global_option('DF_INTS_IO', 'LOAD')
        psi4.clean()

    max_effective = max_n_body
    if (max_effective == N):
        max_effective = N - 1

    # Build the combos for indexing purposes
    Ns = []
    if (max_n_body == N or do_total):
        Ns.append(N)
    for n in range(max_effective, 0, -1):
        Ns.append(n)

    combos = {}
    for n in Ns:

        combos[n] = []

        # Loop through combinations in lexical order #

        # initialize the reals list
        reals = []
        #setup first combination [3,2,1] lexical ordering
        #fragments indexing is 1's based, bloody hell
        for index in range(n, 0, -1):
            reals.append(index)
        #start loop through lexical promotion
        counter = 0
        while True:

            counter = counter + 1

            # Append the current combo
            combos[n].append(copy.deepcopy(reals))

            #reset rank
            rank = 0

            #look for lexical promotion opportunity
            #i.e.: [4 2 1] has a promotion opportunity at
            # index 1 to produce [4 3 1]
            for k in range(n - 2, -1, -1):
                if (reals[k] != reals[k + 1] + 1):
                    rank = k + 1
                    break

            #do the promotion
            reals[rank] = reals[rank] + 1

            #demote the right portion of the register
            val = 1
            for k in range(n - 1, rank, -1):
                reals[k] = val
                val = val + 1

            #boundary condition is promotion into
            #[nfrag+1 nfrag-1 ...]
            if (reals[0] > N):
                break

    # Hack for external
    externNone = psi4.ExternalPotential()

    # Run the clusters in the full basis
    if bsse == 'on' or bsse == 'both':
        for n in range(max_effective, 0, -1):
            energies_full[n] = []
            clusters = extract_clusters(molecule, True, n)
            for k in range(len(clusters)):
                activate(clusters[k])
                # Do the external field for this cluster or not?
                if (external):
                    do_extern = False
                    for mon in combos[n][k]:
                        if (mon in external_indices):
                            do_extern = True
                            break
                    if do_extern:
                        psi4.set_global_option_python("EXTERN", external)
                psi4.print_out('\n    => Cluster (N-Body %4d, Combination %4d) Energy (Full Basis) <=\n' % (n, k + 1))
                energies_full[n].append(call_function_in_1st_argument(func, **kwargs))
                # Turn the external field off
                if (external):
                    psi4.set_global_option_python("EXTERN", externNone)
                psi4.set_global_option('DF_INTS_IO', 'LOAD')
                psi4.clean()

    # Run the clusters in the minimal cluster bases
    psi4.set_global_option('DF_INTS_IO', 'NONE')
    if bsse == 'off' or bsse == 'both':
        for n in range(max_effective, 0, -1):
            energies_mon[n] = []
            clusters = extract_clusters(molecule, False, n)
            for k in range(len(clusters)):
                activate(clusters[k])
                # Do the external field for this cluster or not?
                if (external):
                    do_extern = False
                    for mon in combos[n][k]:
                        if (mon in external_indices):
                            do_extern = True
                            break
                    if do_extern:
                        psi4.set_global_option_python("EXTERN", external)
                psi4.print_out('\n    => Cluster (N-Body %4d, Combination %4d) Energy (Cluster Basis) <=\n' % (n, k + 1))
                energies_mon[n].append(call_function_in_1st_argument(func, **kwargs))
                # Turn the external field off
                if (external):
                    psi4.set_global_option_python("EXTERN", externNone)
                psi4.clean()

    # Report the energies
    psi4.print_out('\n    ==> N-Body Interaction Energy Analysis: Combination Definitions <==\n\n')

    psi4.print_out('     %6s %6s | %-24s\n' % ("N-Body", "Combo", "Monomers"))
    for n in Ns:
        for k in range(len(combos[n])):
            psi4.print_out('     %6d %6d | ' % (n, k + 1))
            for l in combos[n][k]:
                psi4.print_out('%-3d ' % (l))
            psi4.print_out('\n')
    psi4.print_out('\n')

    psi4.print_out('    ==> N-Body Interaction Energy Analysis: Total Energies <==\n\n')

    if bsse == 'on' or bsse == 'both':
        psi4.print_out('     => Full Basis Set Results <=\n\n')
        psi4.print_out('     %6s %6s %24s %24s\n' % ("N-Body", "Combo", "E [H]", "E [kcal mol^-1]"))
        for n in Ns:
            for k in range(len(energies_full[n])):
                psi4.print_out('     %6d %6d %24.16E %24.16E\n' % (n, k + 1, energies_full[n][k],
                   p4const.psi_hartree2kcalmol * energies_full[n][k]))
        psi4.print_out('\n')

    if bsse == 'off' or bsse == 'both':
        psi4.print_out('     => Cluster Basis Set Results <=\n\n')
        psi4.print_out('     %6s %6s %24s %24s\n' % ("N-Body", "Combo", "E [H]", "E [kcal mol^-1]"))
        for n in Ns:
            for k in range(len(energies_mon[n])):
                psi4.print_out('     %6d %6d %24.16E %24.16E\n' % (n, k + 1, energies_mon[n][k],
                   p4const.psi_hartree2kcalmol * energies_mon[n][k]))
        psi4.print_out('\n')

    if bsse == 'both':
        psi4.print_out('     => BSSE Results <=\n\n')
        psi4.print_out('     %6s %6s %24s %24s\n' % ("N-Body", "Combo", "Delta E [H]", "Delta E [kcal mol^-1]"))
        for n in Ns:
            for k in range(len(energies_mon[n])):
                psi4.print_out('     %6d %6d %24.16E %24.16E\n' % (n, k + 1, energies_full[n][k] - energies_mon[n][k],
                   p4const.psi_hartree2kcalmol * (energies_full[n][k] - energies_mon[n][k])))
        psi4.print_out('\n')

    psi4.print_out('    ==> N-Body Interaction Energy Analysis: N-Body Energies <==\n\n')

    if bsse == 'on' or bsse == 'both':
        psi4.print_out('     => Full Basis Set Results <=\n\n')
        psi4.print_out('     %6s %6s %24s %24s\n' % ("N-Body", "Combo", "E [H]", "E [kcal mol^-1]"))
        energies_n_full = {}
        for n in Ns:
            if n == 1:
                continue
            En = 0.0
            for k in range(len(energies_full[n])):
                E = energies_full[n][k]
                for l in range(len(combos[n][k])):
                    E -= energies_full[1][combos[n][k][l] - 1]
                psi4.print_out('     %6d %6d %24.16E %24.16E\n' % (n, k + 1, E, p4const.psi_hartree2kcalmol * E))
                En += E
            energies_n_full[n] = En
        for n in Ns:
            if n == 1:
                continue
            nn = molecule.nfragments() - 2
            kk = n - 2
            energies_n_full[n] /= (math.factorial(nn) / (math.factorial(kk) * math.factorial(nn - kk)))
            psi4.print_out('     %6d %6s %24.16E %24.16E\n' % (n, 'Total', energies_n_full[n],
               p4const.psi_hartree2kcalmol * energies_n_full[n]))
        psi4.print_out('\n')

    if bsse == 'off' or bsse == 'both':
        psi4.print_out('     => Cluster Basis Set Results <=\n\n')
        psi4.print_out('     %6s %6s %24s %24s\n' % ("N-Body", "Combo", "E [H]", "E [kcal mol^-1]"))
        energies_n_mon = {}
        for n in Ns:
            if n == 1:
                continue
            En = 0.0
            for k in range(len(energies_mon[n])):
                E = energies_mon[n][k]
                for l in range(len(combos[n][k])):
                    E -= energies_mon[1][combos[n][k][l] - 1]
                psi4.print_out('     %6d %6d %24.16E %24.16E\n' % (n, k + 1, E, p4const.psi_hartree2kcalmol * E))
                En += E
            energies_n_mon[n] = En
        for n in Ns:
            if n == 1:
                continue
            nn = molecule.nfragments() - 2
            kk = n - 2
            energies_n_mon[n] /= (math.factorial(nn) / (math.factorial(kk) * math.factorial(nn - kk)))
            psi4.print_out('     %6d %6s %24.16E %24.16E\n' % (n, 'Total', energies_n_mon[n],
               p4const.psi_hartree2kcalmol * energies_n_mon[n]))
        psi4.print_out('\n')

    if bsse == 'both':
        psi4.print_out('     => BSSE Results <=\n\n')
        psi4.print_out('     %6s %6s %24s %24s\n' % ("N-Body", "Combo", "Delta E [H]", "Delta E [kcal mol^-1]"))
        energies_n_bsse = {}
        for n in Ns:
            if n == 1:
                continue
            En = 0.0
            for k in range(len(energies_mon[n])):
                E = energies_full[n][k] - energies_mon[n][k]
                for l in range(len(combos[n][k])):
                    E -= energies_full[1][combos[n][k][l] - 1]
                    E += energies_mon[1][combos[n][k][l] - 1]
                psi4.print_out('     %6d %6d %24.16E %24.16E\n' % (n, k + 1, E, p4const.psi_hartree2kcalmol * E))
                En += E
            energies_n_bsse[n] = En
        for n in Ns:
            if n == 1:
                continue
            nn = molecule.nfragments() - 2
            kk = n - 2
            energies_n_bsse[n] /= (math.factorial(nn) / (math.factorial(kk) * math.factorial(nn - kk)))
            psi4.print_out('     %6d %6s %24.16E %24.16E\n' % (n, 'Total', energies_n_bsse[n],
               p4const.psi_hartree2kcalmol * energies_n_bsse[n]))
        psi4.print_out('\n')

    psi4.print_out('    ==> N-Body Interaction Energy Analysis: Non-Additivities <==\n\n')

    if bsse == 'on' or bsse == 'both':
        energies_n_full[1] = 0.0
        psi4.print_out('     => Full Basis Set Results <=\n\n')
        psi4.print_out('     %6s %24s %24s\n' % ("N-Body", "E [H]", "E [kcal mol^-1]"))
        for k in range(len(Ns)):
            n = Ns[k]
            if n == 1:
                continue
            E = energies_n_full[Ns[k]] - energies_n_full[Ns[k + 1]]
            psi4.print_out('     %6s %24.16E %24.16E\n' % (n, E, p4const.psi_hartree2kcalmol * E))
        psi4.print_out('\n')

    if bsse == 'off' or bsse == 'both':
        energies_n_mon[1] = 0.0
        psi4.print_out('     => Cluster Basis Set Results <=\n\n')
        psi4.print_out('     %6s %24s %24s\n' % ("N-Body", "E [H]", "E [kcal mol^-1]"))
        for k in range(len(Ns)):
            n = Ns[k]
            if n == 1:
                continue
            E = energies_n_mon[Ns[k]] - energies_n_mon[Ns[k + 1]]
            psi4.print_out('     %6s %24.16E %24.16E\n' % (n, E, p4const.psi_hartree2kcalmol * E))
        psi4.print_out('\n')

    if bsse == 'both':
        energies_n_bsse[1] = 0.0
        psi4.print_out('     => BSSE Results <=\n\n')
        psi4.print_out('     %6s %24s %24s\n' % ("N-Body", "Delta E [H]", "Delta E [kcal mol^-1]"))
        for k in range(len(Ns)):
            n = Ns[k]
            if n == 1:
                continue
            E = energies_n_bsse[Ns[k]] - energies_n_bsse[Ns[k + 1]]
            psi4.print_out('     %6s %24.16E %24.16E\n' % (n, E, p4const.psi_hartree2kcalmol * E))
        psi4.print_out('\n')

    # Put everything back the way it was
    psi4.set_global_option('DF_INTS_IO', ri_ints_io)
    psioh.set_specific_retention(97, False)
    psi4.clean()
    activate(molecule)

    if bsse == 'on' or bsse == 'both':
        return energies_n_full[Ns[0]]
    else:
        return energies_n_mon[Ns[0]]

##  Aliases  ##
nbody = n_body

#####################
##  End of n_body  ##
#####################


###################
##  Start of cp  ##
###################

def cp(name, **kwargs):
    r"""The cp function computes counterpoise-corrected two-body interaction energies
    for complexes composed of arbitrary numbers of monomers.

    :aliases: counterpoise_correct(), counterpoise_correction()

    :returns: (*float*) Counterpoise-corrected interaction energy in Hartrees.

    :PSI variables:

    .. hlist::
       :columns: 1

       * :psivar:`CP-CORRECTED 2-BODY INTERACTION ENERGY <CP-CORRECTED2-BODYINTERACTIONENERGY>`
       * :psivar:`UNCP-CORRECTED 2-BODY INTERACTION ENERGY <UNCP-CORRECTED2-BODYINTERACTIONENERGY>`

    .. caution:: Some features are not yet implemented. Buy a developer a coffee.

       - No values of func besides energy have been tested.

       - Table print-out needs improving. Add some PSI variables.

    :type name: string
    :param name: ``'scf'`` || ``'ccsd(t)'`` || etc.

        First argument, usually unlabeled. Indicates the computational method
        to be applied to the molecule. May be any valid argument to
        :py:func:`~driver.energy`; however, SAPT is not appropriate.

    :type func: :ref:`function <op_py_function>`
    :param func: |dl| ``energy`` |dr| || ``optimize`` || ``cbs``

        Indicates the type of calculation to be performed on the molecule
        and each of its monomers. The default performs a single-point
        ``energy('name')``, while ``optimize`` perfoms a geometry optimization
        on each system, and ``cbs`` performs a compound single-point energy.
        If a nested series of python functions is intended
        (see :ref:`sec:intercalls`), use keyword ``cp_func`` instead of ``func``.

    :type check_bsse: :ref:`boolean <op_py_boolean>`
    :param check_bsse: ``'on'`` || |dl| ``'off'`` |dr|

        Indicates whether to additionally compute un-counterpoise corrected
        monomers and thus obtain an estimate for the basis set superposition error.

    :type molecule: :ref:`molecule <op_py_molecule>`
    :param molecule: ``h2o`` || etc.

        The target molecule, if not the last molecule defined.

