/usr/share/psychtoolbox-3/PsychCal/CalibrateMonitorPhotometer.m is in psychtoolbox-3-common 3.0.11.20131230.dfsg1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | function [ gammaTable1, gammaTable2, displayBaseline, displayRange, displayGamma, maxLevel ] = CalibrateMonitorPhotometer(numMeasures, screenid)
% [gammaTable1, gammaTable2, displayBaseline, displayRange. displayGamma, maxLevel ] = CalibrateMonitorPhotometer([numMeasures=9][, screenid=max])
%
% A simple calibration script for analog photometers.
%
% Use CalibrateMonSpd() if you want to do more fancy calibration with
% different types of photometers or special devices like Bits+ or DataPixx,
% assuming you know how to operate CalibrateMonSpd() that is...
%
% numMeasures (default: 9) readings are taken manually, and the readings
% are fit with a gamma function and piecewise cubic splines. numMeasures -
% 1 should be a power of 2, ideally (9, 17, 33, etc.). The corresponding
% linearized gamma tables (1 -> gamma, 2 -> splines) are returned, as well
% as the display baseline, display range in cd/m^2 and display gamma. Plots
% of the two fits are created as well. Requires fit tools.
%
% If the normalized gamma table is not loaded, then the cd/m^2 value of a
% screen value can be figured out by the formula: cdm2 =
% displayRange*(screenval/maxLevel).^(1/displayGamma) + displayBaseline.
%
% Generally, you will want to load the normalized gamma tables and use them
% in Screen('LoadNormalizedGammaTable'). For example:
%
% [gammaTable1, gammaTable2] = CalibrateMonitorPhotometer;
% %Look at the outputted graphs to see which one gives a better fit
% %Then save the corresponding gamma table for later use
% gammaTable = gammaTable1;
% save MyGammaTable gammaTable
%
% %Then when you're ready to use the gamma table:
% load MyGammaTable
% Screen('LoadNormalizedGammaTable', win, gammaTable*[1 1 1]);
%
%
% History:
% Version 1.0: Patrick Mineault (patrick.mineault@gmail.com)
% 22.10.2010 mk Switch numeric input from use of input() to use of
% GetNumber(). Restore gamma table after measurement. Make
% more robust.
% 19.08.2012 mk Some cleanup.
% 4.09.2012 mk Use Screen('ColorRange') to adapt number/max of intensity
% level to given range of framebuffer.
global vals;
global inputV;
if (nargin < 1) || isempty(numMeasures)
numMeasures = 9;
end
input(sprintf(['When black screen appears, point photometer, \n' ...
'get reading in cd/m^2, input reading using numpad and press enter. \n' ...
'A screen of higher luminance will be shown. Repeat %d times. ' ...
'Press enter to start'], numMeasures));
psychlasterror('reset');
try
if nargin < 2 || isempty(screenid)
% Open black window on default screen:
screenid = max(Screen('Screens'));
end
% Open black window:
win = Screen('OpenWindow', screenid, 0);
maxLevel = Screen('ColorRange', win);
% Load identity gamma table for calibration:
LoadIdentityClut(win);
vals = [];
inputV = [0:(maxLevel+1)/(numMeasures - 1):(maxLevel+1)]; %#ok<NBRAK>
inputV(end) = maxLevel;
for i = inputV
Screen('FillRect',win,i);
Screen('Flip',win);
fprintf('Value? ');
resp = GetNumber;
fprintf('\n');
vals = [vals resp]; %#ok<AGROW>
end
% Restore normal gamma table and close down:
RestoreCluts;
Screen('CloseAll');
catch %#ok<*CTCH>
RestoreCluts;
Screen('CloseAll');
psychrethrow(psychlasterror);
end
displayRange = range(vals);
displayBaseline = min(vals);
%Normalize values
vals = (vals - displayBaseline) / displayRange;
inputV = inputV/maxLevel;
if ~exist('fittype'); %#ok<EXIST>
fprintf('This function needs fittype() for automatic fitting. This function is missing on your setup.\n');
fprintf('Therefore i can''t proceed, but the input values for a curve fit are available to you by\n');
fprintf('defining "global vals;" and "global inputV" on the command prompt, with "vals" being the displayed\n');
fprintf('values and "inputV" being user input from the measurement. Both are normalized to 0-1 range.\n\n');
error('Required function fittype() unsupported. You need the curve-fitting toolbox for this to work.\n');
end
%Gamma function fitting
g = fittype('x^g');
fittedmodel = fit(inputV',vals',g);
displayGamma = fittedmodel.g;
gammaTable1 = ((([0:maxLevel]'/maxLevel))).^(1/fittedmodel.g); %#ok<NBRAK>
firstFit = fittedmodel([0:maxLevel]/maxLevel); %#ok<NBRAK>
%Spline interp fitting
fittedmodel = fit(inputV',vals','splineinterp');
secondFit = fittedmodel([0:maxLevel]/maxLevel); %#ok<NBRAK>
figure;
plot(inputV, vals, '.', [0:maxLevel]/maxLevel, firstFit, '--', [0:maxLevel]/maxLevel, secondFit, '-.'); %#ok<NBRAK>
legend('Measures', 'Gamma model', 'Spline interpolation');
title(sprintf('Gamma model x^{%.2f} vs. Spline interpolation', displayGamma));
%Invert interpolation
fittedmodel = fit(vals',inputV','splineinterp');
gammaTable2 = fittedmodel([0:maxLevel]/maxLevel); %#ok<NBRAK>
return;
|