    :examples:

    >>> # [1] counterpoise-corrected mp2 interaction energy
    >>> cp('df-mp2')

    """
    lowername = name.lower()
    kwargs = p4util.kwargs_lower(kwargs)

    # Wrap any positional arguments into kwargs (for intercalls among wrappers)
    if not('name' in kwargs) and name:
        kwargs['name'] = name.lower()

    # Establish function to call
    if not('cp_func' in kwargs):
        if ('func' in kwargs):
            kwargs['cp_func'] = kwargs['func']
            del kwargs['func']
        else:
            kwargs['cp_func'] = energy
    func = kwargs['cp_func']
    if not func:
        raise ValidationError('Function \'%s\' does not exist to be called by wrapper counterpoise_correct.' % (func.__name__))
    if (func is db):
        raise ValidationError('Wrapper counterpoise_correct is unhappy to be calling function \'%s\'.' % (func.__name__))

    if 'check_bsse' in kwargs and yes.match(str(kwargs['check_bsse'])):
        check_bsse = True
    else:
        check_bsse = False

    # Make sure the molecule the user provided is the active one
    if 'molecule' in kwargs:
        activate(kwargs['molecule'])
        del kwargs['molecule']
    molecule = psi4.get_active_molecule()
    molecule.update_geometry()
    psi4.set_global_option("BASIS", psi4.get_global_option("BASIS"))

    df_ints_io = psi4.get_global_option('DF_INTS_IO')
    # inquire if above at all applies to dfmp2 or just scf
    psi4.set_global_option('DF_INTS_IO', 'SAVE')
    psioh = psi4.IOManager.shared_object()
    psioh.set_specific_retention(97, True)

    activate(molecule)
    molecule.update_geometry()

    psi4.print_out("\n")
    p4util.banner("CP Computation: Complex.\nFull Basis Set.")
    psi4.print_out("\n")
    e_dimer = call_function_in_1st_argument(func, **kwargs)
    #e_dimer = energy(name, **kwargs)

    psi4.clean()
    psi4.set_global_option('DF_INTS_IO', 'LOAD')

    # All monomers with ghosts
    monomers = extract_clusters(molecule, True, 1)
    e_monomer_full = []

    cluster_n = 0
    for cluster in monomers:
        activate(cluster)
        psi4.print_out("\n")
        p4util.banner(("CP Computation: Monomer %d.\n Full Basis Set." % (cluster_n + 1)))
        psi4.print_out("\n")
        e_monomer_full.append(call_function_in_1st_argument(func, **kwargs))
        #e_monomer_full.append(energy(name,**kwargs))
        cluster_n = cluster_n + 1
        psi4.clean()

    psi4.set_global_option('DF_INTS_IO', 'NONE')
    if (check_bsse):
        # All monomers without ghosts
        monomers = extract_clusters(molecule, False, 1)
        e_monomer_bsse = []

        cluster_n = 0
        for cluster in monomers:
            activate(cluster)
            psi4.print_out("\n")
            #cluster.print_to_output()
            p4util.banner(("CP Computation: Monomer %d.\n Monomer Set." % (cluster_n + 1)))
            psi4.print_out("\n")
            e_monomer_bsse.append(call_function_in_1st_argument(func, **kwargs))
            #e_monomer_bsse.append(energy(name,**kwargs))
            cluster_n = cluster_n + 1

    psi4.set_global_option('DF_INTS_IO', df_ints_io)
    psioh.set_specific_retention(97, False)

    activate(molecule)

    if (check_bsse == False):
        cp_table = p4util.Table(rows=["System:"], cols=["Energy (full):"])
        cp_table["Complex"] = [e_dimer]
        for cluster_n in range(0, len(monomers)):
            key = "Monomer %d" % (cluster_n + 1)
            cp_table[key] = [e_monomer_full[cluster_n]]

        e_full = e_dimer
        for cluster_n in range(0, len(monomers)):
            e_full = e_full - e_monomer_full[cluster_n]
        cp_table["Interaction"] = [e_full]

        psi4.set_variable('CP-CORRECTED 2-BODY INTERACTION ENERGY', e_full)

    else:
        cp_table = Table(rows=["System:"], cols=["Energy (full):", "Energy (monomer):", "BSSE:"])
        cp_table["Complex"] = [e_dimer, 0.0, 0.0]
        for cluster_n in range(0, len(monomers)):
            key = "Monomer %d" % (cluster_n + 1)
            cp_table[key] = [e_monomer_full[cluster_n], e_monomer_bsse[cluster_n], \
                e_monomer_full[cluster_n] - e_monomer_bsse[cluster_n]]

        e_full = e_dimer
        e_bsse = e_dimer
        for cluster_n in range(0, len(monomers)):
            e_full = e_full - e_monomer_full[cluster_n]
            e_bsse = e_bsse - e_monomer_bsse[cluster_n]
        cp_table["Totals:"] = [e_full, e_bsse, e_full - e_bsse]

        psi4.set_variable('UNCP-CORRECTED 2-BODY INTERACTION ENERGY', e_full)

    psi4.print_out("\n")
    p4util.banner("CP Computation: Results.")
    psi4.print_out("\n")

    p4util.banner("Hartree", 2)
    psi4.print_out("\n")

    psi4.print_out(str(cp_table))

    psi4.print_out("\n")
    p4util.banner("kcal*mol^-1", 2)
    psi4.print_out("\n")

    cp_table.scale()

    psi4.print_out(str(cp_table))
    return e_full

##  Aliases  ##
counterpoise_correct = cp
counterpoise_correction = cp

#################
##  End of cp  ##
#################


#########################
##  Start of Database  ##
#########################

DB_RGT = {}
DB_RXN = {}

def database(name, db_name, **kwargs):
    r"""Function to access the molecule objects and reference energies of
    popular chemical databases.

    :aliases: db()

    :returns: (*float*) Mean absolute deviation of the database in kcal/mol

    :PSI variables:

    .. hlist::
       :columns: 1

       * :psivar:`db_name DATABASE MEAN SIGNED DEVIATION <db_nameDATABASEMEANSIGNEDDEVIATION>`
       * :psivar:`db_name DATABASE MEAN ABSOLUTE DEVIATION <db_nameDATABASEMEANABSOLUTEDEVIATION>`
       * :psivar:`db_name DATABASE ROOT-MEAN-SQUARE DEVIATION <db_nameDATABASEROOT-MEAN-SQUARESIGNEDDEVIATION>`
       * Python dictionaries of results accessible as ``DB_RGT`` and ``DB_RXN``.

    .. note:: It is very easy to make a database from a collection of xyz files
        using the script :source:`lib/scripts/ixyz2database.pl`.
        See :ref:`sec:createDatabase` for details.

    .. caution:: Some features are not yet implemented. Buy a developer some coffee.

       - In sow/reap mode, use only global options (e.g., the local option set by ``set scf scf_type df`` will not be respected).

    .. note:: To access a database that is not embedded in a |PSIfour|
        distribution, add the path to the directory containing the database
        to the environment variable :envvar:`PYTHONPATH`.

    :type name: string
    :param name: ``'scf'`` || ``'sapt0'`` || ``'ccsd(t)'`` || etc.

        First argument, usually unlabeled. Indicates the computational method
        to be applied to the database. May be any valid argument to
        :py:func:`~driver.energy`.

    :type db_name: string
    :param db_name: ``'BASIC'`` || ``'S22'`` || ``'HTBH'`` || etc.

        Second argument, usually unlabeled. Indicates the requested database
        name, matching (case insensitive) the name of a python file in
        ``psi4/lib/databases`` or :envvar:`PYTHONPATH`.  Consult that
        directory for available databases and literature citations.

    :type func: :ref:`function <op_py_function>`
    :param func: |dl| ``energy`` |dr| || ``optimize`` || ``cbs``

        Indicates the type of calculation to be performed on each database
        member. The default performs a single-point ``energy('name')``, while
        ``optimize`` perfoms a geometry optimization on each reagent, and
        ``cbs`` performs a compound single-point energy. If a nested series
        of python functions is intended (see :ref:`sec:intercalls`), use
        keyword ``db_func`` instead of ``func``.

    :type mode: string
    :param mode: |dl| ``'continuous'`` |dr| || ``'sow'`` || ``'reap'``

        Indicates whether the calculations required to complete the
        database are to be run in one file (``'continuous'``) or are to be
        farmed out in an embarrassingly parallel fashion
        (``'sow'``/``'reap'``).  For the latter, run an initial job with
        ``'sow'`` and follow instructions in its output file.

    :type cp: :ref:`boolean <op_py_boolean>`
    :param cp: ``'on'`` || |dl| ``'off'`` |dr|

        Indicates whether counterpoise correction is employed in computing
        interaction energies. Use this option and NOT the :py:func:`~wrappers.cp`
        function for BSSE correction in database().  Option available
        (See :ref:`sec:availableDatabases`) only for databases of bimolecular complexes.

    :type rlxd: :ref:`boolean <op_py_boolean>`
    :param rlxd: ``'on'`` || |dl| ``'off'`` |dr|

        Indicates whether correction for deformation energy is
        employed in computing interaction energies.  Option available
        (See :ref:`sec:availableDatabases`) only for databases of bimolecular complexes
        with non-frozen monomers, e.g., HBC6.

    :type symm: :ref:`boolean <op_py_boolean>`
    :param symm: |dl| ``'on'`` |dr| || ``'off'``

        Indicates whether the native symmetry of the database reagents is
        employed (``'on'``) or whether it is forced to :math:`C_1` symmetry
        (``'off'``). Some computational methods (e.g., SAPT) require no
        symmetry, and this will be set by database().

    :type zpe: :ref:`boolean <op_py_boolean>`
    :param zpe: ``'on'`` || |dl| ``'off'`` |dr|

        Indicates whether zero-point-energy corrections are appended to
        single-point energy values. Option valid only for certain
        thermochemical databases. Disabled until Hessians ready.

    :type benchmark: string
    :param benchmark: |dl| ``'default'`` |dr| || ``'S22A'`` || etc.

        Indicates whether a non-default set of reference energies, if
        available (See :ref:`sec:availableDatabases`), are employed for the
        calculation of error statistics.

    :type tabulate: array of strings
    :param tabulate: |dl| ``[]`` |dr| || ``['scf total energy', 'natom']`` || etc.

        Indicates whether to form tables of variables other than the
        primary requested energy.  Available for any PSI variable.

    :type subset: string or array of strings
    :param subset:

        Indicates a subset of the full database to run. This is a very
        flexible option and can be used in three distinct ways, outlined
        below. Note that two take a string and the last takes an array.
        See `Available Databases`_ for available values.

        * ``'small'`` || ``'large'`` || ``'equilibrium'``
            Calls predefined subsets of the requested database, either
            ``'small'``, a few of the smallest database members,
            ``'large'``, the largest of the database members, or
            ``'equilibrium'``, the equilibrium geometries for a database
            composed of dissociation curves.
        * ``'BzBz_S'`` || ``'FaOOFaON'`` || ``'ArNe'`` ||  ``'HB'`` || etc.
            For databases composed of dissociation curves, or otherwise
            divided into subsets, individual curves and subsets can be
            called by name. Consult the database python files for available
            molecular systems (case insensitive).
        * ``[1,2,5]`` || ``['1','2','5']`` || ``['BzMe-3.5', 'MeMe-5.0']`` || etc.
            Specify a list of database members to run. Consult the
            database python files for available molecular systems.  This
            is the only portion of database input that is case sensitive;
            choices for this keyword must match the database python file.

    :examples:

    >>> # [1] Two-stage SCF calculation on short, equilibrium, and long helium dimer
    >>> db('scf','RGC10',cast_up='sto-3g',subset=['HeHe-0.85','HeHe-1.0','HeHe-1.5'], tabulate=['scf total energy','natom'])

    >>> # [2] Counterpoise-corrected interaction energies for three complexes in S22
    >>> #     Error statistics computed wrt an old benchmark, S22A
    >>> database('df-mp2','S22',cp=1,subset=[16,17,8],benchmark='S22A')

    >>> # [3] SAPT0 on the neon dimer dissociation curve
    >>> db('sapt0',subset='NeNe',cp=0,symm=0,db_name='RGC10')

    >>> # [4] Optimize system 1 in database S22, producing tables of scf and mp2 energy
    >>> db('mp2','S22',db_func=optimize,subset=[1], tabulate=['mp2 total energy','current energy'])

    >>> # [5] CCSD on the smallest systems of HTBH, a hydrogen-transfer database
    >>> database('ccsd','HTBH',subset='small', tabulate=['ccsd total energy', 'mp2 total energy'])

    """
    lowername = name.lower()
    kwargs = p4util.kwargs_lower(kwargs)

    # Wrap any positional arguments into kwargs (for intercalls among wrappers)
    if not('name' in kwargs) and name:
        kwargs['name'] = name.lower()
    if not('db_name' in kwargs) and db_name:
        kwargs['db_name'] = db_name

    # Establish function to call
    if not('db_func' in kwargs):
        if ('func' in kwargs):
            kwargs['db_func'] = kwargs['func']
            del kwargs['func']
        else:
            kwargs['db_func'] = energy
    func = kwargs['db_func']
    if not func:
        raise ValidationError('Function \'%s\' does not exist to be called by wrapper database.' % (func.__name__))
    if (func is cp):
        raise ValidationError('Wrapper database is unhappy to be calling function \'%s\'. Use the cp keyword within database instead.' % (func.__name__))

    # Define path and load module for requested database
    sys.path.append('%sdatabases' % (psi4.Process.environment["PSIDATADIR"]))
    sys.path.append('%s/lib/databases' % psi4.psi_top_srcdir())
    database = p4util.import_ignorecase(db_name)
    if database is None:
        psi4.print_out('\nPython module for database %s failed to load\n\n' % (db_name))
        psi4.print_out('\nSearch path that was tried:\n')
        psi4.print_out(", ".join(map(str, sys.path)))
        raise ValidationError("Python module loading problem for database " + str(db_name))
    else:
        dbse = database.dbse
        HRXN = database.HRXN
        ACTV = database.ACTV
        RXNM = database.RXNM
        BIND = database.BIND
        TAGL = database.TAGL
        GEOS = database.GEOS
        try:
            DATA = database.DATA
        except AttributeError:
            DATA = {}

    # Must collect (here) and set (below) basis sets after every new molecule activation
    user_basis = psi4.get_global_option('BASIS')
    user_df_basis_scf = psi4.get_global_option('DF_BASIS_SCF')
    user_df_basis_mp2 = psi4.get_global_option('DF_BASIS_MP2')
    user_df_basis_sapt = psi4.get_global_option('DF_BASIS_SAPT')
    user_df_basis_elst = psi4.get_global_option('DF_BASIS_ELST')

    user_writer_file_label = psi4.get_global_option('WRITER_FILE_LABEL')

    b_user_reference = psi4.has_global_option_changed('REFERENCE')
    user_reference = psi4.get_global_option('REFERENCE')
    user_memory = psi4.get_memory()

    user_molecule = psi4.get_active_molecule()

    # Configuration based upon e_name & db_name options
    #   Force non-supramolecular if needed
    if re.match(r'^sapt', lowername) or re.match(r'^.*sapt', lowername):
        try:
            database.ACTV_SA
        except AttributeError:
            raise ValidationError('Database %s not suitable for non-supramolecular calculation.' % (db_name))
        else:
            ACTV = database.ACTV_SA
    #   Force open-shell if needed
    openshell_override = 0
    if (user_reference == 'RHF') or (user_reference == 'RKS'):
        try:
            database.isOS
        except AttributeError:
            pass
        else:
            if yes.match(str(database.isOS)):
                openshell_override = 1
                psi4.print_out('\nSome reagents in database %s require an open-shell reference; will be reset to UHF/UKS as needed.\n' % (db_name))

    # Configuration based upon database keyword options
    #   Option symmetry- whether symmetry treated normally or turned off (currently req'd for dfmp2 & dft)
    db_symm = 'yes'
    if 'symm' in kwargs:
        db_symm = kwargs['symm']

    symmetry_override = 0
    if no.match(str(db_symm)):
        symmetry_override = 1
    elif yes.match(str(db_symm)):
        pass
    else:
        raise ValidationError('Symmetry mode \'%s\' not valid.' % (db_symm))

    #   Option mode of operation- whether db run in one job or files farmed out
    if not('db_mode' in kwargs):
        if ('mode' in kwargs):
            kwargs['db_mode'] = kwargs['mode']
            del kwargs['mode']
        else:
            kwargs['db_mode'] = 'continuous'
    db_mode = kwargs['db_mode']

    if (db_mode.lower() == 'continuous'):
        pass
    elif (db_mode.lower() == 'sow'):
        pass
    elif (db_mode.lower() == 'reap'):
        if 'linkage' in kwargs:
            db_linkage = kwargs['linkage']
        else:
            raise ValidationError('Database execution mode \'reap\' requires a linkage option.')
    else:
        raise ValidationError('Database execution mode \'%s\' not valid.' % (db_mode))

    #   Option counterpoise- whether for interaction energy databases run in bsse-corrected or not
    db_cp = 'no'
    if 'cp' in kwargs:
        db_cp = kwargs['cp']

    if yes.match(str(db_cp)):
        try:
            database.ACTV_CP
        except AttributeError:
            raise ValidationError('Counterpoise correction mode \'yes\' invalid for database %s.' % (db_name))
        else:
            ACTV = database.ACTV_CP
    elif no.match(str(db_cp)):
        pass
    else:
        raise ValidationError('Counterpoise correction mode \'%s\' not valid.' % (db_cp))

    #   Option relaxed- whether for non-frozen-monomer interaction energy databases include deformation correction or not?
    db_rlxd = 'no'
    if 'rlxd' in kwargs:
        db_rlxd = kwargs['rlxd']

    if yes.match(str(db_rlxd)):
        if yes.match(str(db_cp)):
            try:
                database.ACTV_CPRLX
                database.RXNM_CPRLX
            except AttributeError:
                raise ValidationError('Deformation and counterpoise correction mode \'yes\' invalid for database %s.' % (db_name))
            else:
                ACTV = database.ACTV_CPRLX
                RXNM = database.RXNM_CPRLX
        elif no.match(str(db_cp)):
            try:
                database.ACTV_RLX
            except AttributeError:
                raise ValidationError('Deformation correction mode \'yes\' invalid for database %s.' % (db_name))
            else:
                ACTV = database.ACTV_RLX
    elif no.match(str(db_rlxd)):
        pass
    else:
        raise ValidationError('Deformation correction mode \'%s\' not valid.' % (db_rlxd))

    #   Option zero-point-correction- whether for thermochem databases jobs are corrected by zpe
    db_zpe = 'no'
    if 'zpe' in kwargs:
        db_zpe = kwargs['zpe']

    if yes.match(str(db_zpe)):
        raise ValidationError('Zero-point-correction mode \'yes\' not yet implemented.')
    elif no.match(str(db_zpe)):
        pass
    else:
        raise ValidationError('Zero-point-correction \'mode\' %s not valid.' % (db_zpe))

    #   Option benchmark- whether error statistics computed wrt alternate reference energies
    db_benchmark = 'default'
    if 'benchmark' in kwargs:
        db_benchmark = kwargs['benchmark']

        if (db_benchmark.lower() == 'default'):
            pass
        else:
            BIND = p4util.getattr_ignorecase(database, 'BIND_' + db_benchmark)
            if BIND is None:
                raise ValidationError('Special benchmark \'%s\' not available for database %s.' % (db_benchmark, db_name))

    #   Option tabulate- whether tables of variables other than primary energy method are formed
    db_tabulate = []
    if 'tabulate' in kwargs:
        db_tabulate = kwargs['tabulate']

    #   Option subset- whether all of the database or just a portion is run
    db_subset = HRXN
    if 'subset' in kwargs:
        db_subset = kwargs['subset']

    if isinstance(db_subset, basestring):
        if (db_subset.lower() == 'small'):
            try:
                database.HRXN_SM
            except AttributeError:
                raise ValidationError('Special subset \'small\' not available for database %s.' % (db_name))
            else:
                HRXN = database.HRXN_SM
        elif (db_subset.lower() == 'large'):
            try:
                database.HRXN_LG
            except AttributeError:
                raise ValidationError('Special subset \'large\' not available for database %s.' % (db_name))
            else:
                HRXN = database.HRXN_LG
        elif (db_subset.lower() == 'equilibrium'):
            try:
                database.HRXN_EQ
            except AttributeError:
                raise ValidationError('Special subset \'equilibrium\' not available for database %s.' % (db_name))
            else:
                HRXN = database.HRXN_EQ
        else:
            HRXN = p4util.getattr_ignorecase(database, db_subset)
            if HRXN is None:
                HRXN = p4util.getattr_ignorecase(database, 'HRXN_' + db_subset)
                if HRXN is None:
                    raise ValidationError('Special subset \'%s\' not available for database %s.' % (db_subset, db_name))
    else:
        temp = []
        for rxn in db_subset:
            if rxn in HRXN:
                temp.append(rxn)
            else:
                raise ValidationError('Subset element \'%s\' not a member of database %s.' % (str(rxn), db_name))
        HRXN = temp

    temp = []
    for rxn in HRXN:
        temp.append(ACTV['%s-%s' % (dbse, rxn)])
    HSYS = p4util.drop_duplicates(sum(temp, []))

    # Sow all the necessary reagent computations
    psi4.print_out("\n\n")
    p4util.banner(("Database %s Computation" % (db_name)))
    psi4.print_out("\n")

    #   write index of calcs to output file
    if (db_mode.lower() == 'continuous'):
        instructions = """\n    The database single-job procedure has been selected through mode='continuous'.\n"""
        instructions += """    Calculations for the reagents will proceed in the order below and will be followed\n"""
        instructions += """    by summary results for the database.\n\n"""
        for rgt in HSYS:
            instructions += """                    %-s\n""" % (rgt)
        instructions += """\n    Alternatively, a farming-out of the database calculations may be accessed through\n"""
        instructions += """    the database wrapper option mode='sow'/'reap'.\n\n"""
        psi4.print_out(instructions)

    #   write sow/reap instructions and index of calcs to output file and reap input file
    if (db_mode.lower() == 'sow'):
        instructions = """\n    The database sow/reap procedure has been selected through mode='sow'. In addition\n"""
        instructions += """    to this output file (which contains no quantum chemical calculations), this job\n"""
        instructions += """    has produced a number of input files (%s-*.in) for individual database members\n""" % (dbse)
        instructions += """    and a single input file (%s-master.in) with a database(mode='reap') command.\n""" % (dbse)
        instructions += """    The former may look very peculiar since processed and pickled python rather than\n"""
        instructions += """    raw input is written. Follow the instructions below to continue.\n\n"""
        instructions += """    (1)  Run all of the %s-*.in input files on any variety of computer architecture.\n""" % (dbse)
        instructions += """       The output file names must be as given below.\n\n"""
        for rgt in HSYS:
            instructions += """             psi4 -i %-27s -o %-27s\n""" % (rgt + '.in', rgt + '.out')
        instructions += """\n    (2)  Gather all the resulting output files in a directory. Place input file\n"""
        instructions += """         %s-master.in into that directory and run it. The job will be trivial in\n""" % (dbse)
        instructions += """         length and give summary results for the database in its output file.\n\n"""
        instructions += """             psi4 -i %-27s -o %-27s\n\n""" % (dbse + '-master.in', dbse + '-master.out')
        instructions += """    Alternatively, a single-job execution of the database may be accessed through\n"""
        instructions += """    the database wrapper option mode='continuous'.\n\n"""
        psi4.print_out(instructions)

        fmaster = open('%s-master.in' % (dbse), 'w')
        fmaster.write('# This is a psi4 input file auto-generated from the database() wrapper.\n\n')
        fmaster.write("database('%s', '%s', mode='reap', cp='%s', rlxd='%s', zpe='%s', benchmark='%s', linkage=%d, subset=%s, tabulate=%s)\n\n" %
            (name, db_name, db_cp, db_rlxd, db_zpe, db_benchmark, os.getpid(), HRXN, db_tabulate))
        fmaster.close()

    #   Loop through chemical systems
    ERGT = {}
    ERXN = {}
    VRGT = {}
    VRXN = {}
    for rgt in HSYS:
        VRGT[rgt] = {}

        # extra definition of molecule so that logic in building commands string has something to act on
        exec(p4util.format_molecule_for_input(GEOS[rgt]))
        molecule = psi4.get_active_molecule()

        # build string of title banner
        banners = ''
        banners += """psi4.print_out('\\n')\n"""
        banners += """p4util.banner(' Database %s Computation: Reagent %s \\n   %s')\n""" % (db_name, rgt, TAGL[rgt])
        banners += """psi4.print_out('\\n')\n\n"""

        # build string of lines that defines contribution of rgt to each rxn
        actives = ''
        actives += """psi4.print_out('   Database Contributions Map:\\n   %s\\n')\n""" % ('-' * 75)
        for rxn in HRXN:
            db_rxn = dbse + '-' + str(rxn)
            if rgt in ACTV[db_rxn]:
                actives += """psi4.print_out('   reagent %s contributes by %.4f to reaction %s\\n')\n""" \
                   % (rgt, RXNM[db_rxn][rgt], db_rxn)
        actives += """psi4.print_out('\\n')\n\n"""

        # build string of commands for options from the input file  TODO: handle local options too
        commands = ''
        commands += """\npsi4.set_memory(%s)\n\n""" % (user_memory)
        for chgdopt in psi4.get_global_option_list():
            if psi4.has_global_option_changed(chgdopt):
                chgdoptval = psi4.get_global_option(chgdopt)
                #chgdoptval = psi4.get_option(chgdopt)
                if isinstance(chgdoptval, basestring):
                    commands += """psi4.set_global_option('%s', '%s')\n""" % (chgdopt, chgdoptval)
                elif isinstance(chgdoptval, int) or isinstance(chgdoptval, float):
                    commands += """psi4.set_global_option('%s', %s)\n""" % (chgdopt, chgdoptval)
                else:
                    raise ValidationError('Option \'%s\' is not of a type (string, int, float, bool) that can be processed by database wrapper.' % (chgdopt))

        # build string of molecule and commands that are dependent on the database
        commands += '\n'
        commands += """psi4.set_global_option('BASIS', '%s')\n""" % (user_basis)
        if not((user_df_basis_scf == "") or (user_df_basis_scf == 'NONE')):
            commands += """psi4.set_global_option('DF_BASIS_SCF', '%s')\n""" % (user_df_basis_scf)
        if not((user_df_basis_mp2 == "") or (user_df_basis_mp2 == 'NONE')):
            commands += """psi4.set_global_option('DF_BASIS_MP2', '%s')\n""" % (user_df_basis_mp2)
        if not((user_df_basis_sapt == "") or (user_df_basis_sapt == 'NONE')):
            commands += """psi4.set_global_option('DF_BASIS_SAPT', '%s')\n""" % (user_df_basis_sapt)
        if not((user_df_basis_elst == "") or (user_df_basis_elst == 'NONE')):
            commands += """psi4.set_global_option('DF_BASIS_ELST', '%s')\n""" % (user_df_basis_elst)
        commands += """molecule = psi4.get_active_molecule()\n"""
        commands += """molecule.update_geometry()\n"""

        if symmetry_override:
            commands += """molecule.reset_point_group('c1')\n"""
            commands += """molecule.fix_orientation(1)\n"""
            commands += """molecule.update_geometry()\n"""

        if (openshell_override) and (molecule.multiplicity() != 1):
            if user_reference == 'RHF':
                commands += """psi4.set_global_option('REFERENCE', 'UHF')\n"""
            elif user_reference == 'RKS':
                commands += """psi4.set_global_option('REFERENCE', 'UKS')\n"""

        commands += """psi4.set_global_option('WRITER_FILE_LABEL', '%s')\n""" % \
            (user_writer_file_label + ('' if user_writer_file_label == '' else '-') + rgt)

        # all modes need to step through the reagents but all for different purposes
        # continuous: defines necessary commands, executes energy(method) call, and collects results into dictionary
        # sow: opens individual reagent input file, writes the necessary commands, and writes energy(method) call
        # reap: opens individual reagent output file, collects results into a dictionary
        if (db_mode.lower() == 'continuous'):
            exec(banners)
            exec(p4util.format_molecule_for_input(GEOS[rgt]))
            exec(commands)
            #print 'MOLECULE LIVES %23s %8s %4d %4d %4s' % (rgt, psi4.get_global_option('REFERENCE'),
            #    molecule.molecular_charge(), molecule.multiplicity(), molecule.schoenflies_symbol())
            psi4.set_variable('NATOM', molecule.natom())
            psi4.set_variable('NUCLEAR REPULSION ENERGY', molecule.nuclear_repulsion_energy())
            if re.match(r'^verify', lowername):
                compare_values(DATA['NUCLEAR REPULSION ENERGY'][rgt], psi4.get_variable('NUCLEAR REPULSION ENERGY'),
                    4, '%s  %.4f' % (rgt, psi4.get_variable('NUCLEAR REPULSION ENERGY')))
                ERGT[rgt] = 7.0
            else:
                ERGT[rgt] = call_function_in_1st_argument(func, **kwargs)
            #print ERGT[rgt]
            psi4.print_variables()
            exec(actives)
            for envv in db_tabulate:
                VRGT[rgt][envv.upper()] = psi4.get_variable(envv)
            psi4.set_global_option("REFERENCE", user_reference)
            psi4.clean()

        elif (db_mode.lower() == 'sow'):
            freagent = open('%s.in' % (rgt), 'w')
            freagent.write('# This is a psi4 input file auto-generated from the database() wrapper.\n\n')
            freagent.write(banners)
            freagent.write(p4util.format_molecule_for_input(GEOS[rgt]))

            freagent.write(commands)
            freagent.write('''\npickle_kw = ("""''')
            pickle.dump(kwargs, freagent)
            freagent.write('''""")\n''')
            freagent.write("""\nkwargs = pickle.loads(pickle_kw)\n""")
            freagent.write("""electronic_energy = %s(**kwargs)\n\n""" % (func.__name__))
            freagent.write("""psi4.print_variables()\n""")
            freagent.write("""psi4.print_out('\\nDATABASE RESULT: computation %d for reagent %s """
                % (os.getpid(), rgt))
            freagent.write("""yields electronic energy %20.12f\\n' % (electronic_energy))\n\n""")
            freagent.write("""psi4.set_variable('NATOM', molecule.natom())\n""")
            for envv in db_tabulate:
                freagent.write("""psi4.print_out('DATABASE RESULT: computation %d for reagent %s """
                    % (os.getpid(), rgt))
                freagent.write("""yields variable value    %20.12f for variable %s\\n' % (psi4.get_variable(""")
                freagent.write("""'%s'), '%s'))\n""" % (envv.upper(), envv.upper()))
            freagent.close()

        elif (db_mode.lower() == 'reap'):
            ERGT[rgt] = 0.0
            for envv in db_tabulate:
                VRGT[rgt][envv.upper()] = 0.0
            exec(banners)
            exec(actives)
            try:
                freagent = open('%s.out' % (rgt), 'r')
            except IOError:
                psi4.print_out('Warning: Output file \'%s.out\' not found.\n' % (rgt))
                psi4.print_out('         Database summary will have 0.0 and **** in its place.\n')
            else:
                while 1:
                    line = freagent.readline()
                    if not line:
                        if ERGT[rgt] == 0.0:
                            psi4.print_out('Warning: Output file \'%s.out\' has no DATABASE RESULT line.\n' % (rgt))
                            psi4.print_out('         Database summary will have 0.0 and **** in its place.\n')
                        break
                    s = line.split()
                    if (len(s) != 0) and (s[0:3] == ['DATABASE', 'RESULT:', 'computation']):
                        if int(s[3]) != db_linkage:
                            raise ValidationError('Output file \'%s.out\' has linkage %s incompatible with master.in linkage %s.'
                                % (rgt, str(s[3]), str(db_linkage)))
                        if s[6] != rgt:
                            raise ValidationError('Output file \'%s.out\' has nominal affiliation %s incompatible with reagent %s.'
                                % (rgt, s[6], rgt))
                        if (s[8:10] == ['electronic', 'energy']):
                            ERGT[rgt] = float(s[10])
                            psi4.print_out('DATABASE RESULT: electronic energy = %20.12f\n' % (ERGT[rgt]))
                        elif (s[8:10] == ['variable', 'value']):
                            for envv in db_tabulate:
                                envv = envv.upper()
                                if (s[13:] == envv.split()):
                                    VRGT[rgt][envv] = float(s[10])
                                    psi4.print_out('DATABASE RESULT: variable %s value    = %20.12f\n' % (envv, VRGT[rgt][envv]))
                freagent.close()

    #   end sow after writing files
    if (db_mode.lower() == 'sow'):
        return 0.0

    # Reap all the necessary reaction computations
    psi4.print_out("\n")
    p4util.banner(("Database %s Results" % (db_name)))
    psi4.print_out("\n")

    maxactv = []
    for rxn in HRXN:
        maxactv.append(len(ACTV[dbse + '-' + str(rxn)]))
    maxrgt = max(maxactv)
    table_delimit = '-' * (54 + 20 * maxrgt)
    tables = ''

    #   find any reactions that are incomplete
    FAIL = collections.defaultdict(int)
    for rxn in HRXN:
        db_rxn = dbse + '-' + str(rxn)
        for i in range(len(ACTV[db_rxn])):
            if abs(ERGT[ACTV[db_rxn][i]]) < 1.0e-12:
                FAIL[rxn] = 1

    #   tabulate requested process::environment variables
    tables += """   For each VARIABLE requested by tabulate, a 'Reaction Value' will be formed from\n"""
    tables += """   'Reagent' values according to weightings 'Wt', as for the REQUESTED ENERGY below.\n"""
    tables += """   Depending on the nature of the variable, this may or may not make any physical sense.\n"""
    for rxn in HRXN:
        db_rxn = dbse + '-' + str(rxn)
        VRXN[db_rxn] = {}

    for envv in db_tabulate:
        envv = envv.upper()
        tables += """\n   ==> %s <==\n\n""" % (envv.title())
        tables += tblhead(maxrgt, table_delimit, 2)

        for rxn in HRXN:
            db_rxn = dbse + '-' + str(rxn)

            if FAIL[rxn]:
                tables += """\n%23s   %8s %8s   %8s""" % (db_rxn, '', '****', '')
                for i in range(len(ACTV[db_rxn])):
                    tables += """ %16.8f %2.0f""" % (VRGT[ACTV[db_rxn][i]][envv], RXNM[db_rxn][ACTV[db_rxn][i]])

            else:
                VRXN[db_rxn][envv] = 0.0
                for i in range(len(ACTV[db_rxn])):
                    VRXN[db_rxn][envv] += VRGT[ACTV[db_rxn][i]][envv] * RXNM[db_rxn][ACTV[db_rxn][i]]

                tables += """\n%23s        %16.8f       """ % (db_rxn, VRXN[db_rxn][envv])
                for i in range(len(ACTV[db_rxn])):
                    tables += """ %16.8f %2.0f""" % (VRGT[ACTV[db_rxn][i]][envv], RXNM[db_rxn][ACTV[db_rxn][i]])
        tables += """\n   %s\n""" % (table_delimit)

    #   tabulate primary requested energy variable with statistics
    count_rxn = 0
    minDerror = 100000.0
    maxDerror = 0.0
    MSDerror = 0.0
    MADerror = 0.0
    RMSDerror = 0.0

    tables += """\n   ==> %s <==\n\n""" % ('Requested Energy')
    tables += tblhead(maxrgt, table_delimit, 1)
    for rxn in HRXN:
        db_rxn = dbse + '-' + str(rxn)

        if FAIL[rxn]:
            tables += """\n%23s   %8.4f %8s   %8s""" % (db_rxn, BIND[db_rxn], '****', '****')
            for i in range(len(ACTV[db_rxn])):
                tables += """ %16.8f %2.0f""" % (ERGT[ACTV[db_rxn][i]], RXNM[db_rxn][ACTV[db_rxn][i]])

        else:
            ERXN[db_rxn] = 0.0
            for i in range(len(ACTV[db_rxn])):
                ERXN[db_rxn] += ERGT[ACTV[db_rxn][i]] * RXNM[db_rxn][ACTV[db_rxn][i]]
            error = p4const.psi_hartree2kcalmol * ERXN[db_rxn] - BIND[db_rxn]

            tables += """\n%23s   %8.4f %8.4f   %8.4f""" % (db_rxn, BIND[db_rxn], p4const.psi_hartree2kcalmol * ERXN[db_rxn], error)
            for i in range(len(ACTV[db_rxn])):
                tables += """ %16.8f %2.0f""" % (ERGT[ACTV[db_rxn][i]], RXNM[db_rxn][ACTV[db_rxn][i]])

            if abs(error) < abs(minDerror):
                minDerror = error
            if abs(error) > abs(maxDerror):
                maxDerror = error
            MSDerror += error
            MADerror += abs(error)
            RMSDerror += error * error
            count_rxn += 1
    tables += """\n   %s\n""" % (table_delimit)

    if count_rxn:

        MSDerror /= float(count_rxn)
        MADerror /= float(count_rxn)
        RMSDerror = math.sqrt(RMSDerror / float(count_rxn))

        tables += """%23s   %19s %8.4f\n""" % ('Minimal Dev', '', minDerror)
        tables += """%23s   %19s %8.4f\n""" % ('Maximal Dev', '', maxDerror)
        tables += """%23s   %19s %8.4f\n""" % ('Mean Signed Dev', '', MSDerror)
        tables += """%23s   %19s %8.4f\n""" % ('Mean Absolute Dev', '', MADerror)
        tables += """%23s   %19s %8.4f\n""" % ('RMS Dev', '', RMSDerror)
        tables += """   %s\n""" % (table_delimit)

        psi4.set_variable('%s DATABASE MEAN SIGNED DEVIATION' % (db_name), MSDerror)
        psi4.set_variable('%s DATABASE MEAN ABSOLUTE DEVIATION' % (db_name), MADerror)
        psi4.set_variable('%s DATABASE ROOT-MEAN-SQUARE DEVIATION' % (db_name), RMSDerror)

        #print tables
        psi4.print_out(tables)
        finalenergy = MADerror

    else:
        finalenergy = 0.0

    # restore molecule and options
    activate(user_molecule)
    user_molecule.update_geometry()
    psi4.set_global_option("BASIS", user_basis)
    psi4.set_global_option("REFERENCE", user_reference)
    if not b_user_reference:
        psi4.revoke_global_option_changed('REFERENCE')
    psi4.set_global_option('WRITER_FILE_LABEL', user_writer_file_label)

    DB_RGT.clear()
    DB_RGT.update(VRGT)
    DB_RXN.clear()
    DB_RXN.update(VRXN)
    return finalenergy


def tblhead(tbl_maxrgt, tbl_delimit, ttype):
    r"""Function that prints the header for the changable-width results tables in db().
    *tbl_maxrgt* is the number of reagent columns the table must plan for. *tbl_delimit*
    is a string of dashes of the correct length to set off the table. *ttype* is 1 for
    tables comparing the computed values to the reference or 2 for simple tabulation
    and sum of the computed values.

    """
    tbl_str = ''
    tbl_str += """   %s""" % (tbl_delimit)
    if ttype == 1:
        tbl_str += """\n%23s %19s   %8s""" % ('Reaction', 'Reaction Energy', 'Error')
    elif ttype == 2:
        tbl_str += """\n%23s     %19s %6s""" % ('Reaction', 'Reaction Value', '')
    for i in range(tbl_maxrgt):
        tbl_str += """%20s""" % ('Reagent ' + str(i + 1))
    if ttype == 1:
        tbl_str += """\n%23s   %8s %8s %8s""" % ('', 'Ref', 'Calc', '[kcal/mol]')
    elif ttype == 2:
        tbl_str += """\n%54s""" % ('')
    for i in range(tbl_maxrgt):
        if ttype == 1:
            tbl_str += """%20s""" % ('[H] Wt')
        elif ttype == 2:
            tbl_str += """%20s""" % ('Value Wt')
    tbl_str += """\n   %s""" % (tbl_delimit)
    return tbl_str

##  Aliases  ##
db = database

#######################
##  End of Database  ##
#######################


###################################
##  Start of Complete Basis Set  ##
###################################

def complete_basis_set(name, **kwargs):
    r"""Function to define a multistage energy method from combinations of
    basis set extrapolations and delta corrections and condense the
    components into a minimum number of calculations.

    :aliases: cbs()

    :returns: (*float*) -- Total electronic energy in Hartrees

    :PSI variables:

    .. hlist::
       :columns: 1

       * :psivar:`CBS TOTAL ENERGY <CBSTOTALENERGY>`
       * :psivar:`CBS REFERENCE ENERGY <CBSREFERENCEENERGY>`
       * :psivar:`CBS CORRELATION ENERGY <CBSCORRELATIONENERGY>`
       * :psivar:`CURRENT ENERGY <CURRENTENERGY>`
       * :psivar:`CURRENT REFERENCE ENERGY <CURRENTREFERENCEENERGY>`
       * :psivar:`CURRENT CORRELATION ENERGY <CURRENTCORRELATIONENERGY>`

    .. caution:: Some features are not yet implemented. Buy a developer a coffee.

       - Not all methods hooked in through PSI variables, configuration interaction and arbitrary order MP in particular.

       - No scheme defaults for given basis zeta number, so scheme must be specified explicitly.

       - No way to tell function to boost fitting basis size for all calculations.

       - No way to extrapolate def2 family basis sets

       - Need to add more extrapolation schemes

    As represented in the equation below, a CBS energy method is defined in several
    sequential stages (scf, corl, delta, delta2, delta3, delta4, delta5) covering treatment
    of the reference total energy, the correlation energy, a delta correction to the
    correlation energy, and a second delta correction, etc.. Each is activated by its
    stage_wfn keyword and is only allowed if all preceding stages are active.

    .. include:: cbs_eqn.rst

    * Energy Methods
        The presence of a stage_wfn keyword is the indicator to incorporate
        (and check for stage_basis and stage_scheme keywords) and compute
        that stage in defining the CBS energy.

        The cbs() function requires, at a minimum, ``name='scf'`` and ``scf_basis``
        keywords to be specified for reference-step only jobs and ``name`` and
        ``corl_basis`` keywords for correlated jobs.

        The following energy methods have been set up for cbs().

        .. hlist::
           :columns: 5

           * scf
           * mp2
           * mp2.5
           * mp3
           * mp4(sdq)
           * mp4
           * omp2
           * omp3
           * ocepa
           * cepa0
           * cepa(0)
           * cepa(1)
           * cepa(3)
           * acpf
           * aqcc
           * qcisd
           * cc2
           * ccsd
           * fno-df-ccsd
           * bccd
           * cc3
           * qcisd(t)
           * ccsd(t)
           * fno-df-ccsd(t)
           * bccd(t)
           * cisd
           * cisdt
           * cisdtq
           * ci\ *n*
           * fci
           * mrccsd
           * mrccsd(t)
           * mrccsdt
           * mrccsdt(q)

    :type name: string
    :param name: ``'scf'`` || ``'ccsd'`` || etc.

        First argument, usually unlabeled. Indicates the computational method
        for the correlation energy, unless only reference step to be performed,
        in which case should be ``'scf'``. Overruled if stage_wfn keywords supplied.

    :type corl_wfn: string
    :param corl_wfn: ``'mp2'`` || ``'ccsd(t)'`` || etc.

        Indicates the energy method for which the correlation energy is to be
        obtained. Can also be specified with ``name`` or as the unlabeled
        first argument to the function.

    :type delta_wfn: string
    :param delta_wfn: ``'ccsd'`` || ``'ccsd(t)'`` || etc.

        Indicates the (superior) energy method for which a delta correction
        to the correlation energy is to be obtained.

    :type delta_wfn_lesser: string
    :param delta_wfn_lesser: |dl| ``'mp2'`` |dr| || ``'ccsd'`` || etc.

        Indicates the inferior energy method for which a delta correction
        to the correlation energy is to be obtained.

    :type delta2_wfn: string
    :param delta2_wfn: ``'ccsd'`` || ``'ccsd(t)'`` || etc.

        Indicates the (superior) energy method for which a second delta correction
        to the correlation energy is to be obtained.

    :type delta2_wfn_lesser: string
    :param delta2_wfn_lesser: |dl| ``'mp2'`` |dr| || ``'ccsd(t)'`` || etc.

        Indicates the inferior energy method for which a second delta correction
        to the correlation energy is to be obtained.

    :type delta3_wfn: string
    :param delta3_wfn: ``'ccsd'`` || ``'ccsd(t)'`` || etc.

        Indicates the (superior) energy method for which a third delta correction
        to the correlation energy is to be obtained.

    :type delta3_wfn_lesser: string
    :param delta3_wfn_lesser: |dl| ``'mp2'`` |dr| || ``'ccsd(t)'`` || etc.

        Indicates the inferior energy method for which a third delta correction
        to the correlation energy is to be obtained.

    :type delta4_wfn: string
    :param delta4_wfn: ``'ccsd'`` || ``'ccsd(t)'`` || etc.

        Indicates the (superior) energy method for which a fourth delta correction
        to the correlation energy is to be obtained.

    :type delta4_wfn_lesser: string
    :param delta4_wfn_lesser: |dl| ``'mp2'`` |dr| || ``'ccsd(t)'`` || etc.

        Indicates the inferior energy method for which a fourth delta correction
        to the correlation energy is to be obtained.

    :type delta5_wfn: string
    :param delta5_wfn: ``'ccsd'`` || ``'ccsd(t)'`` || etc.

        Indicates the (superior) energy method for which a fifth delta correction
        to the correlation energy is to be obtained.

    :type delta5_wfn_lesser: string
    :param delta5_wfn_lesser: |dl| ``'mp2'`` |dr| || ``'ccsd(t)'`` || etc.

        Indicates the inferior energy method for which a fifth delta correction
        to the correlation energy is to be obtained.

    * Basis Sets
        Currently, the basis set set through ``set`` commands have no influence
        on a cbs calculation.

    :type scf_basis: :ref:`basis string <apdx:basisElement>`
    :param scf_basis: |dl| ``corl_basis`` |dr| || ``'cc-pV[TQ]Z'`` || ``'jun-cc-pv[tq5]z'`` || ``'6-31G*'`` || etc.

        Indicates the sequence of basis sets employed for the reference energy.
        If any correlation method is specified, ``scf_basis`` can default
        to ``corl_basis``.

    :type corl_basis: :ref:`basis string <apdx:basisElement>`
    :param corl_basis: ``'cc-pV[TQ]Z'`` || ``'jun-cc-pv[tq5]z'`` || ``'6-31G*'`` || etc.

        Indicates the sequence of basis sets employed for the correlation energy.

    :type delta_basis: :ref:`basis string <apdx:basisElement>`
    :param delta_basis: ``'cc-pV[TQ]Z'`` || ``'jun-cc-pv[tq5]z'`` || ``'6-31G*'`` || etc.

        Indicates the sequence of basis sets employed for the delta correction
        to the correlation energy.

    :type delta2_basis: :ref:`basis string <apdx:basisElement>`
    :param delta2_basis: ``'cc-pV[TQ]Z'`` || ``'jun-cc-pv[tq5]z'`` || ``'6-31G*'`` || etc.

        Indicates the sequence of basis sets employed for the second delta correction
        to the correlation energy.

    :type delta3_basis: :ref:`basis string <apdx:basisElement>`
    :param delta3_basis: ``'cc-pV[TQ]Z'`` || ``'jun-cc-pv[tq5]z'`` || ``'6-31G*'`` || etc.

        Indicates the sequence of basis sets employed for the third delta correction
        to the correlation energy.

    :type delta4_basis: :ref:`basis string <apdx:basisElement>`
    :param delta4_basis: ``'cc-pV[TQ]Z'`` || ``'jun-cc-pv[tq5]z'`` || ``'6-31G*'`` || etc.

        Indicates the sequence of basis sets employed for the fourth delta correction
        to the correlation energy.

    :type delta5_basis: :ref:`basis string <apdx:basisElement>`
    :param delta5_basis: ``'cc-pV[TQ]Z'`` || ``'jun-cc-pv[tq5]z'`` || ``'6-31G*'`` || etc.

        Indicates the sequence of basis sets employed for the fifth delta correction
        to the correlation energy.

    * Schemes
        Transformations of the energy through basis set extrapolation for each
        stage of the CBS definition. A complaint is generated if number of basis
        sets in stage_basis does not exactly satisfy requirements of stage_scheme.
        An exception is the default, ``'highest_1'``, which uses the best basis
        set available. See `Extrapolation Schemes`_ for all available schemes.

    :type scf_scheme: function
    :param scf_scheme: |dl| ``highest_1`` |dr| || ``scf_xtpl_helgaker_3`` || etc.

        Indicates the basis set extrapolation scheme to be applied to the reference energy.

    :type corl_scheme: function
    :param corl_scheme: |dl| ``highest_1`` |dr| || ``corl_xtpl_helgaker_2`` || etc.

        Indicates the basis set extrapolation scheme to be applied to the correlation energy.

    :type delta_scheme: function
    :param delta_scheme: |dl| ``highest_1`` |dr| || ``corl_xtpl_helgaker_2`` || etc.

        Indicates the basis set extrapolation scheme to be applied to the delta correction
        to the correlation energy.

    :type delta2_scheme: function
    :param delta2_scheme: |dl| ``highest_1`` |dr| || ``corl_xtpl_helgaker_2`` || etc.

        Indicates the basis set extrapolation scheme to be applied to the second delta correction
        to the correlation energy.

    :type delta3_scheme: function
    :param delta3_scheme: |dl| ``highest_1`` |dr| || ``corl_xtpl_helgaker_2`` || etc.

        Indicates the basis set extrapolation scheme to be applied to the third delta correction
        to the correlation energy.

    :type delta4_scheme: function
    :param delta4_scheme: |dl| ``highest_1`` |dr| || ``corl_xtpl_helgaker_2`` || etc.

        Indicates the basis set extrapolation scheme to be applied to the fourth delta correction
        to the correlation energy.

    :type delta5_scheme: function
    :param delta5_scheme: |dl| ``highest_1`` |dr| || ``corl_xtpl_helgaker_2`` || etc.

        Indicates the basis set extrapolation scheme to be applied to the fifth delta correction
        to the correlation energy.

    :type molecule: :ref:`molecule <op_py_molecule>`
    :param molecule: ``h2o`` || etc.

        The target molecule, if not the last molecule defined.

    :examples:

    >>> # [1] replicates with cbs() the simple model chemistry scf/cc-pVDZ: set basis cc-pVDZ energy('scf')
    >>> cbs('scf', scf_basis='cc-pVDZ')

    >>> # [2] replicates with cbs() the simple model chemistry mp2/jun-cc-pVDZ: set basis jun-cc-pVDZ energy('mp2')
    >>> cbs('mp2', corl_basis='jun-cc-pVDZ')

    >>> # [3] DTQ-zeta extrapolated scf reference energy
    >>> cbs('scf', scf_basis='cc-pV[DTQ]Z', scf_scheme=scf_xtpl_helgaker_3)

    >>> # [4] DT-zeta extrapolated mp2 correlation energy atop a T-zeta reference
    >>> cbs('mp2', corl_basis='cc-pv[dt]z', corl_scheme=corl_xtpl_helgaker_2)

    >>> # [5] a DT-zeta extrapolated coupled-cluster correction atop a TQ-zeta extrapolated mp2 correlation energy atop a Q-zeta reference
    >>> cbs('mp2', corl_basis='aug-cc-pv[tq]z', corl_scheme=corl_xtpl_helgaker_2, delta_wfn='ccsd(t)', delta_basis='aug-cc-pv[dt]z', delta_scheme=corl_xtpl_helgaker_2)

    >>> # [6] a D-zeta ccsd(t) correction atop a DT-zeta extrapolated ccsd cluster correction atop a TQ-zeta extrapolated mp2 correlation energy atop a Q-zeta reference
    >>> cbs('mp2', corl_basis='aug-cc-pv[tq]z', corl_scheme=corl_xtpl_helgaker_2, delta_wfn='ccsd', delta_basis='aug-cc-pv[dt]z', delta_scheme=corl_xtpl_helgaker_2, delta2_wfn='ccsd(t)', delta2_wfn_lesser='ccsd', delta2_basis='aug-cc-pvdz')

    >>> # [7] cbs() coupled with database()
    >>> database('mp2', 'BASIC', subset=['h2o','nh3'], symm='on', func=cbs, corl_basis='cc-pV[tq]z', corl_scheme=corl_xtpl_helgaker_2, delta_wfn='ccsd(t)', delta_basis='sto-3g')

    >>> # [8] cbs() coupled with optimize()
    >>> optimize('mp2', corl_basis='cc-pV[DT]Z', corl_scheme=corl_xtpl_helgaker_2, func=cbs)

    """
    lowername = name.lower()
    kwargs = p4util.kwargs_lower(kwargs)

    # Wrap any positional arguments into kwargs (for intercalls among wrappers)
    if not('name' in kwargs) and name:
        kwargs['name'] = name.lower()

    # Establish function to call (only energy makes sense for cbs)
    if not('cbs_func' in kwargs):
        if ('func' in kwargs):
            kwargs['cbs_func'] = kwargs['func']
            del kwargs['func']
        else:
            kwargs['cbs_func'] = energy
    func = kwargs['cbs_func']
    if not func:
        raise ValidationError('Function \'%s\' does not exist to be called by wrapper complete_basis_set.' % (func.__name__))
    if not(func is energy):
        raise ValidationError('Wrapper complete_basis_set is unhappy to be calling function \'%s\' instead of \'energy\'.' % (func.__name__))

    # Define some quantum chemical knowledge, namely what methods are subsumed in others
    VARH = {}
    VARH['scf'] = {         'scftot': 'SCF TOTAL ENERGY'}
    VARH['oldmp2'] = {         'scftot': 'SCF TOTAL ENERGY',
                           'oldmp2corl': 'MP2 CORRELATION ENERGY'}
    VARH['mp2'] = {         'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY'}
    VARH['mp2.5'] = {       'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                         'mp2.5corl': 'MP2.5 CORRELATION ENERGY',
                           'mp3corl': 'MP3 CORRELATION ENERGY'}
    VARH['mp3'] = {         'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                         'mp2.5corl': 'MP2.5 CORRELATION ENERGY',
                           'mp3corl': 'MP3 CORRELATION ENERGY'}
    VARH['mp4(sdq)'] = {    'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                         'mp2.5corl': 'MP2.5 CORRELATION ENERGY',
                           'mp3corl': 'MP3 CORRELATION ENERGY',
                      'mp4(sdq)corl': 'MP4(SDQ) CORRELATION ENERGY'}
    VARH['mp4'] = {         'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                         'mp2.5corl': 'MP2.5 CORRELATION ENERGY',
                           'mp3corl': 'MP3 CORRELATION ENERGY',
                      'mp4(sdq)corl': 'MP4(SDQ) CORRELATION ENERGY',
                           'mp4corl': 'MP4(SDTQ) CORRELATION ENERGY'}
    VARH['omp2'] = {        'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                          'omp2corl': 'OMP2 CORRELATION ENERGY'}
    VARH['omp3'] = {        'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                           'mp3corl': 'MP3 CORRELATION ENERGY',
                          'omp3corl': 'OMP3 CORRELATION ENERGY'}
    VARH['ocepa'] = {       'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                         'ocepacorl': 'OCEPA(0) CORRELATION ENERGY'}
    VARH['cepa0'] = {       'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                         'cepa0corl': 'CEPA(0) CORRELATION ENERGY'}
    VARH['cepa(0)'] = {     'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                       'cepa(0)corl': 'CEPA(0) CORRELATION ENERGY'}
    VARH['cepa(1)'] = {     'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                       'cepa(1)corl': 'CEPA(1) CORRELATION ENERGY'}
    VARH['cepa(3)'] = {     'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                       'cepa(3)corl': 'CEPA(3) CORRELATION ENERGY'}
    VARH['acpf'] = {        'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                          'acpfcorl': 'ACPF CORRELATION ENERGY'}
    VARH['aqcc'] = {        'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                          'aqcccorl': 'AQCC CORRELATION ENERGY'}
    VARH['qcisd'] = {       'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                         'mp2.5corl': 'MP2.5 CORRELATION ENERGY',
                           'mp3corl': 'MP3 CORRELATION ENERGY',
                      'mp4(sdq)corl': 'MP4(SDQ) CORRELATION ENERGY',
                         'qcisdcorl': 'QCISD CORRELATION ENERGY'}
    VARH['cc2'] = {         'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                           'cc2corl': 'CC2 CORRELATION ENERGY'}
    VARH['ccsd'] = {        'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                          'ccsdcorl': 'CCSD CORRELATION ENERGY'}
    VARH['bccd'] = {        'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                          'bccdcorl': 'CCSD CORRELATION ENERGY'}
    VARH['cc3'] = {         'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                           'cc3corl': 'CC3 CORRELATION ENERGY'}
    VARH['fno-df-ccsd'] = { 'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                   'fno-df-ccsdcorl': 'CCSD CORRELATION ENERGY'}
    VARH['fno-df-ccsd(t)'] = {'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                          'ccsdcorl': 'CCSD CORRELATION ENERGY',
                'fno-df-ccsd(t)corl': 'CCSD(T) CORRELATION ENERGY'}
    VARH['qcisd(t)'] = {    'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                         'mp2.5corl': 'MP2.5 CORRELATION ENERGY',
                           'mp3corl': 'MP3 CORRELATION ENERGY',
                      'mp4(sdq)corl': 'MP4(SDQ) CORRELATION ENERGY',
                         'qcisdcorl': 'QCISD CORRELATION ENERGY',
                      'qcisd(t)corl': 'QCISD(T) CORRELATION ENERGY'}
    VARH['ccsd(t)'] = {     'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                          'ccsdcorl': 'CCSD CORRELATION ENERGY',
                       'ccsd(t)corl': 'CCSD(T) CORRELATION ENERGY'}
    VARH['bccd(t)'] = {     'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                          'ccsdcorl': 'CCSD CORRELATION ENERGY',
                       'bccd(t)corl': 'CCSD(T) CORRELATION ENERGY'}
    VARH['cisd'] = {        'scftot': 'SCF TOTAL ENERGY',
                          'cisdcorl': 'CISD CORRELATION ENERGY'}
    VARH['cisdt'] = {       'scftot': 'SCF TOTAL ENERGY',
                         'cisdtcorl': 'CISDT CORRELATION ENERGY'}
    VARH['cisdtq'] = {      'scftot': 'SCF TOTAL ENERGY',
                        'cisdtqcorl': 'CISDTQ CORRELATION ENERGY'}
    VARH['fci'] = {         'scftot': 'SCF TOTAL ENERGY',
                           'fcicorl': 'FCI CORRELATION ENERGY'}
    VARH['mrccsd'] = {      'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                        'mrccsdcorl': 'CCSD CORRELATION ENERGY'}
    VARH['mrccsd(t)'] = {   'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                        'mrccsdcorl': 'CCSD CORRELATION ENERGY',
                     'mrccsd(t)corl': 'CCSD(T) CORRELATION ENERGY'}
    VARH['mrccsdt'] = {     'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                       'mrccsdtcorl': 'CCSDT CORRELATION ENERGY'}
    VARH['mrccsdt(q)'] = {  'scftot': 'SCF TOTAL ENERGY',
                           'mp2corl': 'MP2 CORRELATION ENERGY',
                       'mrccsdtcorl': 'CCSDT CORRELATION ENERGY',
                    'mrccsdt(q)corl': 'CCSDT(Q) CORRELATION ENERGY'}

    for cilevel in range(2, 99):
        VARH['ci%s' % (str(cilevel))] = {
                            'scftot': 'SCF TOTAL ENERGY',
         'ci%scorl' % (str(cilevel)): 'CI CORRELATION ENERGY'}

    finalenergy = 0.0
    do_scf = 1
    do_corl = 0
    do_delta = 0
    do_delta2 = 0
    do_delta3 = 0
    do_delta4 = 0
    do_delta5 = 0

    # Must collect (here) and set (below) basis sets after every new molecule activation
    b_user_basis = psi4.has_global_option_changed('BASIS')
    user_basis = psi4.get_global_option('BASIS')
    #user_df_basis_scf = psi4.get_option('DF_BASIS_SCF')
    #user_df_basis_mp2 = psi4.get_option('DF_BASIS_MP2')
    #user_df_basis_cc = psi4.get_option('DF_BASIS_CC')
    #user_df_basis_sapt = psi4.get_option('DF_BASIS_SAPT')
    #user_df_basis_elst = psi4.get_option('DF_BASIS_ELST')
    b_user_wfn = psi4.has_global_option_changed('WFN')
    user_wfn = psi4.get_global_option('WFN')

    user_writer_file_label = psi4.get_global_option('WRITER_FILE_LABEL')

    # Make sure the molecule the user provided is the active one
    if 'molecule' in kwargs:
        activate(kwargs['molecule'])
        del kwargs['molecule']
    molecule = psi4.get_active_molecule()
    molecule.update_geometry()
    psi4.set_global_option("BASIS", psi4.get_global_option("BASIS"))

    # Establish method for correlation energy
    if 'name' in kwargs:
        if (lowername == 'scf') or (lowername == 'df-scf'):
            pass
        else:
            do_corl = 1
            cbs_corl_wfn = kwargs['name'].lower()
    if 'corl_wfn' in kwargs:
        do_corl = 1
        cbs_corl_wfn = kwargs['corl_wfn'].lower()
    if do_corl:
        if not (cbs_corl_wfn in VARH.keys()):
            raise ValidationError('Requested CORL method \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_corl_wfn))

    # Establish method for delta correction energy
    if 'delta_wfn' in kwargs:
        do_delta = 1
        cbs_delta_wfn = kwargs['delta_wfn'].lower()
        if not (cbs_delta_wfn in VARH.keys()):
            raise ValidationError('Requested DELTA method \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta_wfn))

        if 'delta_wfn_lesser' in kwargs:
            cbs_delta_wfn_lesser = kwargs['delta_wfn_lesser'].lower()
        else:
            cbs_delta_wfn_lesser = 'mp2'
        if not (cbs_delta_wfn_lesser in VARH.keys()):
            raise ValidationError('Requested DELTA method lesser \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta_wfn_lesser))

    # Establish method for second delta correction energy
    if 'delta2_wfn' in kwargs:
        do_delta2 = 1
        cbs_delta2_wfn = kwargs['delta2_wfn'].lower()
        if not (cbs_delta2_wfn in VARH.keys()):
            raise ValidationError('Requested DELTA2 method \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta2_wfn))

        if 'delta2_wfn_lesser' in kwargs:
            cbs_delta2_wfn_lesser = kwargs['delta2_wfn_lesser'].lower()
        else:
            cbs_delta2_wfn_lesser = 'mp2'
        if not (cbs_delta2_wfn_lesser in VARH.keys()):
            raise ValidationError('Requested DELTA2 method lesser \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta2_wfn_lesser))

    # Establish method for third delta correction energy
    if 'delta3_wfn' in kwargs:
        do_delta3 = 1
        cbs_delta3_wfn = kwargs['delta3_wfn'].lower()
        if not (cbs_delta3_wfn in VARH.keys()):
            raise ValidationError('Requested DELTA3 method \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta3_wfn))

        if 'delta3_wfn_lesser' in kwargs:
            cbs_delta3_wfn_lesser = kwargs['delta3_wfn_lesser'].lower()
        else:
            cbs_delta3_wfn_lesser = 'mp2'
        if not (cbs_delta3_wfn_lesser in VARH.keys()):
            raise ValidationError('Requested DELTA3 method lesser \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta3_wfn_lesser))

    # Establish method for fourth delta correction energy
    if 'delta4_wfn' in kwargs:
        do_delta4 = 1
        cbs_delta4_wfn = kwargs['delta4_wfn'].lower()
        if not (cbs_delta4_wfn in VARH.keys()):
            raise ValidationError('Requested DELTA4 method \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta4_wfn))

        if 'delta4_wfn_lesser' in kwargs:
            cbs_delta4_wfn_lesser = kwargs['delta4_wfn_lesser'].lower()
        else:
            cbs_delta4_wfn_lesser = 'mp2'
        if not (cbs_delta4_wfn_lesser in VARH.keys()):
            raise ValidationError('Requested DELTA4 method lesser \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta4_wfn_lesser))

    # Establish method for fifth delta correction energy
    if 'delta5_wfn' in kwargs:
        do_delta5 = 1
        cbs_delta5_wfn = kwargs['delta5_wfn'].lower()
        if not (cbs_delta5_wfn in VARH.keys()):
            raise ValidationError('Requested DELTA5 method \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta5_wfn))

        if 'delta5_wfn_lesser' in kwargs:
            cbs_delta5_wfn_lesser = kwargs['delta5_wfn_lesser'].lower()
        else:
            cbs_delta5_wfn_lesser = 'mp2'
        if not (cbs_delta5_wfn_lesser in VARH.keys()):
            raise ValidationError('Requested DELTA5 method lesser \'%s\' is not recognized. Add it to VARH in wrapper.py to proceed.' % (cbs_delta5_wfn_lesser))

    # Check that user isn't skipping steps in scf + corl + delta + delta2 sequence
    if   do_scf and not do_corl and not do_delta and not do_delta2 and not do_delta3 and not do_delta4 and not do_delta5:
        pass
    elif do_scf and do_corl and not do_delta and not do_delta2 and not do_delta3 and not do_delta4 and not do_delta5:
        pass
    elif do_scf and do_corl and do_delta and not do_delta2 and not do_delta3 and not do_delta4 and not do_delta5:
        pass
    elif do_scf and do_corl and do_delta and do_delta2 and not do_delta3 and not do_delta4 and not do_delta5:
        pass
    elif do_scf and do_corl and do_delta and do_delta2 and do_delta3 and not do_delta4 and not do_delta5:
        pass
    elif do_scf and do_corl and do_delta and do_delta2 and do_delta3 and do_delta4 and not do_delta5:
        pass
    elif do_scf and do_corl and do_delta and do_delta2 and do_delta3 and do_delta4 and do_delta5:
        pass
    else:
        raise ValidationError('Requested scf (%s) + corl (%s) + delta (%s) + delta2 (%s) + delta3 (%s) + delta4 (%s) + delta5 (%s) not valid. These steps are cummulative.' %
            (do_scf, do_corl, do_delta, do_delta2, do_delta3, do_delta4, do_delta5))

    # Establish list of valid basis sets for correlation energy
    if do_corl:
        if 'corl_basis' in kwargs:
            BSTC, ZETC = validate_bracketed_basis(kwargs['corl_basis'].lower())
        else:
            raise ValidationError('CORL basis sets through keyword \'%s\' are required.' % ('corl_basis'))

    # Establish list of valid basis sets for scf energy
    if 'scf_basis' in kwargs:
        BSTR, ZETR = validate_bracketed_basis(kwargs['scf_basis'].lower())
    else:
        if do_corl:
            BSTR = BSTC[:]
            ZETR = ZETC[:]
        else:
            raise ValidationError('SCF basis sets through keyword \'%s\' are required. Or perhaps you forgot the \'%s\'.' % ('scf_basis', 'corl_wfn'))

    # Establish list of valid basis sets for delta correction energy
    if do_delta:
        if 'delta_basis' in kwargs:
            BSTD, ZETD = validate_bracketed_basis(kwargs['delta_basis'].lower())
        else:
            raise ValidationError('DELTA basis sets through keyword \'%s\' are required.' % ('delta_basis'))

    # Establish list of valid basis sets for second delta correction energy
    if do_delta2:
        if 'delta2_basis' in kwargs:
            BSTD2, ZETD2 = validate_bracketed_basis(kwargs['delta2_basis'].lower())
        else:
            raise ValidationError('DELTA2 basis sets through keyword \'%s\' are required.' % ('delta2_basis'))

    # Establish list of valid basis sets for third delta correction energy
    if do_delta3:
        if 'delta3_basis' in kwargs:
            BSTD3, ZETD3 = validate_bracketed_basis(kwargs['delta3_basis'].lower())
        else:
            raise ValidationError('DELTA3 basis sets through keyword \'%s\' are required.' % ('delta3_basis'))

    # Establish list of valid basis sets for fourth delta correction energy
    if do_delta4:
        if 'delta4_basis' in kwargs:
            BSTD4, ZETD4 = validate_bracketed_basis(kwargs['delta4_basis'].lower())
        else:
            raise ValidationError('DELTA4 basis sets through keyword \'%s\' are required.' % ('delta4_basis'))

    # Establish list of valid basis sets for fifth delta correction energy
    if do_delta5:
        if 'delta5_basis' in kwargs:
            BSTD5, ZETD5 = validate_bracketed_basis(kwargs['delta5_basis'].lower())
        else:
            raise ValidationError('DELTA5 basis sets through keyword \'%s\' are required.' % ('delta5_basis'))

    # Establish treatment for scf energy (validity check useless since python will catch it long before here)
    cbs_scf_scheme = highest_1
    if 'scf_scheme' in kwargs:
        cbs_scf_scheme = kwargs['scf_scheme']

    # Establish treatment for correlation energy
    cbs_corl_scheme = highest_1
    if 'corl_scheme' in kwargs:
        cbs_corl_scheme = kwargs['corl_scheme']

    # Establish treatment for delta correction energy
    cbs_delta_scheme = highest_1
    if 'delta_scheme' in kwargs:
        cbs_delta_scheme = kwargs['delta_scheme']

    # Establish treatment for delta2 correction energy
    cbs_delta2_scheme = highest_1
    if 'delta2_scheme' in kwargs:
        cbs_delta2_scheme = kwargs['delta2_scheme']

    # Establish treatment for delta3 correction energy
    cbs_delta3_scheme = highest_1
    if 'delta3_scheme' in kwargs:
        cbs_delta3_scheme = kwargs['delta3_scheme']

    # Establish treatment for delta4 correction energy
    cbs_delta4_scheme = highest_1
    if 'delta4_scheme' in kwargs:
        cbs_delta4_scheme = kwargs['delta4_scheme']

    # Establish treatment for delta5 correction energy
    cbs_delta5_scheme = highest_1
    if 'delta5_scheme' in kwargs:
        cbs_delta5_scheme = kwargs['delta5_scheme']

    # Build string of title banner
    cbsbanners = ''
    cbsbanners += """psi4.print_out('\\n')\n"""
    cbsbanners += """p4util.banner(' CBS Setup ')\n"""
    cbsbanners += """psi4.print_out('\\n')\n\n"""
    exec(cbsbanners)

    # Call schemes for each portion of total energy to 'place orders' for calculations needed
    d_fields = ['d_stage', 'd_scheme', 'd_basis', 'd_wfn', 'd_need', 'd_coef', 'd_energy']
    f_fields = ['f_wfn', 'f_portion', 'f_basis', 'f_zeta', 'f_energy']
    GRAND_NEED = []
    MODELCHEM = []
    bstring = ''
    if do_scf:
        NEED = call_function_in_1st_argument(cbs_scf_scheme,
            mode='requisition', basisname=BSTR, basiszeta=ZETR, wfnname='scf')
        GRAND_NEED.append(dict(zip(d_fields, ['scf', cbs_scf_scheme, reconstitute_bracketed_basis(NEED), 'scf', NEED, +1, 0.0])))

    if do_corl:
        NEED = call_function_in_1st_argument(cbs_corl_scheme,
            mode='requisition', basisname=BSTC, basiszeta=ZETC, wfnname=cbs_corl_wfn)
        GRAND_NEED.append(dict(zip(d_fields, ['corl', cbs_corl_scheme, reconstitute_bracketed_basis(NEED), cbs_corl_wfn, NEED, +1, 0.0])))

    if do_delta:
        NEED = call_function_in_1st_argument(cbs_delta_scheme,
            mode='requisition', basisname=BSTD, basiszeta=ZETD, wfnname=cbs_delta_wfn)
        GRAND_NEED.append(dict(zip(d_fields, ['delta', cbs_delta_scheme, reconstitute_bracketed_basis(NEED), cbs_delta_wfn, NEED, +1, 0.0])))

        NEED = call_function_in_1st_argument(cbs_delta_scheme,
            mode='requisition', basisname=BSTD, basiszeta=ZETD, wfnname=cbs_delta_wfn_lesser)
        GRAND_NEED.append(dict(zip(d_fields, ['delta', cbs_delta_scheme, reconstitute_bracketed_basis(NEED), cbs_delta_wfn_lesser, NEED, -1, 0.0])))

    if do_delta2:
        NEED = call_function_in_1st_argument(cbs_delta2_scheme,
            mode='requisition', basisname=BSTD2, basiszeta=ZETD2, wfnname=cbs_delta2_wfn)
        GRAND_NEED.append(dict(zip(d_fields, ['delta2', cbs_delta2_scheme, reconstitute_bracketed_basis(NEED), cbs_delta2_wfn, NEED, +1, 0.0])))

        NEED = call_function_in_1st_argument(cbs_delta2_scheme,
            mode='requisition', basisname=BSTD2, basiszeta=ZETD2, wfnname=cbs_delta2_wfn_lesser)
        GRAND_NEED.append(dict(zip(d_fields, ['delta2', cbs_delta2_scheme, reconstitute_bracketed_basis(NEED), cbs_delta2_wfn_lesser, NEED, -1, 0.0])))

    if do_delta3:
        NEED = call_function_in_1st_argument(cbs_delta3_scheme,
            mode='requisition', basisname=BSTD3, basiszeta=ZETD3, wfnname=cbs_delta3_wfn)
        GRAND_NEED.append(dict(zip(d_fields, ['delta3', cbs_delta3_scheme, reconstitute_bracketed_basis(NEED), cbs_delta3_wfn, NEED, +1, 0.0])))

        NEED = call_function_in_1st_argument(cbs_delta3_scheme,
            mode='requisition', basisname=BSTD3, basiszeta=ZETD3, wfnname=cbs_delta3_wfn_lesser)
        GRAND_NEED.append(dict(zip(d_fields, ['delta3', cbs_delta3_scheme, reconstitute_bracketed_basis(NEED), cbs_delta3_wfn_lesser, NEED, -1, 0.0])))

    if do_delta4:
        NEED = call_function_in_1st_argument(cbs_delta4_scheme,
            mode='requisition', basisname=BSTD4, basiszeta=ZETD4, wfnname=cbs_delta4_wfn)
        GRAND_NEED.append(dict(zip(d_fields, ['delta4', cbs_delta4_scheme, reconstitute_bracketed_basis(NEED), cbs_delta4_wfn, NEED, +1, 0.0])))

        NEED = call_function_in_1st_argument(cbs_delta4_scheme,
            mode='requisition', basisname=BSTD4, basiszeta=ZETD4, wfnname=cbs_delta4_wfn_lesser)
        GRAND_NEED.append(dict(zip(d_fields, ['delta4', cbs_delta4_scheme, reconstitute_bracketed_basis(NEED), cbs_delta4_wfn_lesser, NEED, -1, 0.0])))

    if do_delta5:
        NEED = call_function_in_1st_argument(cbs_delta5_scheme,
            mode='requisition', basisname=BSTD5, basiszeta=ZETD5, wfnname=cbs_delta5_wfn)
        GRAND_NEED.append(dict(zip(d_fields, ['delta5', cbs_delta5_scheme, reconstitute_bracketed_basis(NEED), cbs_delta5_wfn, NEED, +1, 0.0])))

        NEED = call_function_in_1st_argument(cbs_delta5_scheme,
            mode='requisition', basisname=BSTD5, basiszeta=ZETD5, wfnname=cbs_delta5_wfn_lesser)
        GRAND_NEED.append(dict(zip(d_fields, ['delta5', cbs_delta5_scheme, reconstitute_bracketed_basis(NEED), cbs_delta5_wfn_lesser, NEED, -1, 0.0])))

    for stage in GRAND_NEED:
        for lvl in stage['d_need'].items():
            MODELCHEM.append(lvl[1])

    # Apply chemical reasoning to choose the minimum computations to run
    JOBS = MODELCHEM[:]

    instructions = ''
    instructions += """    Naive listing of computations required.\n"""
    for mc in JOBS:
        instructions += """   %12s / %-24s for  %s\n""" % (mc['f_wfn'], mc['f_basis'], VARH[mc['f_wfn']][mc['f_wfn'] + mc['f_portion']])

    #     Remove duplicate modelchem portion listings
    for indx_mc, mc in enumerate(MODELCHEM):
        dups = -1
        for indx_job, job in enumerate(JOBS):
            if (job['f_wfn'] == mc['f_wfn']) and (job['f_basis'] == mc['f_basis']):
                dups += 1
                if (dups >= 1):
                    del JOBS[indx_job]

    #     Remove chemically subsumed modelchem portion listings
    for indx_mc, mc in enumerate(MODELCHEM):
        for menial in VARH[mc['f_wfn']]:
            for indx_job, job in enumerate(JOBS):
                if (menial == job['f_wfn'] + job['f_portion']) and (mc['f_basis'] == job['f_basis']) and not (mc['f_wfn'] == job['f_wfn']):
                    del JOBS[indx_job]

    instructions += """\n    Enlightened listing of computations required.\n"""
    for mc in JOBS:
        instructions += """   %12s / %-24s for  %s\n""" % (mc['f_wfn'], mc['f_basis'], VARH[mc['f_wfn']][mc['f_wfn'] + mc['f_portion']])

    #     Expand listings to all that will be obtained
    JOBS_EXT = []
    for indx_job, job in enumerate(JOBS):
        for menial in VARH[job['f_wfn']]:
            temp_wfn, temp_portion = split_menial(menial)
            JOBS_EXT.append(dict(zip(f_fields, [temp_wfn, temp_portion, job['f_basis'], job['f_zeta'], 0.0])))

    #instructions += """\n    Full listing of computations to be obtained (required and bonus).\n"""
    #for mc in JOBS_EXT:
    #    instructions += """   %12s / %-24s for  %s\n""" % (mc['f_wfn'], mc['f_basis'], VARH[mc['f_wfn']][mc['f_wfn']+mc['f_portion']])
    psi4.print_out(instructions)

    psioh = psi4.IOManager.shared_object()
    psioh.set_specific_retention(p4const.PSIF_SCF_MOS, True)

    # Run necessary computations
    for mc in JOBS:
        kwargs['name'] = mc['f_wfn']

        # Build string of title banner
        cbsbanners = ''
        cbsbanners += """psi4.print_out('\\n')\n"""
        cbsbanners += """p4util.banner(' CBS Computation: %s / %s ')\n""" % (mc['f_wfn'].upper(), mc['f_basis'].upper())
        cbsbanners += """psi4.print_out('\\n')\n\n"""
        exec(cbsbanners)

        # Build string of molecule and commands that are dependent on the database
        commands = '\n'
        commands += """\npsi4.set_global_option('BASIS', '%s')\n""" % (mc['f_basis'])
        commands += """psi4.set_global_option('WRITER_FILE_LABEL', '%s')\n""" % \
            (user_writer_file_label + ('' if user_writer_file_label == '' else '-') + mc['f_wfn'].lower() + '-' + mc['f_basis'].lower())

        exec(commands)

        # Make energy() call
        mc['f_energy'] = call_function_in_1st_argument(func, **kwargs)

        # Fill in energies for subsumed methods
        for menial in VARH[mc['f_wfn']]:
            temp_wfn, temp_portion = split_menial(menial)
            for job in JOBS_EXT:
                if (temp_wfn == job['f_wfn']) and (temp_portion == job['f_portion']) and (mc['f_basis'] == job['f_basis']):
                    job['f_energy'] = psi4.get_variable(VARH[temp_wfn][menial])

        psi4.clean()

    psioh.set_specific_retention(p4const.PSIF_SCF_MOS, False)

    # Build string of title banner
    cbsbanners = ''
    cbsbanners += """psi4.print_out('\\n')\n"""
    cbsbanners += """p4util.banner(' CBS Results ')\n"""
    cbsbanners += """psi4.print_out('\\n')\n\n"""
    exec(cbsbanners)

    # Insert obtained energies into the array that stores the cbs stages
    for stage in GRAND_NEED:
        for lvl in stage['d_need'].items():
            MODELCHEM.append(lvl[1])

            for job in JOBS_EXT:
                if ((lvl[1]['f_wfn'] == job['f_wfn']) and (lvl[1]['f_portion'] == job['f_portion']) and
                   (lvl[1]['f_basis'] == job['f_basis'])):
                    lvl[1]['f_energy'] = job['f_energy']

    for stage in GRAND_NEED:
        stage['d_energy'] = call_function_in_1st_argument(stage['d_scheme'], needname=stage['d_need'], mode='evaluate')
        finalenergy += stage['d_energy'] * stage['d_coef']

    # Build string of results table
    table_delimit = '  ' + '-' * 105 + '\n'
    tables = ''
    tables += """\n   ==> %s <==\n\n""" % ('Components')
    tables += table_delimit
    tables += """     %6s %20s %1s %-26s %3s %16s   %-s\n""" % ('', 'Method', '/', 'Basis', 'Rqd', 'Energy [H]', 'Variable')
    tables += table_delimit
    for job in JOBS_EXT:
        star = ''
        for mc in MODELCHEM:
            if (job['f_wfn'] == mc['f_wfn']) and (job['f_basis'] == mc['f_basis']):
                star = '*'
        tables += """     %6s %20s %1s %-27s %2s %16.8f   %-s\n""" % ('', job['f_wfn'],
                  '/', job['f_basis'], star, job['f_energy'], VARH[job['f_wfn']][job['f_wfn'] + job['f_portion']])
    tables += table_delimit

    tables += """\n   ==> %s <==\n\n""" % ('Stages')
    tables += table_delimit
    tables += """     %6s %20s %1s %-27s %2s %16s   %-s\n""" % ('Stage', 'Method', '/', 'Basis', 'Wt', 'Energy [H]', 'Scheme')
    tables += table_delimit
    for stage in GRAND_NEED:
        tables += """     %6s %20s %1s %-27s %2d %16.8f   %-s\n""" % (stage['d_stage'], stage['d_wfn'],
                  '/', stage['d_basis'], stage['d_coef'], stage['d_energy'], stage['d_scheme'].__name__)
    tables += table_delimit

    tables += """\n   ==> %s <==\n\n""" % ('CBS')
    tables += table_delimit
    tables += """     %6s %20s %1s %-27s %2s %16s   %-s\n""" % ('Stage', 'Method', '/', 'Basis', '', 'Energy [H]', 'Scheme')
    tables += table_delimit
    if do_scf:
        tables += """     %6s %20s %1s %-27s %2s %16.8f   %-s\n""" % (GRAND_NEED[0]['d_stage'], GRAND_NEED[0]['d_wfn'],
                  '/', GRAND_NEED[0]['d_basis'], '', GRAND_NEED[0]['d_energy'], GRAND_NEED[0]['d_scheme'].__name__)
    if do_corl:
        tables += """     %6s %20s %1s %-27s %2s %16.8f   %-s\n""" % (GRAND_NEED[1]['d_stage'], GRAND_NEED[1]['d_wfn'],
                  '/', GRAND_NEED[1]['d_basis'], '', GRAND_NEED[1]['d_energy'], GRAND_NEED[1]['d_scheme'].__name__)
    if do_delta:
        tables += """     %6s %20s %1s %-27s %2s %16.8f   %-s\n""" % (GRAND_NEED[2]['d_stage'], GRAND_NEED[2]['d_wfn'] + ' - ' + GRAND_NEED[3]['d_wfn'],
                  '/', GRAND_NEED[2]['d_basis'], '', GRAND_NEED[2]['d_energy'] - GRAND_NEED[3]['d_energy'], GRAND_NEED[2]['d_scheme'].__name__)
    if do_delta2:
        tables += """     %6s %20s %1s %-27s %2s %16.8f   %-s\n""" % (GRAND_NEED[4]['d_stage'], GRAND_NEED[4]['d_wfn'] + ' - ' + GRAND_NEED[5]['d_wfn'],
                  '/', GRAND_NEED[4]['d_basis'], '', GRAND_NEED[4]['d_energy'] - GRAND_NEED[5]['d_energy'], GRAND_NEED[4]['d_scheme'].__name__)
    if do_delta3:
        tables += """     %6s %20s %1s %-27s %2s %16.8f   %-s\n""" % (GRAND_NEED[6]['d_stage'], GRAND_NEED[6]['d_wfn'] + ' - ' + GRAND_NEED[7]['d_wfn'],
                  '/', GRAND_NEED[6]['d_basis'], '', GRAND_NEED[6]['d_energy'] - GRAND_NEED[7]['d_energy'], GRAND_NEED[6]['d_scheme'].__name__)
    if do_delta4:
        tables += """     %6s %20s %1s %-27s %2s %16.8f   %-s\n""" % (GRAND_NEED[8]['d_stage'], GRAND_NEED[8]['d_wfn'] + ' - ' + GRAND_NEED[9]['d_wfn'],
                  '/', GRAND_NEED[8]['d_basis'], '', GRAND_NEED[8]['d_energy'] - GRAND_NEED[9]['d_energy'], GRAND_NEED[8]['d_scheme'].__name__)
    if do_delta5:
        tables += """     %6s %20s %1s %-27s %2s %16.8f   %-s\n""" % (GRAND_NEED[10]['d_stage'], GRAND_NEED[10]['d_wfn'] + ' - ' + GRAND_NEED[11]['d_wfn'],
                  '/', GRAND_NEED[10]['d_basis'], '', GRAND_NEED[10]['d_energy'] - GRAND_NEED[11]['d_energy'], GRAND_NEED[10]['d_scheme'].__name__)
    tables += """     %6s %20s %1s %-27s %2s %16.8f   %-s\n""" % ('total', 'CBS', '', '', '', finalenergy, '')
    tables += table_delimit

    #print tables
    psi4.print_out(tables)

    # Restore molecule and options
    #psi4.set_local_option('SCF', "WFN", user_wfn)    # TODO refuses to set global option WFN - rejects SCF as option
    psi4.set_global_option('BASIS', user_basis)

    psi4.set_global_option('WFN', user_wfn)
    if not b_user_wfn:
        psi4.revoke_global_option_changed('WFN')

    psi4.set_global_option('WRITER_FILE_LABEL', user_writer_file_label)

    psi4.set_variable('CBS REFERENCE ENERGY', GRAND_NEED[0]['d_energy'])
    psi4.set_variable('CBS CORRELATION ENERGY', finalenergy - GRAND_NEED[0]['d_energy'])
    psi4.set_variable('CBS TOTAL ENERGY', finalenergy)
    psi4.set_variable('CURRENT REFERENCE ENERGY', GRAND_NEED[0]['d_energy'])
    psi4.set_variable('CURRENT CORRELATION ENERGY', finalenergy - GRAND_NEED[0]['d_energy'])
    psi4.set_variable('CURRENT ENERGY', finalenergy)
    return finalenergy


# Transform and validate basis sets from 'cc-pV[Q5]Z' into [cc-pVQZ, cc-pV5Z] and [4, 5]
def validate_bracketed_basis(basisstring):
    r"""Function to transform and validate basis sets for cbs(). A basis set with no
    paired square brackets is passed through with zeta level 0 (e.g., '6-31+G(d,p)'
    is returned as [6-31+G(d,p)] and [0]). A basis set with square brackets is
    checked for sensible sequence and Dunning-ness and returned as separate basis
    sets (e.g., 'cc-pV[Q5]Z' is returned as [cc-pVQZ, cc-pV5Z] and [4, 5]). Note
    that this function has no communication with the basis set library to check
    if the basis actually exists. Used by :py:func:`~wrappers.complete_basis_set`.

    """
    ZETA = ['d', 't', 'q', '5', '6']
    BSET = []
    ZSET = []
    if re.match(r'.*cc-.*\[.*\].*z$', basisstring, flags=re.IGNORECASE):
        basispattern = re.compile(r'^(.*)\[(.*)\](.*)$')
        basisname = basispattern.match(basisstring)
        for b in basisname.group(2):
            if b not in ZETA:
                raise ValidationError('Basis set \'%s\' has invalid zeta level \'%s\'.' % (basisstring, b))
            if len(ZSET) != 0:
                if (int(ZSET[len(ZSET) - 1]) - ZETA.index(b)) != 1:
                    raise ValidationError('Basis set \'%s\' has out-of-order zeta level \'%s\'.' % (basisstring, b))
            BSET.append(basisname.group(1) + b + basisname.group(3))
            if b == 'd':
                b = '2'
            if b == 't':
                b = '3'
            if b == 'q':
                b = '4'
            ZSET.append(int(b))
    elif re.match(r'.*\[.*\].*$', basisstring, flags=re.IGNORECASE):
        raise ValidationError('Basis set surrounding series indicator [] in \'%s\' is invalid.' % (basisstring))
    else:
        BSET.append(basisstring)
        ZSET.append(0)

    return [BSET, ZSET]


# Reform string basis set descriptor from basis set strings, 'cc-pv[q5]z' from [cc-pvqz, cc-pv5z]
def reconstitute_bracketed_basis(needarray):
    r"""Function to reform a bracketed basis set string from a sequential series
    of basis sets (e.g, form 'cc-pv[q5]z' from array [cc-pvqz, cc-pv5z]). The
    basis set array is extracted from the *f_basis* field of a *NEED* dictionary in
    :py:func:`~wrappers.complete_basis_set`. Result is used to print a nicely
    formatted basis set string in the results table.

    """
    ZETA = {'d': 2, 't': 3, 'q': 4, '5': 5, '6': 6}
    ZSET = [''] * len(ZETA)
    BSET = []

    for lvl in needarray.items():
        BSET.append(lvl[1]['f_basis'])

    if (len(BSET) == 1):
        basisstring = BSET[0]
    else:
        indx = 0
        while indx < len(BSET[0]):
            if (BSET[0][indx] != BSET[1][indx]):
                zetaindx = indx
            indx += 1
        for basis in BSET:
            ZSET[ZETA[basis[zetaindx]] - 2] = basis[zetaindx]

        pre = BSET[0][:zetaindx]
        post = BSET[0][zetaindx + 1:]
        basisstring = pre + '[' + ''.join(ZSET) + ']' + post

    return basisstring


def highest_1(**largs):
    r"""Scheme for total or correlation energies with a single basis or the highest
    zeta-level among an array of bases. Used by :py:func:`~wrappers.complete_basis_set`.

    .. math:: E_{total}^X = E_{total}^X

    """
    energypiece = 0.0
    functionname = sys._getframe().f_code.co_name
    f_fields = ['f_wfn', 'f_portion', 'f_basis', 'f_zeta', 'f_energy']
    [mode, NEED, wfnname, BSET, ZSET] = validate_scheme_args(functionname, **largs)

    if (mode == 'requisition'):

        # Impose restrictions on zeta sequence
        if (len(ZSET) == 0):
            raise ValidationError('Call to \'%s\' not valid with \'%s\' basis sets.' % (functionname, len(ZSET)))

        # Return array that logs the requisite jobs
        if (wfnname == 'scf'):
            portion = 'tot'
        else:
            portion = 'corl'
        NEED = {'HI': dict(zip(f_fields, [wfnname, portion, BSET[len(ZSET) - 1], ZSET[len(ZSET) - 1], 0.0]))}

        return NEED

    elif (mode == 'evaluate'):

        # Extract required energies and zeta integers from array
        # Compute extrapolated energy
        energypiece = NEED['HI']['f_energy']

        # Output string with extrapolation parameters
        cbsscheme = ''
        cbsscheme += """\n   ==> %s <==\n\n""" % (functionname)
        if (NEED['HI']['f_wfn'] == 'scf'):
            cbsscheme += """   HI-zeta (%s) Total Energy:        %16.8f\n""" % (str(NEED['HI']['f_zeta']), energypiece)
        else:
            cbsscheme += """   HI-zeta (%s) Correlation Energy:  %16.8f\n""" % (str(NEED['HI']['f_zeta']), energypiece)
        psi4.print_out(cbsscheme)

        return energypiece


# Solution equation in LaTeX:  $E_{corl}^{\infty} = \frac{E_{corl}^{X} X^3 - E_{corl}^{X-1} (X-1)^3}{X^3 - (X-1)^3}$
# Solution equation in LaTeX:  $\beta = \frac{E_{corl}^{X} - E_{corl}^{X-1}}{X^{-3} - (X-1)^{-3}}$
def corl_xtpl_helgaker_2(**largs):
    r"""Extrapolation scheme for correlation energies with two adjacent zeta-level bases.
    Used by :py:func:`~wrappers.complete_basis_set`.

    .. math:: E_{corl}^X = E_{corl}^{\infty} + \beta X^{-3}

    """
    energypiece = 0.0
    functionname = sys._getframe().f_code.co_name
    f_fields = ['f_wfn', 'f_portion', 'f_basis', 'f_zeta', 'f_energy']
    [mode, NEED, wfnname, BSET, ZSET] = validate_scheme_args(functionname, **largs)

    if (mode == 'requisition'):

        # Impose restrictions on zeta sequence
        if (len(ZSET) != 2):
            raise ValidationError('Call to \'%s\' not valid with \'%s\' basis sets.' % (functionname, len(ZSET)))

        # Return array that logs the requisite jobs
        NEED = {'HI': dict(zip(f_fields, [wfnname, 'corl', BSET[1], ZSET[1], 0.0])),
                'LO': dict(zip(f_fields, [wfnname, 'corl', BSET[0], ZSET[0], 0.0]))}

        return NEED

    elif (mode == 'evaluate'):

        # Extract required energies and zeta integers from array
        eHI = NEED['HI']['f_energy']
        zHI = NEED['HI']['f_zeta']
        eLO = NEED['LO']['f_energy']
        zLO = NEED['LO']['f_zeta']

        # Compute extrapolated energy
        energypiece = (eHI * zHI ** 3 - eLO * zLO ** 3) / (zHI ** 3 - zLO ** 3)
        beta = (eHI - eLO) / (zHI ** (-3) - zLO ** (-3))

        # Output string with extrapolation parameters
        cbsscheme = ''
        cbsscheme += """\n   ==> %s <==\n\n""" % (functionname)
        cbsscheme += """   LO-zeta (%s) Correlation Energy:  %16.8f\n""" % (str(zLO), eLO)
        cbsscheme += """   HI-zeta (%s) Correlation Energy:  %16.8f\n""" % (str(zHI), eHI)
        cbsscheme += """   Extrapolated Correlation Energy: %16.8f\n""" % (energypiece)
        cbsscheme += """   Beta (coefficient) Value:        %16.8f\n""" % (beta)
        psi4.print_out(cbsscheme)

        return energypiece


def scf_xtpl_helgaker_3(**largs):
    r"""Extrapolation scheme for reference energies with three adjacent zeta-level bases.
    Used by :py:func:`~wrappers.complete_basis_set`.

    .. math:: E_{total}^X = E_{total}^{\infty} + \beta e^{-\alpha X}

    """
    energypiece = 0.0
    functionname = sys._getframe().f_code.co_name
    f_fields = ['f_wfn', 'f_portion', 'f_basis', 'f_zeta', 'f_energy']
    [mode, NEED, wfnname, BSET, ZSET] = validate_scheme_args(functionname, **largs)

    if (mode == 'requisition'):

        # Impose restrictions on zeta sequence
        if (len(ZSET) != 3):
            raise ValidationError('Call to \'%s\' not valid with \'%s\' basis sets.' % (functionname, len(ZSET)))

        # Return array that logs the requisite jobs
        NEED = {'HI': dict(zip(f_fields, [wfnname, 'tot', BSET[2], ZSET[2], 0.0])),
                'MD': dict(zip(f_fields, [wfnname, 'tot', BSET[1], ZSET[1], 0.0])),
                'LO': dict(zip(f_fields, [wfnname, 'tot', BSET[0], ZSET[0], 0.0]))}

        return NEED

    elif (mode == 'evaluate'):

        # Extract required energies and zeta integers from array
        eHI = NEED['HI']['f_energy']
        eMD = NEED['MD']['f_energy']
        eLO = NEED['LO']['f_energy']
        zHI = NEED['HI']['f_zeta']
        zMD = NEED['MD']['f_zeta']
        zLO = NEED['LO']['f_zeta']

        # Compute extrapolated energy
        ratio = (eHI - eMD) / (eMD - eLO)
        alpha = -1 * math.log(ratio)
        beta = (eHI - eMD) / (math.exp(-1 * alpha * zMD) * (ratio - 1))
        energypiece = eHI - beta * math.exp(-1 * alpha * zHI)

        # Output string with extrapolation parameters
        cbsscheme = ''
        cbsscheme += """\n   ==> %s <==\n\n""" % (functionname)
        cbsscheme += """   LO-zeta (%s) Correlation Energy:  %16.8f\n""" % (str(zLO), eLO)
        cbsscheme += """   MD-zeta (%s) Correlation Energy:  %16.8f\n""" % (str(zMD), eMD)
        cbsscheme += """   HI-zeta (%s) Correlation Energy:  %16.8f\n""" % (str(zHI), eHI)
        cbsscheme += """   Extrapolated Correlation Energy: %16.8f\n""" % (energypiece)
        cbsscheme += """   Alpha (exponent) Value:          %16.8f\n""" % (alpha)
        cbsscheme += """   Beta (coefficient) Value:        %16.8f\n""" % (beta)
        psi4.print_out(cbsscheme)

        return energypiece


def scf_xtpl_helgaker_2(**largs):
    r"""Extrapolation scheme for reference energies with two adjacent zeta-level bases.
    Used by :py:func:`~wrappers.complete_basis_set`.

    .. math:: E_{total}^X = E_{total}^{\infty} + \beta e^{-\alpha X}, \alpha = 1.63

    """
    energypiece = 0.0
    functionname = sys._getframe().f_code.co_name
    f_fields = ['f_wfn', 'f_portion', 'f_basis', 'f_zeta', 'f_energy']
    [mode, NEED, wfnname, BSET, ZSET] = validate_scheme_args(functionname, **largs)

    if (mode == 'requisition'):

        # Impose restrictions on zeta sequence
        if (len(ZSET) != 2):
            raise ValidationError('Call to \'%s\' not valid with \'%s\' basis sets.' % (functionname, len(ZSET)))

        # Return array that logs the requisite jobs
        NEED = {'HI': dict(zip(f_fields, [wfnname, 'tot', BSET[1], ZSET[1], 0.0])),
                'LO': dict(zip(f_fields, [wfnname, 'tot', BSET[0], ZSET[0], 0.0]))}

        return NEED

    elif (mode == 'evaluate'):

        # Extract required energies and zeta integers from array
        eHI = NEED['HI']['f_energy']
        eLO = NEED['LO']['f_energy']
        zHI = NEED['HI']['f_zeta']
        zLO = NEED['LO']['f_zeta']

        # LAB TODO add ability to pass alternate parameter values in

        # Return extrapolated energy
        alpha = 1.63
        beta = (eHI - eLO) / (math.exp(-1 * alpha * zLO) * (math.exp(-1 * alpha) - 1))
        energypiece = eHI - beta * math.exp(-1 * alpha * zHI)

        # Output string with extrapolation parameters
        cbsscheme = ''
        cbsscheme += """\n   ==> %s <==\n\n""" % (functionname)
        cbsscheme += """   LO-zeta (%s) Correlation Energy:  %16.8f\n""" % (str(zLO), eLO)
        cbsscheme += """   HI-zeta (%s) Correlation Energy:  %16.8f\n""" % (str(zHI), eHI)
        cbsscheme += """   Extrapolated Correlation Energy: %16.8f\n""" % (energypiece)
        cbsscheme += """   Alpha (exponent) Value:          %16.8f\n""" % (alpha)
        cbsscheme += """   Beta (coefficient) Value:        %16.8f\n""" % (beta)
        psi4.print_out(cbsscheme)

        return energypiece


def validate_scheme_args(functionname, **largs):
    r"""Function called by each extrapolation scheme in :py:func:`~wrappers.complete_basis_set`.
    Checks that all the input arguments are present and suitable so that
    the scheme function can focus on defining the extrapolation.

    """
    mode = ''
    NEED = []
    wfnname = ''
    BSET = []
    ZSET = []

    # Mode where function fills out a form NEED with the computations needed to fulfill its call
    if (largs['mode'].lower() == 'requisition'):
        mode = largs['mode'].lower()

        if 'wfnname' in largs:
            wfnname = largs['wfnname']
        else:
            raise ValidationError('Call to \'%s\' has keyword \'wfnname\' missing.' % (functionname))

        if re.match(r'scf_.*$', functionname) and (wfnname != 'scf'):
            raise ValidationError('Call to \'%s\' is intended for scf portion of calculation.' % (functionname))
        if re.match(r'corl_.*$', functionname) and (wfnname == 'scf'):
            raise ValidationError('Call to \'%s\' is not intended for scf portion of calculation.' % (functionname))

        if 'basisname' in largs:
            BSET = largs['basisname']
        else:
            raise ValidationError('Call to \'%s\' has keyword \'basisname\' missing.' % (functionname))

        if 'basiszeta' in largs:
            ZSET = largs['basiszeta']
        else:
            raise ValidationError('Call to \'%s\' has keyword \'basiszeta\' missing.' % (functionname))

    # Mode where function reads the now-filled-in energies from that same form and performs the sp, xtpl, delta, etc.
    elif (largs['mode'].lower() == 'evaluate'):
        mode = largs['mode'].lower()

        if 'needname' in largs:
            NEED = largs['needname']
        else:
            raise ValidationError('Call to \'%s\' has keyword \'needname\' missing.' % (functionname))

    else:
        raise ValidationError('Call to \'%s\' has keyword \'mode\' missing or invalid.' % (functionname))

    return [mode, NEED, wfnname, BSET, ZSET]


def split_menial(menial):
    r"""Function used by :py:func:`~wrappers.complete_basis_set` to separate
    *menial* 'scftot' into [scf, tot] and 'mp2corl' into [mp2, corl].

    """
    PTYP = ['tot', 'corl']
    for temp in PTYP:
        if menial.endswith(temp):
            temp_wfn = menial[:-len(temp)]
            temp_portion = temp

    return [temp_wfn, temp_portion]

# Quickly normalize the types for both python 2 and 3
try:
    unicode = unicode
except NameError:
    # 'unicode' is undefined, must be Python 3
    str = str
    unicode = str
    bytes = bytes
    basestring = (str,bytes)
else:
    # 'unicode' exists, must be Python 2
    str = str
    unicode = unicode
    bytes = str
    basestring = basestring

##  Aliases  ##
cbs = complete_basis_set

#################################
##  End of Complete Basis Set  ##
#################################